1
|
Wang Q, Li R, Zhang X, Li T, Jin C, Zou W, Cao Z. Chlorination treatment actuated structural reconstitution and aggravated toxicity of molybdenum disulfide nanosheets to freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137919. [PMID: 40088668 DOI: 10.1016/j.jhazmat.2025.137919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
The extensive application of molybdenum disulfide (MoS2) nanosheets in various fields involving in water treatment inevitably results in their release into wastewater treatment plants, and eventually into aquatic environments following disinfection. However, little is known about the transformations and toxicity evolution of MoS2 during chlorination. This study discovered that MoS2 is unstable to NaClO exposure, and more soluble ions are released under UV/NaClO co-treatment due to the generation of •OH and chlorine radicals. Compared to NaClO alone, UV/NaClO treatment caused significant structural disorder and compositional alterations in MoS2 (oxidation and chlorine incorporation), reducing its colloidal stability and hydrophilicity. Relative to pristine MoS2, chlorinated MoS2 showed stronger toxic effects against algae, including strengthened envelopment, morphological shrinkage and inner membrane collapse. Chlorination clearly intensified the abiotic and biotic ROS-dependent oxidative stress of MoS2, leading to exacerbated cell growth (34.6 % at 10 μg/mL) and photosynthesis inhibition, and membrane damage. Metabolomics confirmed the aggravated toxicity of chlorinated MoS2 in terms of the down-regulation of carbohydrates, amino acids, unsaturated fatty acids, and TCA cycle. This study underlines the significant role of chlorination processes in modifying MoS2 ecotoxicity and proposes the necessity to systematically assess the risks of MoS2-based nanomaterials while developing water treatment processes accordingly.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Rui Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Benaglia S, Chiodini S. Quantification of solvation forces with amplitude modulation AFM. J Colloid Interface Sci 2025; 685:342-349. [PMID: 39855083 DOI: 10.1016/j.jcis.2025.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
HYPOTHESIS Interfacial solvation forces arise from the organisation of liquid molecules near solid surfaces. They are crucial to fundamental phenomena, spanning materials science, molecular biology, and technological applications, yet their molecular details remain poorly understood. Achieving a complete understanding requires imaging techniques, such as three-dimensional atomic force microscopy (3D AFM), to provide atomically resolved images of solid-liquid interfaces (SLIs). However, converting 3D AFM data into accurate tip-sample forces remains challenging, as the process of translating observables into forces is not straightforward. EXPERIMENTS/SIMULATIONS This study compares standard amplitude modulation AFM (AM-AFM) force reconstruction methods (FRMs) and identifies their limitations in reconstructing SLI forces. A novel numerical matrix-based FRM specifically designed for AM-AFM is then introduced, aiming to overcome the limitations and inaccuracies found in standard approaches. The new method is validated through simulations and experimental data obtained at the SLI of silicon oxide and water with 3D AFM. FINDINGS The proposed matrix-based FRM, differently from standard FRMs, can reconstruct the full SLI interaction at the atomic scale, with no loss of information deriving from the specific choice of AFM experimental parameters or the force functional form. This method unlocks the full spectrum of physical phenomena encoded in the tip-sample interaction at the SLI in AFM experiments, greatly advancing our understanding of interfacial properties and their effects on colloid science, including nanoparticle interactions and molecular self-assembly.
Collapse
Affiliation(s)
- Simone Benaglia
- Department of Physics & Astronomy University of Manchester, Manchester M13 9PL UK; National Graphene Institute, University of Manchester, Manchester M13 9PL UK.
| | - Stefano Chiodini
- Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via R. Rubattino 81 20134 Milan, Italy.
| |
Collapse
|
3
|
Milton KL, Hargreaves L, Shluger A. Structure and Dynamics of Water Confined at the SiO 2/WS 2 Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:4261-4271. [PMID: 40041391 PMCID: PMC11874030 DOI: 10.1021/acs.jpcc.4c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The WS2/SiO2 interface is of interest to a variety of research communities due to the electronic properties of WS2 and the ubiquity of SiO2 as a dielectric substrate. Due to the hydrophilic nature of silanol groups on the surface of SiO2, water is difficult to remove at the surface, leading to confined water between WS2 and SiO2. Understanding the properties of confined water is important both fundamentally and for their effects on the interfacing materials. We investigated the structure and dynamics of confined water between WS2 and SiO2 using density functional theory and ab initio molecular dynamics, comparing it to adsorbed water on the surfaces of WS2 and SiO2. The results show that confined water becomes increasingly structured, with its orientation influenced by hydrogen bonding to the silanol groups as well as by the partial reorientation of water molecules to face WS2 in an H-up configuration. The presence of silanol groups disrupts the hydrogen bonding network of water at monolayer coverage for both confined and unconfined water. For all interfaces explored, changes in both structural and dynamic properties are dependent on the number of water layers present.
Collapse
Affiliation(s)
- Katherine L. Milton
- Department
of Physics and Astronomy and the London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Laura Hargreaves
- Department
of Physics and Astronomy and the London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Alexander Shluger
- Department
of Physics and Astronomy and the London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, U.K.
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 21-1
Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
4
|
Li H, Xu Z, Li J, Siria A, Ma M. Evolution of Interfacial Hydration Structure Induced by Ion Condensation and Correlation Effects. Angew Chem Int Ed Engl 2025; 64:e202418029. [PMID: 39648812 DOI: 10.1002/anie.202418029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Interfacial hydration structures are crucial in wide-ranging applications, including battery, colloid, lubrication. Multivalent ions like Mg2+ and La3+ show irreplaceable roles in these applications, which are hypothesized due to their unique interfacial hydration structures. However, this hypothesis lacks experimental supports. Here, we provide the first observation for their interfacial hydration structures with molecular resolution using atomic force microscopy. We observed the evolution of layered hydration structures at La(NO3)3 solution-mica interfaces. As concentration increases from 25 mM to 2 M, the layer number varies from 2 to 1 and back to 2, and the interlayer thickness rises from 0.25±0.05 to 0.34±0.03 nm, with hydration force increasing from 0.27±0.07 to 1.04±0.24 nN. Theory and molecular simulation reveal that the cations form inner-sphere complexes. Multivalence induces concentration-dependent ion condensation and correlation effects, resulting in compositional and structural evolution within interfacial hydration structures. Additional experiments at seven different solid-liquid interfaces together with literature comparison confirm the universality of this mechanism for both multivalent and monovalent ions. New factors affecting interfacial hydration structures are revealed, including concentration and solvent dielectric constant. This insight provides guidance for designing interfacial hydration structures to optimize solid-liquid-interphase for battery life extension, modulate colloid stability and develop efficient lubricants.
Collapse
Affiliation(s)
- Han Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, China
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518118, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zhi Xu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Jiacheng Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Alessandro Siria
- Laboratoire de Physique de l'Ecole normale Supérieure,., ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Ming Ma
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, China
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518118, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Joshi M, Ren X, Lin T, Joshi R. Mechanistic Insights into Gas Adsorption on 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406706. [PMID: 39562164 DOI: 10.1002/smll.202406706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Owing to their exceptional characteristics, such as one-atom thickness, high specific surface area, and tunability of surfaces, 2D materials are excellent templates to study the surface-dependent gas adsorption phenomenon. Moreover, the properties of 2D materials like morphology, bandgap, structure, and carrier mobility can be modulated easily by modification methods such as functionalization, defect and doping engineering. These modifications create and activate unconventional inert and active sites, leading to the selective adsorption of gases via mechanisms such as charge transfer kinetics, Schottky-barrier modification, and surface interactions. These methods enhance the adsorption sites by adding covalent and non-covalent moieties to the 2D surface and play a critical role in developing ultrafast gas sensing with high sensitivity, selectivity, fast response/recovery rates, and low detection limits. Here, this perspective is presented on the mechanism of the adsorption process of gases on modified 2D surfaces based on recent studies related to adsorption-dependent applications of 2D materials.
Collapse
Affiliation(s)
- Manisha Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Ren
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tongxi Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Xu Z, Li H, Ma M. Molecular Mechanisms of Solvation Force for Aqueous Systems. NANO LETTERS 2024; 24:16239-16244. [PMID: 39658349 DOI: 10.1021/acs.nanolett.4c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Solvation force, stemming from the interfacial liquid structure, dominates the short-range interfacial interaction within a few nanometers across broad fields such as battery, lubrication, and colloid. However, achieving a quantitative understanding of solvation force for an aqueous system has remained elusive for decades, with the widely used contact value theory underestimating solvation force due to inherent assumptions. In this work, inspired by the flow field of liquid when two confining surfaces approach each other, we proposed a parameter-free expression for the solvation force acting on atomically smooth surfaces, quantitatively related to the energy barrier when liquid molecules are squeezed out from confinement. The effects of temperature and wetting properties of the surface on solvation force curves are found to be different. Solvation force measured by three-dimensional atomic force microscopy (3D-AFM) validates theoretical prediction on three types of surfaces ranging from hydrophilic to hydrophobic and reveals that the energy barrier is more intrinsic than density.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Han Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518118, China
| | - Ming Ma
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zou W, Chang Y, Zhang X, Li X, Jin C, Zhang G, Cao Z, Zhou Q. MoS 2 Nanosheets at Low Doses Induced Cardiotoxicity in Developing Zebrafish via Ferroptosis: Influence of Lateral Size and Surface Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22539-22552. [PMID: 39589763 DOI: 10.1021/acs.est.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The widespread applications of molybdenum disulfide (MoS2) nanosheets inevitably result in their release into aquatic environments, necessitating an exploration of their potential toxic effects on aquatic organisms. This study analyzes the cardiac responses of zebrafish larvae exposed to MoS2, with a focus on the influence of size and surface modifications. At higher concentrations (1 and 5 mg/L), MoS2 nanosheets hampered larval growth without influencing cardiomyogenesis. At lower doses (0.5-100 μg/L), small-sized MoS2 (ssMoS2, 187.2 nm) significantly impaired cardiac development, as proved by morphology abnormality, decreased heartbeat, stroke volume, and cardiac output, whereas these undesirable changes were not observed in the cysteine-modified form. Large-sized nanosheets (1.638 μm) did not localize to the heart, barely showing a cardiac disorder. Transcriptomics, biochemical analysis, and computational simulation validated that ssMoS2 aggravated Fe2+ overload through excessive ferritinophagy and ferroportin-1 inhibition, accompanied by down-regulation of glutathione peroxidase 4 and activation of PUFAs esterification, leading to ferroptosis. Significant associations between ferroptosis signals and cardiac indices, along with the ferrostatin-1 inhibition test, confirmed the ferroptosis-mediated cardiotoxicity of ssMoS2. Our study provides a key understanding of molecular events underlying MoS2-induced cardiotoxicity and highlights the importance of size and surface characteristics, which are significant for risk assessment and the safe design of nanoproducts.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Yishuang Chang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Xu C, Qiao GG, Nan N, Bao L. Environmental Influence on Stripe Formation at the Graphite-Water Interface. Chemphyschem 2024; 25:e202400641. [PMID: 39143859 PMCID: PMC11614372 DOI: 10.1002/cphc.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Understanding the characteristics of graphite-water interfaces is of scientific significance and practical importance. Ordered stripe structures have been observed at this interface, with their origins debated between condensed gas molecules and airborne hydrocarbons. Atomic force microscopy (AFM) studies have revealed variations in the morphology, formation and growth of these ordered structures. Here, we investigate the graphite-water interface under different environmental conditions using PeakForce Quantitative Nanomechanical (PF-QNM) AFM. Our findings reveal that stripe structures with 4 nm width and 0.5 nm periodicity, form and grow under wet laboratory conditions but not in pure inert gas or cleanroom environments. These stripes appear more readily when the graphite surface is immersed in water, with growth associated with gas nanodomains on the surface. This suggests that atmospheric contaminants migrate to the water-graphite interface, potentially facilitated by gas states. These findings underscore the impact of environmental conditions on graphitic materials, providing new insights into the mechanisms underlying stripe formation and growth.
Collapse
Affiliation(s)
- Chenglong Xu
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
- Department of Chemical and Biomolecular EngineerUniversity of MelbourneParkvilleVictoria3010Australia
- Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular EngineerUniversity of MelbourneParkvilleVictoria3010Australia
| | - Nan Nan
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| | - Lei Bao
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| |
Collapse
|
9
|
Tang Z, Lin S, Wang ZL. Unveiling Contact-Electrification Effect on Interfacial Water Oscillation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407507. [PMID: 39210632 DOI: 10.1002/adma.202407507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Water is crucial for various physicochemical processes at the liquid-solid interfaces. In particular, the interfacial water, mediating the electric field and solvation effect along with the solid, corporately determine the electrochemical properties. Understanding the interaction between solid properties and the interface water holds significant importance in interfacial dynamics. However, the impact of alterations in the charged state of solid surfaces induced by contact electrification on interfacial water remains unknown. Here, the evolution of atomic-level resolution maps of hydration layers are reported on charged surfaces using 3D atomic force microscopy (3D-AFM). These findings demonstrate that electrostatic interactions can reinforce, distort, or collapse the characteristic structure of hydration layers. More importantly, these interactions exhibit interlayer differences and sample specificity in hydration layer structures of different substrates. In addition, similar oscillations of the hydration layer are observed at the electrochemical interface under different voltage biases. This suggests that contact-electrification has the potential to serve as a novel method for manipulating and regulating chemical reactions at the interface.
Collapse
Affiliation(s)
- Zhen Tang
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0245, USA
| |
Collapse
|
10
|
Su S, Zhao J, Ly TH. Scanning Probe Microscopies for Characterizations of 2D Materials. SMALL METHODS 2024; 8:e2400211. [PMID: 38766949 PMCID: PMC11579571 DOI: 10.1002/smtd.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.
Collapse
Affiliation(s)
- Shaoqiang Su
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
11
|
Bao Y, Nishiwaki Y, Kawano T, Utsunomiya T, Sugimura H, Ichii T. Molecular-Resolution Imaging of Ionic Liquid/Alkali Halide Interfaces with Varied Surface Charge Densities via Atomic Force Microscopy. ACS NANO 2024; 18:25302-25315. [PMID: 39185607 DOI: 10.1021/acsnano.4c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
When in contact with charged solid surfaces, ionic liquids (ILs) are known to form solvation structures consisting of alternating cation and anion layers. This phenomenon is considered to originate from the adsorption layer of counterions overcompensating the surface charge, so-called overscreening. However, the response of these layers to surfaces with near-zero or extremely high surface charge density (σ) remains inadequately understood. Here, we probe the solvation structure of ILs on alkali halide surfaces with varied surface orientations: nearly zero-charged RbI(100) and highly charged RbI(111), by employing frequency modulation atomic force microscopy with atomic resolution. Two commonly used ILs are examined in this study: 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpyr][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). On RbI(100) surfaces with near zero σ, we observe alternating cation and anion layers, diverging from the previously proposed monolayer model for IL/alkali halide(100) interfaces. These results support the argument that overscreening occurs under low σ, even approaching zero, and reconcile conflicting experimental conclusions about low σ systems. On RbI(111) surfaces with high σ, we identify solvation structures consisting of two consecutive counterion layers. This structure aligns with the theoretically predicted crowding; a phenomenon rarely observed in commonly used ILs due to typically unreachable σ in electrochemical IL/electrode systems. Our findings indicate that alkali halide(111) surfaces are potentially valuable for exploring the crowding phenomenon in ILs, addressing the current scarcity of experimental observations.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Nishiwaki
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Touma Kawano
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
He Y, Chen Q, Feng R, Qian J, Lu B, Tang S, Liu Y, Liu F, Shen J. Molybdenum disulphide nanoparticles accelerate the transformation of levofloxacin in planting soil upon exposure. CHEMOSPHERE 2024; 363:142798. [PMID: 38977246 DOI: 10.1016/j.chemosphere.2024.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The use of nanocatalytic particles for the removal of refractory organics from wastewater is a rapidly growing area of environmental purification. However, little has been done to investigate the effects of nanoparticles on soil-plant systems with antibiotic contamination. This work assessed the effect of molybdenum disulfide (MoS2) on the soil-Phragmites communis system containing levofloxacin (LVX). The results showed that the addition of MoS2 had restoration potential for stressed plant. The MoS2 with catalytic activity promoted the transformation of LVX in rhizosphere soils. The transformation pathways of LVX in the different exposure groups were proposed. The continuous output of radicals in the high MoS2 dosage group facilitated the transformation of LVX to small molecule compounds, which were eventually mineralized. Moreover, the electron-density-difference analysis revealed the easier flow of electrons from the MoS2 surface towards the LVX molecules. This finding provides theoretical support for the application of nanocatalytic particles in ecological environments.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiang Chen
- PowerChina Huadong Engineering Corporation, Hangzhou, Zhejiang, 311122, China; Zhejiang Huadong Engineering Construction Managment Co., Ltd. , Hangzhou, Zhejiang, 310030, China
| | - Rubo Feng
- PowerChina Huadong Engineering Corporation, Hangzhou, Zhejiang, 311122, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Arvelo D, Comer J, Schmit J, Garcia R. Interfacial Water Is Separated from a Hydrophobic Silica Surface by a Gap of 1.2 nm. ACS NANO 2024; 18:18683-18692. [PMID: 38973716 PMCID: PMC11256893 DOI: 10.1021/acsnano.4c05689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
The interaction of liquid water with hydrophobic surfaces is ubiquitous in life and technology. Yet, the molecular structure of interfacial liquid water on these surfaces is not known. By using a 3D atomic force microscope, we characterize with angstrom resolution the structure of interfacial liquid water on hydrophobic and hydrophilic silica surfaces. The combination of 3D AFM images and molecular dynamics simulations reveals that next to a hydrophobic silica surface, there is a 1.2 nm region characterized by a very low density of water. In contrast, the 3D AFM images obtained of a hydrophilic silica surface reveal the presence of hydration layers next to the surface. The gap observed on hydrophobic silica surfaces is filled with two-to-three layers of straight-chain alkanes. We developed a 2D Ising model that explains the formation of a continuous hydrocarbon layer on hydrophobic silica surfaces.
Collapse
Affiliation(s)
- Diana
M. Arvelo
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Jeffrey Comer
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Jeremy Schmit
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| |
Collapse
|
14
|
Wang WW, Yan H, Gu Y, Yan J, Mao BW. In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:103-126. [PMID: 38603469 DOI: 10.1146/annurev-anchem-061422-020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.
Collapse
Affiliation(s)
- Wei-Wei Wang
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Hao Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Yu Gu
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Jiawei Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Bing-Wei Mao
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
15
|
Almeida CM, Ptak F, Prioli R. Observation of the early stages of environmental contamination in graphene by friction force. J Chem Phys 2024; 160:214701. [PMID: 38828823 DOI: 10.1063/5.0200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Exposure to ambient air contaminates the surface of graphene sheets. Contamination may arise from different sources, and its nature alters the frictional behavior of the material. These changes in friction enable the observation of the early stages of contaminants' adsorption in graphene. Using a friction force microscope, we show that molecular adsorption initiates at the edges and mechanical defects in the monolayer. Once the monolayer is covered, the contaminants spread over the additional graphene layers. With this method, we estimate the contamination kinetics. In monolayer graphene, the surface area covered with adsorbed molecules increases with time of air exposure at a rate of 10-14 m2/s, while in bilayer graphene, it is one order of magnitude smaller. Finally, as the contaminants cover the additional graphene layers, friction no longer has a difference concerning the number of graphene layers.
Collapse
Affiliation(s)
- Clara M Almeida
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020, Brazil
| | - Felipe Ptak
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| | - Rodrigo Prioli
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| |
Collapse
|
16
|
Arvelo DM, Garcia-Sacristan C, Chacón E, Tarazona P, Garcia R. Interfacial water on collagen nanoribbons by 3D AFM. J Chem Phys 2024; 160:164714. [PMID: 38656444 DOI: 10.1063/5.0205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Collagen is the most abundant structural protein in mammals. Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. Here, we apply 3D AFM to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons. For a neutral tip, the interfacial water structure is characterized by the oscillation of the water particle density distribution with a value of 0.3 nm (hydration layers). The interfacial structure does not depend on the collagen region. For a negatively charged tip, the interfacial structure might depend on the collagen region. Hydration layers are observed in overlap regions, while in gap regions, the interfacial solvent structure is dominated by electrostatic interactions. These interactions generate interlayer distances of 0.2 nm.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| |
Collapse
|
17
|
Chen C, Yurtsever A, Li P, Sun L. Two-Dimensional Layered Nanomaterials Steering Self-Assembly of Dodecapeptides with Three Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19699-19710. [PMID: 38588069 DOI: 10.1021/acsami.3c18851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-assembly of peptides on layered nanomaterials such as graphite and MoS2 in the formation of long-range ordered two-dimensional nanocrystal patterns leading to its potential applications for biosensing and bioelectronics has attracted significant interest in nanoscience and nanotechnology. However, controlling the self-assembly of peptides on nanomaterials is still challenging due to the unclear role of nanomaterials in steering self-assembly. Here, we used the in-situ AFM technique to capture different changes of peptide coverage as well as lengthening and widening rates depending on peptide concentrations, show the distinct boundary dynamics of two stabilized peptide domains, and resolve the molecular resolution structural differences and specific orientation of peptide on both nanomaterials. Moreover, ex-situ results showed that the nanomaterial layers tuned the opposite changes of nanowire heights and densities and displayed the different water-resistance stabilities on both nanomaterials. This work provides a basis for understanding nanomaterials steering peptide self-assembly and using hybrid bionanomaterials as a scaffold, enabling for potential biosensing and bioelectronics applications.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Peiying Li
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
Zhao Z, Ma Y, Xie Z, Wu F, Fan J, Kou J. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38293869 DOI: 10.1021/acs.langmuir.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation. Here, we develop an algorithm to reproduce the process of catalytic gas generation at the molecular scale based on the all-atom molecular dynamics simulations and obtain the quantitative evolution of the gas generation, which agrees well with the experimental results. In addition, we demonstrate that under an external electric field, the generated gas molecules do not accumulate at the electrode surface, which implies that the electric field can significantly increase the rate of the gas generation. The results suggest that the external electric field changes the structure of the water molecules near the electrode surface, making it difficult for gas molecules to accumulate on the electrode surface. Furthermore, it is found that gas desorption from the electrode surface is an entropy-driven process, and its accumulation at the electrode surface depends mainly on the competition between the entropy and the enthalpy of the water molecules under the influence of the electric field. These results provide deep insight into gas generation and inhibition of gas accumulation.
Collapse
Affiliation(s)
- Zhigao Zhao
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yunqiu Ma
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jintu Fan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
19
|
Konradt D, Schroden D, Hagemann U, Heidelmann M, Rohns HP, Wagner C, Konradt N. Kinetics of Direct Reaction of Vanadate, Chromate, and Permanganate with Graphene Nanoplatelets for Use in Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:140. [PMID: 38251105 PMCID: PMC10819118 DOI: 10.3390/nano14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Oxometalates of vanadium(V), chromium(VI), and manganese(VII) have negative impacts on water resources due to their toxicity. To remove them, the kinetics of 0.04 mM oxometalates in natural and synthetic water were studied using graphene nanoplatelets (GNP). The GNP were dispersible in water and formed aggregates >15 µm that could be easily separated. Within 30 min, the GNP were covered with ~0.4 mg/g vanadium and ~1.0 mg/g chromium as Cr(OH)3. The reaction of 0.04 mM permanganate with 50 mg of GNP resulted in a coverage of 10 mg/g in 5 min, while the maximum value was 300 mg/g manganese as Mn2O3/MnO. TEM showed a random metal distribution on the surfaces; no clusters or nanoparticles were detected. The rate of disappearance in aerated water followed a pseudo second-order adsorption kinetics (PSO) for V(V), a pseudo second-order reaction for Cr(VI), and a pseudo first-order reaction for Mn(VII). For Cr(VI) and Mn(VII), the rate constants were found to depend on the GNP mass. Oxygen sorption occurred with PSO kinetics as a parallel slow process upon contact of GNP with air-saturated water. For thermally regenerated GNP, the rate constant decreased for V(V) but increased for Cr(VI), while no effect was observed for Mn(VII). GNP capacity was enhanced through regeneration for V(V) and Cr(VI); no effect was observed for Mn(VII). The reactions are well-suited for use in water purification processes and the reaction products, GNP, decorated with single metal atoms, are of great interest for the construction of sensors, electronic devices, and for application in single-atom catalysis (SAC).
Collapse
Affiliation(s)
- Daniel Konradt
- Ruhr-Universität Bochum, Fakultät für Maschinenbau und Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Detlef Schroden
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Ulrich Hagemann
- ICAN, NETZ Building, Carl-Benz-Straße 199, 47057 Duisburg, Germany; (U.H.); (M.H.)
| | - Markus Heidelmann
- ICAN, NETZ Building, Carl-Benz-Straße 199, 47057 Duisburg, Germany; (U.H.); (M.H.)
| | - Hans-Peter Rohns
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Christoph Wagner
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| | - Norbert Konradt
- Department of Waterworks, Stadtwerke Düsseldorf AG, Wiedfeld 50, 40589 Düsseldorf, Germany; (D.S.); (H.-P.R.); (C.W.)
| |
Collapse
|
20
|
Liu Y, Li X, Zhang Y, Ge L, Guan Y, Zhang Z. Ultra-Large Scale Stitchless AFM: Advancing Nanoscale Characterization and Manipulation with Zero Stitching Error and High Throughput. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303838. [PMID: 37612824 DOI: 10.1002/smll.202303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
The atomic force microscopy (AFM) is an important tool capable of characterization, measurement, and manipulation at the nanoscale with a vertical resolution of less than 0.1 nm. However, the conventional AFMs' scanning range is around 100 µm, which limits their capability for processing cross-scale samples. In this study, it proposes a novel approach to overcome this limitation with an ultra-large scale stitchless AFM (ULSS-AFM) that allows for the high-throughput characterization of an area of up to 1 × 1 mm2 through a synergistic integration with a compliant nano-manipulator (CNM). Specifically, the compact CNM provides planar motion with nanoscale precision and millimeter range for the sample, while the probe of the ULSS-AFM interacts with the sample. Experimental results show that the proposed ULSS-AFM performs effectively in different scanning ranges under various scanning modes, resolutions, and frequencies. Compared with the conventional AFMs, the approach enables high-throughput characterization of ultra-large scale samples without stitching or bow errors, expanding the scanning area of conventional AFMs by two orders of magnitude. This advancement opens up important avenues for cross-scale scientific research and industrial applications in nano- and microscale.
Collapse
Affiliation(s)
- Yijie Liu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Xuexuan Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Lin Ge
- NT-MDT Spectrum Instruments China office, Beijing, 100053, China
| | - Yingchun Guan
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Zhen Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Bou Tannous L, Simoes Santos M, Gong Z, Haumesser PH, Benayad A, Padua AAH, Steinberger A. Effect of Surface Chemistry on the Electrical Double Layer in a Long-Chain Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16785-16796. [PMID: 37970757 DOI: 10.1021/acs.langmuir.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.
Collapse
Affiliation(s)
- Layla Bou Tannous
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
- CEA, Leti, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | | | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | | | - Anass Benayad
- CEA, Liten, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Agilio A H Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | - Audrey Steinberger
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
22
|
Gisbert VG, Garcia R. Insights and guidelines to interpret forces and deformations at the nanoscale by using a tapping mode AFM simulator: dForce 2.0. SOFT MATTER 2023; 19:5857-5868. [PMID: 37305960 DOI: 10.1039/d3sm00334e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amplitude modulation (tapping mode) AFM is the most versatile AFM mode for imaging surfaces at the nanoscale in air and liquid environments. However, it remains challenging to estimate the forces and deformations exerted by the tip. We introduce a new simulator environment to predict the values of the observables in tapping mode AFM experiments. The relevant feature of dForce 2.0 is the incorporation of contact mechanics models aimed to describe the properties of ultrathin samples. These models were essential to determine the forces applied on samples such as proteins, self-assembled monolayers, lipid bilayers, and few-layered materials. The simulator incorporates two types of long-range magnetic forces. The simulator is written in an open-source code (Python) and it can be run from a personal computer.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Zhang D, Huang M, Klausen LH, Li Q, Li S, Dong M. Liquid-Phase Friction of Two-Dimensional Molybdenum Disulfide at the Atomic Scale. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21595-21601. [PMID: 37070722 DOI: 10.1021/acsami.3c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tribological properties depend strongly on environmental conditions such as temperature, humidity, and operation liquid. However, the origin of the liquid effect on friction remains largely unexplored. Herein, taking molybdenum disulfide (MoS2) as a model system, we explored the nanoscale friction of MoS2 in polar (water) and nonpolar (dodecane) liquids through friction force microscopy. The friction force exhibits a similar layer-dependent behavior in liquids as in air; i.e., thinner samples have a larger friction force. Interestingly, friction is significantly influenced by the polarity of the liquid, and it is larger in polar water than in nonpolar dodecane. Atomically resolved friction images together with atomistic simulations reveal that the polarity of the liquid has a substantial effect on friction behavior, where liquid molecule arrangement and hydrogen-bond formation lead to a higher resistance in polar water in comparison to that in nonpolar dodecane. This work provides insights into the friction on two-dimensional layered materials in liquids and holds great promise for future low-friction technologies.
Collapse
Affiliation(s)
- Deliang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mingzheng Huang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Suzhi Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
| |
Collapse
|
25
|
Li D, Chen Q, Chun J, Fichthorn K, De Yoreo J, Zheng H. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem Rev 2023; 123:3127-3159. [PMID: 36802554 DOI: 10.1021/acs.chemrev.2c00700] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Nanoparticle assembly and attachment are common pathways of crystal growth by which particles organize into larger scale materials with hierarchical structure and long-range order. In particular, oriented attachment (OA), which is a special type of particle assembly, has attracted great attention in recent years because of the wide range of material structures that result from this process, such as one-dimensional (1D) nanowires, two-dimensional (2D) sheets, three-dimensional (3D) branched structures, twinned crystals, defects, etc. Utilizing in situ transmission electron microscopy techniques, researchers observed orientation-specific forces that act over short distances (∼1 nm) from the particle surfaces and drive the OA process. Integrating recently developed 3D fast force mapping via atomic force microscopy with theories and simulations, researchers have resolved the near-surface solution structure, the molecular details of charge states at particle/fluid interfaces, inhomogeneity of surface charges, and dielectric/magnetic properties of particles that influence short- and long-range forces, such as electrostatic, van der Waals, hydration, and dipole-dipole forces. In this review, we discuss the fundamental principles for understanding particle assembly and attachment processes, and the controlling factors and resulting structures. We review recent progress in the field via examples of both experiments and modeling, and discuss current developments and the future outlook.
Collapse
Affiliation(s)
- Dongsheng Li
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York; New York, New York 10031, United States
| | - Kristen Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University; University Park, Pennsylvania 16802, United States
| | - James De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle Washington 98195, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Liu D, Li H, Huo L, Wang K, Sun K, Wei J, Chen F. Molecular dynamics simulation of the lubricant conformation changes and energy transfer of the confined thin lubricant film. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Garcia R. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS NANO 2023; 17:51-69. [PMID: 36507725 PMCID: PMC10664075 DOI: 10.1021/acsnano.2c10215] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The optical, electronic, and mechanical properties of graphite, few-layer, and two-dimensional (2D) materials have prompted a considerable number of applications. Biosensing, energy storage, and water desalination illustrate applications that require a molecular-scale understanding of the interfacial water structure on 2D materials. This review introduces the most recent experimental and theoretical advances on the structure of interfacial liquid water on graphite-like and 2D materials surfaces. On pristine conditions, atomic-scale resolution experiments revealed the existence of 1-3 hydration layers. Those layers were separated by ∼0.3 nm. The experimental data were supported by molecular dynamics simulations. However, under standard working conditions, atomic-scale resolution experiments revealed the presence of 2-3 hydrocarbon layers. Those layers were separated by ∼0.5 nm. Linear alkanes were the dominant molecular specie within the hydrocarbon layers. Paradoxically, the interface of an aged 2D material surface immersed in water does not have water molecules on its vicinity. Free-energy considerations favored the replacement of water by alkanes.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales
de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049Madrid, Spain
| |
Collapse
|
28
|
Bonagiri LKS, Panse KS, Zhou S, Wu H, Aluru NR, Zhang Y. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution. ACS NANO 2022; 16:19594-19604. [PMID: 36351178 DOI: 10.1021/acsnano.2c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation and depletion of charges at electrode-electrolyte interfaces is crucial for all types of electrochemical processes. However, the spatial profile of such interfacial charges remains largely elusive. Here we develop charge profiling three-dimensional (3D) atomic force microscopy (CP-3D-AFM) to experimentally quantify the real-space charge distribution of the electrode surface and electric double layers (EDLs) with angstrom depth resolution. We first measure the 3D force maps at different electrode potentials using our recently developed electrochemical 3D-AFM. Through statistical analysis, peak deconvolution, and electrostatic calculations, we derive the depth profile of the local charge density. We perform such charge profiling for two types of emergent electrolytes, ionic liquids, and highly concentrated aqueous solutions, observe pronounced sub-nanometer charge variations, and find the integrated charge densities to agree with those derived from macroscopic electrochemical measurements.
Collapse
Affiliation(s)
- Lalith Krishna Samanth Bonagiri
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Kaustubh S Panse
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Shan Zhou
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
29
|
Unraveling the liquid gliding on vibrating solid liquid interfaces with dynamic nanoslip enactment. Nat Commun 2022; 13:6608. [PMID: 36329039 PMCID: PMC9633805 DOI: 10.1038/s41467-022-34319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Slip length describes the classical no-slip boundary condition violation of Newtonian fluid mechanics, where fluids glide on the solid surfaces. Here, we propose a new analytical model validated by experiments for characterization of the liquid slip using vibrating solid surfaces. Essentially, we use a microfluidic system integrated with quartz crystal microbalance (QCM) to investigate the relationship between the slip and the mechanical response of a vibrating solid for a moving fluid. We discover a liquid slip that emerges especially at high flow rates, which is independent of the surface wetting condition, having significant contributions to the changes in resonant frequency of the vibrating solid and energy dissipation on its surface. Overall, our work will lead to consideration of ‘missing slip’ in the vibrating solid-liquid systems such as the QCM-based biosensing where traditionally frequency changes are interpreted exclusively with mass change on the sensor surface, irrespective of the flow conditions. A fluid flowing in solid confinement will glide, rather than stick to, the solid’s surfaces. This is usually described by introducing a concept known as slip length. The liquid slip concept is now extended for the situation of a vibrating solid–liquid interface.
Collapse
|
30
|
Yurtsever A, Wang PX, Priante F, Morais Jaques Y, Miyazawa K, MacLachlan MJ, Foster AS, Fukuma T. Molecular insights on the crystalline cellulose-water interfaces via three-dimensional atomic force microscopy. SCIENCE ADVANCES 2022; 8:eabq0160. [PMID: 36240279 PMCID: PMC9565791 DOI: 10.1126/sciadv.abq0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellulose, a renewable structural biopolymer, is ubiquitous in nature and is the basic reinforcement component of the natural hierarchical structures of living plants, bacteria, and tunicates. However, a detailed picture of the crystalline cellulose surface at the molecular level is still unavailable. Here, using atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we revealed the molecular details of the cellulose chain arrangements on the surfaces of individual cellulose nanocrystals (CNCs) in water. Furthermore, we visualized the three-dimensional (3D) local arrangement of water molecules near the CNC surface using 3D AFM. AFM experiments and MD simulations showed anisotropic water structuring, as determined by the surface topologies and exposed chemical moieties. These findings provide important insights into our understanding of the interfacial interactions between CNCs and water at the molecular level. This may allow the establishment of the structure-property relationship of CNCs extracted from various biomass sources.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Corresponding author. (A.Y.); (T.F.)
| | - Pei-Xi Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Fabio Priante
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mark J. MacLachlan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Adam S. Foster
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Corresponding author. (A.Y.); (T.F.)
| |
Collapse
|
31
|
Panse KS, Wu H, Zhou S, Zhao F, Aluru NR, Zhang Y. Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces. J Phys Chem Lett 2022; 13:9464-9472. [PMID: 36198103 DOI: 10.1021/acs.jpclett.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structure of electric double layers (EDLs) is crucial for all types of electrochemical processes. While in dilute solutions EDL structure can be approximately treated within the Gouy-Chapman-Stern regime, in highly ionic electrolytes the description of EDL has been largely elusive. Here we study the EDL structure of an ionic liquid on a series of crystalline electrodes. Through molecular dynamics (MD) simulations, we observe strong intermolecular interaction among cations and anions and propose that the cation-anion association structure at the innermost layer is a key descriptor of the EDL. Using our recently developed electrochemical 3D atomic force microscopy (EC-3D-AFM) technique, we confirm the theoretical prediction and further find that the width of the first EDL is an experimental gauge of the ion association structure in that layer. We expect such ion association descriptors to be broadly applicable to a large range of highly ionic electrolytes on various electrode surfaces.
Collapse
Affiliation(s)
- Kaustubh S Panse
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Fujia Zhao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
32
|
Saleem H, Saud A, Munira N, Goh PS, Ismail AF, Siddiqui HR, Zaidi SJ. Improved Forward Osmosis Performance of Thin Film Composite Membranes with Graphene Quantum Dots Derived from Eucalyptus Tree Leaves. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193519. [PMID: 36234646 PMCID: PMC9565292 DOI: 10.3390/nano12193519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/28/2023]
Abstract
The major challenges in forward osmosis (FO) are low water flux, high specific reverse solute flux (SRSF), and membrane fouling. The present work addresses these problems by the incorporation of graphene quantum dots (GQDs) in the polyamide (PA) layer of thin-film composite (TFC) membranes, as well as by using an innovative polyethersulfone nanofiber support for the TFC membrane. The GQDs were prepared from eucalyptus leaves using a facile hydrothermal method that requires only deionized water, without the need for any organic solvents or reducing agents. The nanofiber support of the TFC membranes was prepared using solution blow spinning (SBS). The polyamide layer with GQDs was deposited on top of the nanofiber support through interfacial polymerization. This is the first study that reports the fouling resistance of the SBS-nanofiber-supported TFC membranes. The effect of various GQD loadings on the TFC FO membrane performance, its long-term FO testing, cleaning efficiency, and organic fouling resistance were analyzed. It was noted that the FO separation performance of the TFC membranes was improved with the incorporation of 0.05 wt.% GQDs. This study confirmed that the newly developed thin-film nanocomposite membranes demonstrated increased water flux and salt rejection, reduced SRSF, and good antifouling performance in the FO process.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Hammadur Rahman Siddiqui
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
33
|
Arvelo DM, Uhlig MR, Comer J, García R. Interfacial layering of hydrocarbons on pristine graphite surfaces immersed in water. NANOSCALE 2022; 14:14178-14184. [PMID: 36124993 DOI: 10.1039/d2nr04161h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial water participates in a wide range of phenomena involving graphite, graphite-like and 2D material interfaces. Recently, several high-spatial resolution experiments have questioned the existence of hydration layers on graphite, graphite-like and 2D material surfaces. Here, 3D AFM was applied to follow in real-time and with atomic-scale depth resolution the evolution of graphite-water interfaces. Pristine graphite surfaces upon immersion in water showed the presence of several hydration layers separated by a distance of 0.3 nm. Those layers were short-lived. After several minutes, the interlayer distance increased to 0.45 nm. At longer immersion times (∼50 min) we observed the formation of a third layer. An interlayer distance of 0.45 nm characterizes the layering of predominantly alkane-like hydrocarbons. Molecular dynamics calculations supported the experimental observations. The replacement of water molecules by hydrocarbons on graphite is spontaneous. It happens whenever the graphite-water volume is exposed to air.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Ricardo García
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
34
|
John S, Kühnle A. Hydration Structure at the Calcite-Water (10.4) Interface in the Presence of Rubidium Chloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11691-11698. [PMID: 36120896 DOI: 10.1021/acs.langmuir.2c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid-liquid interfaces are of significant importance in a multitude of geochemical and technological fields. More specifically, the solvation structure plays a decisive role in the properties of the interfaces. Atomic force microscopy (AFM) has been used to resolve the interfacial hydration structure in the presence and absence of ions. Despite many studies investigating the calcite-water interface, the impact of ions on the hydration structure at this interface has rarely been studied. Here, we investigate the calcite-water interface at various concentrations (ranging from 0 to 5 M) of rubidium chloride (RbCl) using three-dimensional atomic force microscopy (3D AFM). We present molecularly resolved images of the hydration structure at the interface. Interestingly, the characteristic pattern of the hydration structure appears similar regardless of the RbCl concentration. The presence of the ions is detected in an indirect manner by more frequent contrast changes and slice displacements.
Collapse
Affiliation(s)
- Simon John
- Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Angelika Kühnle
- Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Yurtsever A, Wang PX, Priante F, Morais Jaques Y, Miyata K, MacLachlan MJ, Foster AS, Fukuma T. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy. SMALL METHODS 2022; 6:e2200320. [PMID: 35686343 DOI: 10.1002/smtd.202200320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitin is one of the most abundant and renewable natural biopolymers. It exists in the form of crystalline microfibrils and is the basic structural building block of many biological materials. Its surface crystalline structure is yet to be reported at the molecular level. Herein, atomic force microscopy (AFM) in combination with molecular dynamics simulations reveals the molecular-scale structural details of the chitin nanocrystal (chitin NC)-water interface. High-resolution AFM images reveal the molecular details of chitin chain arrangements at the surfaces of individual chitin NCs, showing highly ordered, stable crystalline structures almost free of structural defects or disorder. 3D-AFM measurements with submolecular spatial resolution demonstrate that chitin NC surfaces interact strongly with interfacial water molecules creating stable, well-ordered hydration layers. Inhomogeneous encapsulation of the underlying chitin substrate by these hydration layers reflects the chitin NCs' multifaceted surface character with different chain arrangements and molecular packing. These findings provide important insights into chitin NC structures at the molecular level, which is critical for developing the properties of chitin-based nanomaterials. Furthermore, these results will contribute to a better understanding of the chemical and enzymatic hydrolysis of chitin and other native polysaccharides, which is also essential for the enzymatic conversion of biomass.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Pei-Xi Wang
- Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| | - Fabio Priante
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Kazuki Miyata
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mark J MacLachlan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| | - Adam S Foster
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
36
|
Bobbitt NS, Chandross M. Interactions of Water with Pristine and Defective MoS 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10419-10429. [PMID: 35981286 DOI: 10.1021/acs.langmuir.2c01057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molybdenum disulfide (MoS2) is a lamellar solid lubricant often used in aerospace applications because of its extremely low friction coefficient (∼0.01) in inert environments. The lubrication performance of MoS2 is significantly impaired by exposure to even small amounts of water and oxygen, and the mechanisms behind this remain poorly understood. We use density functional theory calculations to study the binding of water on MoS2 sheets with and without defects. In general, we find that pristine MoS2 is slightly hydrophilic but that defects greatly increase the binding affinity for water. Intercalated water disrupts the crystal structure of bulk MoS2 due to the limited space between lamellae (∼3.4 Å), and this leads to generally unfavorable adsorption, except in the cases where water molecules are located on the sites of sulfur vacancies. We also find that water adsorption is more favorable directly below a surface layer of MoS2 compared to in the bulk.
Collapse
Affiliation(s)
- N Scott Bobbitt
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Michael Chandross
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
37
|
Teschke O, Castro JR, Gomes WE, Soares DM. Variable Interfacial Water Nanosized Arrangements Measured by Atomic Force Microscopy. ACS OMEGA 2022; 7:28875-28884. [PMID: 36033701 PMCID: PMC9404190 DOI: 10.1021/acsomega.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
While there seems to be broad agreement that cluster formation does exist near solid surfaces, its presence at the liquid/vapor interface is controversial. We report experimental studies we have carried out on interfacial water attached on hydrophobic and hydrophilic surfaces. Nanosized steps in the measured force vs distance to the surface curves characterize water cluster profiles. An expansion of the interfacial structure with time is observed; the initial profile extent is typically ∼1 nm, and for longer times expanded structures of ∼70 nm are observed. Our previous results showed that the interfacial water structure has a relative permittivity of ε ≈ 3 at the air/water interface homogeneously increasing to ε ≈ 80 at 300 nm inside the bulk, but here we have shown that the interfacial dielectric permittivity may have an oscillating profile describing the spatial steps in the force vs distance curves. This low dielectric permittivity arrangements of clusters extend the region with ε ≈ 3 inside bulk water and exhibit a behavior similar to that of water networks that expand in time.
Collapse
Affiliation(s)
- Omar Teschke
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Jose Roberto Castro
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Wyllerson Evaristo Gomes
- Pontificia
Universidade Catolica de Campinas, Faculdade de Quimica, 13012-970 Campinas, São Paulo, Brazil
| | - David Mendez Soares
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| |
Collapse
|
38
|
Zou W, Zhao C, Zhang X, Jin C, Jiang K, Zhou Q. Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9556-9568. [PMID: 35576172 DOI: 10.1021/acs.est.1c08534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thorough investigations of the environmental fate and risks are necessary for the safe application of engineered nanomaterials. Nevertheless, the current understanding of potential transformations of MoS2 (an intensively studied two-dimensional nanosheet) upon interactions with ubiquitous environmentally relevant thiols (ERTs) in water is limited. This study revealed that two ERTs, l-cysteine and mercaptoacetic acid, could modify MoS2 by covalently grafting thiol groups on S atoms of 1T phases, improving the colloidal persistence and chemical stability of MoS2. Compared with the pristine form, MoS2-thiols with higher dispersity exhibited significantly mitigated envelopment and ultrastructural damage to microalgae. MoS2-triggered growth inhibition, upregulation of reactive oxygen species, photosynthetic injury, and metabolic perturbation in algae were remarkably attenuated by ERTs. The diminished capability for MoS2 to generate reactive intermediates and glutathione oxidation driven by ERTs caused the weakness of oxidative stress and negative effects. Additionally, molecular dynamics simulations demonstrated that ERTs altered the extent of the influence of MoS2 on the secondary structures and functions of adsorbed intracellular proteins, which also contributed to the lower phytotoxicity of MoS2. Our findings provide evidence for the crucial role of specific organic ligands in the risk of MoS2 in aquatic environments.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
39
|
Eichhorn AL, Dietz C. Torsional and lateral eigenmode oscillations for atomic resolution imaging of HOPG in air under ambient conditions. Sci Rep 2022; 12:8981. [PMID: 35643777 PMCID: PMC9148301 DOI: 10.1038/s41598-022-13065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Combined in-plane and out-of-plane multifrequency atomic force microscopy techniques have been demonstrated to be important tools to decipher spatial differences of sample surfaces at the atomic scale. The analysis of physical properties perpendicular to the sample surface is routinely achieved from flexural cantilever oscillations, whereas the interpretation of in-plane sample properties via force microscopy is still challenging. Besides the torsional oscillation, there is the additional option to exploit the lateral oscillation of the cantilever for in-plane surface analysis. In this study, we used different multifrequency force microscopy approaches to attain better understanding of the interactions between a super-sharp tip and an HOPG surface focusing on the discrimination between friction and shear forces. We found that the lateral eigenmode is suitable for the determination of the shear modulus whereas the torsional eigenmode provides information on local friction forces between tip and sample. Based on the results, we propose that the full set of elastic constants of graphite can be determined from combined in-plane and out-of-plane multifrequency atomic force microscopy if ultrasmall amplitudes and high force constants are used.
Collapse
Affiliation(s)
- Anna L Eichhorn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany.
| |
Collapse
|
40
|
Zhang W, Lu Y, Wan L, Zhou P, Xia Y, Yan S, Chen X, Zhou H, Dong H, Liu K. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat Commun 2022; 13:2029. [PMID: 35440573 PMCID: PMC9018679 DOI: 10.1038/s41467-022-29761-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/28/2022] [Indexed: 01/04/2023] Open
Abstract
In electrochemical devices, such as batteries, traditional electric double layer (EDL) theory holds that cations in the cathode/electrolyte interface will be repelled during charging, leaving a large amount of free solvents. This promotes the continuous anodic decomposition of the electrolyte, leading to a limited operation voltage and cycle life of the devices. In this work, we design a new EDL structure with adaptive and passivating properties. It is enabled by adding functional anionic additives in the electrolyte, which can selectively bind with cations and free solvents, forming unique cation-rich and branch-chain like supramolecular polymer structures with high electrochemical stability in the EDL inner layer. Due to this design, the anodic decomposition of ether-based electrolytes is significantly suppressed in the high voltage cathodes and the battery shows outstanding performances such as super-fast charging/discharging and ultra-low temperature applications, which is extremely hard in conventional electrolyte design principle. This unconventional EDL structure breaks the inherent perception of the classical EDL rearrangement mechanism and greatly improve electrochemical performances of the device.
Collapse
Affiliation(s)
- Weili Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yang Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Pan Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yingchun Xia
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Shuaishuai Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xiaoxia Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Hangyu Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Hao Dong
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
41
|
Thakkar R, Gajaweera S, Comer J. Organic contaminants and atmospheric nitrogen at the graphene-water interface: a simulation study. NANOSCALE ADVANCES 2022; 4:1741-1757. [PMID: 36132158 PMCID: PMC9417612 DOI: 10.1039/d1na00570g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface. Despite the high concentration of N2 in ambient air, we find that its expected occupancy at the graphene-water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene-water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m-3, which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene-water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43-0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N2, water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface.
Collapse
Affiliation(s)
- Ravindra Thakkar
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Sandun Gajaweera
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| |
Collapse
|
42
|
Li Z, Liu Q, Zhang D, Wang Y, Zhang Y, Li Q, Dong M. Probing the hydration friction of ionic interfaces at the atomic scale. NANOSCALE HORIZONS 2022; 7:368-375. [PMID: 35195643 DOI: 10.1039/d1nh00564b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the extensive studies conducted in exploring friction in the aqueous environment, the mechanism of hydration friction remains not well understood. Herein, we directly probed hydration friction on mica-electrolyte interfaces with different hydrated alkali cations through a combination of three-dimensional atomic force microscopy and friction force microscopy. The atomic scale imaging of the hydration layers at the mica surface in different electrolyte solutions clearly revealed a correlation between the alkali cations and the structure of the hydration layers. Our detailed analysis showed that the hydration force was much higher at high ionic concentrations than that at low concentrations. The hydration friction coefficient was found to follow the trend K+< Na+< Li+< Cs+, which contrasts with the Hofmeister series, indicating that the hydration friction depends not only on the hydration strength of the alkali cations but also on the arrangement of the alkali cations at the interface. The results of this study provide deep insights into the origins of hydration friction, with potential implications for the development of new boundary lubrication in aqueous media.
Collapse
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qian Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Deliang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yin Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Yuge Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
43
|
Umeda K, Kobayashi K, Yamada H. Nanomechanics of self-assembled surfactants revealed by frequency-modulation atomic force microscopy. NANOSCALE 2022; 14:4626-4634. [PMID: 35262133 DOI: 10.1039/d2nr00369d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surfactants play a critical role in bottom-up nanotechnologies due to their peculiar nature of controlling the interfacial energy. Since their operational mechanism originates from the molecular-scale formation and disruption processes of molecular assemblies (i.e., micelles), conventional static-mode atomic force microscopy has made a significant contribution to unravel the detailed molecular pictures. Recently, we have successfully developed a local solvation measurement technique based on three-dimensional frequency-modulation atomic force microscopy, whose spatial resolution is not limited by jump-to-contact. Here, using this novel technique, we investigate molecular nanomechanics in the formation and disruption processes of micelles formed on a hydrophobic surface. Furthermore, an experiment employing a hetero-nanostructure reveals that the nanomechanics depends on the form of the molecular assembly. Namely, the hemifusion and disruption processes are peculiar to the micellar surface and cause a higher energy dissipation than the monolayer surface. The technique established in this study will be used as a generic technology for further development of bottom-up nanotechnologies.
Collapse
Affiliation(s)
- Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan.
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan.
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan.
| |
Collapse
|
44
|
Neffati R, Judeinstein P, Rault J. Supercooled nano-droplets of water confined in hydrophobic rubber. Phys Chem Chem Phys 2021; 23:25347-25355. [PMID: 34750601 DOI: 10.1039/d1cp03774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophobic elastomers are capable of absorbing a small amount of water that forms droplets around hydrophilic sites. These systems allow the study of confinement effects by a hydrophobic environment on the dynamics and thermodynamic behaviour of water molecules. The freezing-melting properties and the dynamics of water inside nano-droplets in butyl rubber are affected, as revealed by differential scanning calorimetry (DSC) and deuterium nuclear magnetic resonance (2H-NMR). Upon cooling down, all water crystalizes with a bimodal droplet population (da = 3.4 nm and db = 4.4 nm) in a temperature range associated with the droplet size distribution. However, the melting temperature is not shifted according to the Gibbs-Thomson equation. The relative decrease of the 2H-NMR longitudinal magnetization is not a single exponential and, by inverse Laplace transformation, it was deduced to be bimodal in agreement with the DSC measurements (T1,a ∼ 10 ms and T1,b ∼ 200 ms). The deduced correlation time of molecular reorientation is longer than that of bulk water and the behaviour with temperature follows the Vogel-Fulcher-Tammann (VFT) equations with a changing fragility as the droplet size is reduced when reducing hydration.
Collapse
Affiliation(s)
- R Neffati
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia. .,Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - P Judeinstein
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.,Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, 91191, Gif-sur-Yvette, France
| | - J Rault
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| |
Collapse
|
45
|
Benaglia S, Uhlig MR, Hernández-Muñoz J, Chacón E, Tarazona P, Garcia R. Tip Charge Dependence of Three-Dimensional AFM Mapping of Concentrated Ionic Solutions. PHYSICAL REVIEW LETTERS 2021; 127:196101. [PMID: 34797127 DOI: 10.1103/physrevlett.127.196101] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A molecular scale understanding of the organization and structure of a liquid near a solid surface is currently a major challenge in surface science. It has implications across different fields from electrochemistry and energy storage to molecular biology. Three-dimensional AFM generates atomically resolved maps of solid-liquid interfaces. The imaging mechanism behind those maps is under debate, in particular, for concentrated ionic solutions. Theory predicts that the observed contrast should depend on the tip's charged state. Here, by using neutrally, negatively, and positively charged tips, we demonstrate that the 3D maps depend on the tip's polarization. A neutral tip will explore the total particle density distribution (water and ions) while a charged tip will reveal the charge density distribution. The experimental data reproduce the key findings of the theory.
Collapse
Affiliation(s)
- Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
46
|
Zou W, Wan Z, Zhao C, Zhang G, Zhang X, Zhou Q. Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. WATER RESEARCH 2021; 205:117708. [PMID: 34600228 DOI: 10.1016/j.watres.2021.117708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum disulfide (MoS2) poses great potential in water treatment as a popular transition metal dichalcogenide, arousing considerable concern regarding its fates and risk in aquatic environments. This study revealed that the interplay with extracellular polymeric substances (EPS) of freshwater algae significantly changed the properties and toxicity of MoS2 to aquatic fish. The predominant binding of aromatic compounds, polysaccharides, and carboxyl-rich proteins in EPS on the 1T polymorph of MoS2 via hydrophilic effects and the preferential adsorption of carboxylic groups contributed to morphological alterations, structural disorders (band gap and phase alterations), and the attenuated aggregation of MoS2 in aqueous solutions. Electron charge transfer and n-π* interactions with EPS decreased the catalytic activity of MoS2 by inhibiting its capability of generating reactive intermediates. The dissolution of MoS2 slowed down after interacting with EPS (from 0.089 to 0.045 mg/L per day) owing to rapid initial oxidation (i.e., forming Mo-O bond) and carbon grafting. Notably, the morphological and structural alterations after EPS binding alleviated the toxicity (e.g., malformation and oxidative stress) of MoS2 to infantile zebrafish. Our findings provide insights into the environmental fate and risk of MoS2 by ubiquitous EPS in natural waters, serving as valuable information while developing water treatment processes accordingly.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zepeng Wan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
47
|
Zou W, Liu Z, Li R, Jin C, Zhang X, Jiang K. Photoinduced transformation of silver ion by molybdenum disulfide nanoflakes at environmentally relevant concentrations attenuates its toxicity to freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126043. [PMID: 34492890 DOI: 10.1016/j.jhazmat.2021.126043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
The transformation of Ag+ is strongly correlated with its risks in aquatic environment. Considering the wide application of molybdenum disulfide (MoS2) and the inevitable release into the environment, the effects of MoS2 on Ag+ transformation and toxicity are of great concerns. This study revealed the pH-dependent reduction of Ag+ (0.5 mM) to Ag nanoparticles (AgNPs) by MoS2 (50 mg/L) and solar irradiation obviously accelerates the AgNPs formation (2.638 mg/L per day, pH=7.0) compared with dark condition (0.637 mg/L per day), ascribing to the electrons capture from electron-hole pairs of MoS2 by Ag+. Ionic strengths and natural organic matter decreased the AgNPs yield. Metallic 1 T phase of MoS2 primarily participated in AgNPs formation and was oxidized to soluble ions (MoO42-) due to the oxygen generation in valance band. The above processes also occurred between Ag+ and MoS2 at environmentally relevant concentrations. Further, photoinduced transformation of Ag+ by MoS2 (10-100 μg/L) significantly lowered its toxicity to freshwater algae. The AgNPs formation on MoS2 reduced the bioavailability of Ag+ to algae, which was the mechanism for attenuated Ag+ toxicity. The provided data are helpful for better understanding the roles of MoS2 on the environmental fates and risks of metal ions under natural conditions.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhenzhen Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Rui Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
48
|
Hu J, Ma W, Pan Y, Cheng Z, Yu S, Gao J, Zhang Z, Wan C, Qiu C. Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface. CHEMOSPHERE 2021; 276:130170. [PMID: 33743426 DOI: 10.1016/j.chemosphere.2021.130170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
Collapse
Affiliation(s)
- Jinglu Hu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Shuangen Yu
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Jian Gao
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
49
|
Uhlig M, Garcia R. In Situ Atomic-Scale Imaging of Interfacial Water under 3D Nanoscale Confinement. NANO LETTERS 2021; 21:5593-5598. [PMID: 33983752 PMCID: PMC9135320 DOI: 10.1021/acs.nanolett.1c01092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Capillary condensation of water from vapor is an everyday phenomenon which has a wide range of scientific and technological implications. Many aspects of capillary condensation are not well understood such as the structure of interfacial water, the existence of distinct properties of confined water, or the validity of the Kelvin equation at nanoscale. We note the absence of high-spatial resolution images inside a meniscus. Here, we develop an AFM-based method to provide in situ atomic-scale resolution maps of the solid-water interface of a nanomeniscus (80-250 nm3). The separation between the first two hydration layers on graphite is 0.30 nm, while on mica it is 0.28 nm. Those values are very close to the ones expected for the same surfaces immersed in bulk water. Thus, the hydration layer structure on a crystalline surface is independent of the water volume.
Collapse
|
50
|
The microstructure and properties of GO hydration layers and the effects on the adsorption of UO22+. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|