1
|
Huang Y, Li XN, Wang XH, Wang ZX, Ye S, Zhang CL. Atroposelective Construction of C─B Axial Chirality via N-Heterocyclic Carbene-Catalyzed Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2025; 64:e202501991. [PMID: 40088208 DOI: 10.1002/anie.202501991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/17/2025]
Abstract
C─B axially chiral architectures are valuable in materials science and medicinal chemistry, but their enantioselective synthesis remains a challenge. Herein, we report an efficient method for the enantioselective synthesis of C─B axially chiral 1,2-azaborines through N-heterocyclic carbene-catalyzed dynamic kinetic resolution. The treatment of racemic 1,2-azaborine-based arylaldehyde with a chiral N-heterocyclic carbene catalyst under oxidative conditions in the presence of an alcohol leads to atroposelective esterification with up to 97% yield and 98% ee. The practicality of this method has been demonstrated by the late-stage functionalization, gram-scale synthesis, and further synthetic transformations. Mechanistic studies indicate that the chiral N-heterocyclic carbene catalyst differentiates between rapidly equilibrating atropoisomeric 1,2-azaborine-based arylaldehyde. DFT studies suggest that the formation of the Breslow intermediate via [Cs]HCO3-assisted [1,2]-proton transfer is the enantioselectivity-determining step.
Collapse
Affiliation(s)
- Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Han Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Yu Y, Chen M. Chiral Brønsted acid-catalyzed intermolecular hydrophenoxylation of ynamides with biaryl phenols via sequential desymmetrization/kinetic resolution. Org Biomol Chem 2025. [PMID: 40358582 DOI: 10.1039/d5ob00503e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein we disclose the first catalytic asymmetric intermolecular hydrophenoxylation of ynamides with biaryl phenols under chiral Brønsted acid catalysis, providing axially chiral phenols. This enantioselective reaction proceeds through a sequential desymmetrizaiton/kinetic resolution process, which features mild reaction conditions and represents a rare paradigm of an organocatalytic asymmetric intermolecular reaction of ynamides.
Collapse
Affiliation(s)
- Yu Yu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Shao Y, Wang H, Chen Q, Tang S, Sun J. Catalytic Atroposelective Electrophilic Amination to Access Axially Chiral Diaryl Phenols. Chem Asian J 2025. [PMID: 40083046 DOI: 10.1002/asia.202500239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
An enantioselective synthesis of axially chiral diaryl phenols containing sulfonamide groups has been achieved involving an electrophilic amination of 1,1'-biaryl-2,6-diols with N-sulfonyl quinone diimines, catalyzed by a chiral phosphoric acid. This atroposelective reaction offers a modular approach to enantiopure diaryl phenols, with good-to-excellent yields.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Han Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiang Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
4
|
Wang Y, Xu T, Pandey A, Jin S, Yan JX, Yuan Q, Zhang S, Wang JY, Liang R, Li G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules 2025; 30:603. [PMID: 39942707 PMCID: PMC11819669 DOI: 10.3390/molecules30030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack of effective asymmetric tools. To date, only a few enantiomers of turbo chiral targets have been isolated, and these were obtained through physical separation using chiral HPLC, typically on milligram scales. In this work, we report the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral elements such as central and axial chirality. This is demonstrated by assembling aromatic phosphine oxides, where three propeller-like groups are anchored to a P(O) center via three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine auxiliary, with absolute configurations and conformations unambiguously determined by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom of the P=O bond rather than in the opposite direction. Additionally, the orientational configuration is controlled by the sulfonimine auxiliary as well, showing that one of the Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl ring. Computational studies were conducted on relative energies for the rotational barriers of a turbo target along the P=O axis and the transition pathway between two enantiomers, meeting our expectations. This work is expected to have a significant impact on the fields of chemistry, biomedicine, and materials science in the future.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
5
|
Yang G, Liu S, Ji S, Wu X, Wang J. Pd/NHC sequentially catalyzed atroposelective synthesis of planar-chiral macrocycles. Chem Sci 2024; 15:19599-19603. [PMID: 39568868 PMCID: PMC11575558 DOI: 10.1039/d4sc05482b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
Planar-chiral macrocycles play a pivotal role in host-guest chemistry and drug discovery. However, compared with the synthesis of other types of chiral compounds, the asymmetric construction of planar-chiral macrocycles still remains a forbidding challenge. Herein, we report a sequential palladium and N-heterocyclic carbene catalysis to build planar-chiral macrocycles. This protocol features broad scope and good functional group tolerance, and allows a rapid assembling of planar-chiral macrocycles with excellent enantioselectivities.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Shangde Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Shujie Ji
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Xingsen Wu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
7
|
Wang SJ, Jiang LR, Wang H, Hu TY, Zhou L, Chen J. Halogen-Bond-Assisted NHC-Catalyzed (Dynamic) Kinetic Resolution for the Atroposelective Synthesis of Heterobiaryls. Org Lett 2024; 26:9079-9084. [PMID: 39405047 DOI: 10.1021/acs.orglett.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report a novel halogen-bond-assisted NHC-catalyzed (dynamic) kinetic resolution strategy for the synthesis of axially chiral heterobiaryls. A class of axially chiral quinolines are prepared efficiently in excellent enantioselectivities (≤98% ee) employing 3-5 mol % NHC catalyst. Mechanistic studies reveal the indispensability of 5-bromo-2-iodobenzaldehyde in this reaction, in which a pivotal halogen bonding interaction plays a crucial role in the process.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Rong Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - He Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tian-Yi Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
8
|
Yang G, Wang J. Recent Advances on Catalytic Atroposelective Synthesis of Planar-Chiral Macrocycles. Angew Chem Int Ed Engl 2024; 63:e202412805. [PMID: 39104312 DOI: 10.1002/anie.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Planar-chiral skeletons widely exist in natural products, bioactive compounds, and other functional molecules. Although significant progress has been made in the field of asymmetric synthesis of centrally or axially chiral molecules over the past years, enantioselective constructing of planar chirality is still a big obstacle and numerous efforts have been made in this field. Previous works have mainly focused on the assembly of planar-chiral [2,2]-paracyclophanes and metallocenes. This Minireview describes recent advancements in asymmetric catalytic synthesis of planar-chiral macrocycles, including ansa chain construction, plane formation and asymmetric transformation strategies. It is anticipated that this Minireview will sever as a source of inspiration for developing new unconventional procedures for access to planar-chiral skeletons.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Luo Z, Liao M, Li W, Zhao S, Tang K, Zheng P, Chi YR, Zhang X, Wu X. Ionic Hydrogen Bond-Assisted Catalytic Construction of Nitrogen Stereogenic Center via Formal Desymmetrization of Remote Diols. Angew Chem Int Ed Engl 2024; 63:e202404979. [PMID: 38745374 DOI: 10.1002/anie.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.
Collapse
Grants
- National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW
- the starting grant of Guizhou University [(2022)47)]
- National Natural Science Foundation of China (21732002, 22061007, 22071036, and 22207022)
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules
- Department of Education, Science and Technology Department of Guizhou Province [Qiankehe-jichu-ZK[2022]zhongdian024]
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG70/21), MOE AcRF Tier 2 (MOE2019-T2-2-117)
- a Chair Professorship Grant, and Nanyang Technological University
- (2022)47 starting grant of Guizhou University
- 21732002 National Natural Science Foundation of China
- 22061007 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
- 22207022 National Natural Science Foundation of China
- Qiankehe-jichu-ZK[2022]zhongdian024 Department of Education, Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2024]yiban030 Department of Education, Science and Technology Department of Guizhou Province
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- Chair Professorship Grant, and Nanyang Technological University
- C210812008 Agency for Science, Technology and Research (A*STAR) under its Career Development Fund
- M22K3c0091 Manufacturing, TradeConnectivity (MTC) Young Individual Research Grants.
Collapse
Affiliation(s)
- Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Sha Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), A*STAR, Singapore, 138632, Singapore
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
10
|
Liu J, Deng R, Liang X, Zhou M, Zheng P, Chi YR. Carbene-Catalyzed and Pnictogen Bond-Assisted Access to P III-Stereogenic Compounds. Angew Chem Int Ed Engl 2024; 63:e202404477. [PMID: 38669345 DOI: 10.1002/anie.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Collapse
Affiliation(s)
- Jianjian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Rui Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Mali Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, 637371, Singapore, Singapore
| |
Collapse
|
11
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Liu Y, Yuan L, Dai L, Zhu Q, Zhong G, Zeng X. Carbene-Catalyzed Atroposelective Construction of Chiral Diaryl Ethers. J Org Chem 2024. [PMID: 38738853 DOI: 10.1021/acs.joc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.
Collapse
Affiliation(s)
- Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lutong Yuan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Linlong Dai
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
13
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
14
|
Hou XX, Wei D. Mechanism and Origin of Stereoselectivity for the NHC-Catalyzed Desymmetrization Reaction for the Synthesis of Axially Chiral Biaryl Aldehydes. J Org Chem 2024; 89:3133-3142. [PMID: 38359780 DOI: 10.1021/acs.joc.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organocatalytic desymmetrization reaction is a powerful tool for constructing axial chirality, but the theoretical study on the origin of stereoselectivity still lags behind even now. In this work, the N-heterocyclic carbene (NHC)-catalyzed desymmetrization reaction of biaryl frameworks for the synthesis of axially chiral aldehydes has been selected and theoretically investigated by using density functional theory (DFT). The fundamental pathway involves several steps, i.e., desymmetrization, formation of Breslow oxidation, esterification, and NHC regeneration. The desymmetrization and formation of Breslow processes have been identified as stereoselectivity-determining and rate-determining steps. Further weak interaction analyses proved that the C-H···O hydrogen bond and C-H···π interactions are responsible for the stability of the key stereoselective desymmetrization transition states. This research contributes to understanding the nature of NHC-catalyzed desymmetrization reactions for the synthesis of axially chiral compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
15
|
Ye M, Li C, Xiao D, Qu G, Yuan B, Sun Z. Atroposelective Synthesis of Aldehydes via Alcohol Dehydrogenase-Catalyzed Stereodivergent Desymmetrization. JACS AU 2024; 4:411-418. [PMID: 38425895 PMCID: PMC10900225 DOI: 10.1021/jacsau.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Axially chiral aldehydes have emerged recently as a unique class of motifs for drug design. However, few biocatalytic strategies have been reported to construct structurally diverse atropisomeric aldehydes. Herein, we describe the characterization of alcohol dehydrogenases to catalyze atroposelective desymmetrization of the biaryl dialdehydes. Investigations into the interactions between the substrate and key residues of the enzymes revealed the distinct origin of atroposelectivity. A panel of 13 atropisomeric monoaldehydes was synthesized with moderate to high enantioselectivity (up to >99% ee) and yields (up to 99%). Further derivatization allows enhancement of the diversity and application potential of the atropisomeric compounds. This study effectively expands the scope of enzymatic synthesis of atropisomeric aldehydes and provides insights into the binding modes and recognition mechanisms of such molecules.
Collapse
Affiliation(s)
- Mengjing Ye
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Congcong Li
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dongguang Xiao
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
| | - Ge Qu
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Bo Yuan
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, China
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| |
Collapse
|
16
|
An H, Liu S, Wang SJ, Yu X, Shi C, Lin H, Poh SB, Yang H, Wong MW, Zhao Y, Tu Z, Lu S. Kinetic Resolution of Acyclic Tertiary Propargylic Alcohols by NHC-Catalyzed Enantioselective Acylation. Org Lett 2024; 26:702-707. [PMID: 38206074 DOI: 10.1021/acs.orglett.3c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
We report herein an efficient NHC-catalyzed kinetic resolution of acyclic tertiary propargylic alcohols that provides them in high to excellent enantioselectivity. This is the first example of kinetic resolution realized by enantioselective acylation. The recovered enantioenriched alcohols can be facilely converted into other valuable compounds such as densely functionalized tertiary alcohols and carbmates in high yields and excellent stereopurity. Density functional theory calculations were performed to determine the reaction mechanism and to understand the origin of enantiodiscrimination.
Collapse
Affiliation(s)
- Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shifei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoyi Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Chenqi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Haonan Lin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
17
|
Zhou BA, Li XN, Zhang CL, Wang ZX, Ye S. Enantioselective Synthesis of Axially Chiral Diaryl Ethers via NHC Catalyzed Desymmetrization and Following Resolution. Angew Chem Int Ed Engl 2024; 63:e202314228. [PMID: 38019184 DOI: 10.1002/anie.202314228] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.
Collapse
Affiliation(s)
- Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
18
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Yang G, He Y, Wang T, Li Z, Wang J. Atroposelective Synthesis of Planar-Chiral Indoles via Carbene Catalyzed Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202316739. [PMID: 38014469 DOI: 10.1002/anie.202316739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an N-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10-16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yi He
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Tianyi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Shee S, Shree Ranganathappa S, Gadhave MS, Gogoi R, Biju AT. Enantioselective Synthesis of C-O Axially Chiral Diaryl Ethers by NHC-Catalyzed Atroposelective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202311709. [PMID: 37986240 DOI: 10.1002/anie.202311709] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C-O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C-O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C-O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C-O bonds are also presented.
Collapse
Affiliation(s)
- Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mahesh S Gadhave
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| |
Collapse
|
21
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
22
|
Atroposelective desymmetrization of 2-arylresorcinols via Tsuji-Trost allylation. Commun Chem 2023; 6:42. [PMID: 36841918 PMCID: PMC9968306 DOI: 10.1038/s42004-023-00839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Palladium-catalyzed asymmetric allylic alkylation has proven to be a powerful method for the preparation of a wide variety of chiral molecules. However, the catalytic and atroposelective allylic alkylation is still rare and challenging, especially for biaryl substrates. Herein, we report the palladium-catalyzed desymmetric and atroposelective allylation, in which the palladium complex with a chiral phosphoramidite ligand enables desymmetrization of nucleophilic 2-arylresorcinols in a highly enantioselective manner. With the aid of the secondary kinetic resolution effect, a wide variety of substrates containing a hydroxymethyl group at the bottom aromatic ring are able to provide O-allylated products up to 98:2 er. Computational studies show an accessible quadrant of the allylpalladium complex and provide three plausible transition states with intra- or intermolecular hydrogen bonding. The energetically favorable transition state is in good agreement with the observed enantioselectivity and suggests that the catalytic reaction would proceed with an intramolecular hydrogen bond.
Collapse
|
23
|
Zhang SC, Liu S, Wang X, Wang SJ, Yang H, Li L, Yang B, Wong MW, Zhao Y, Lu S. Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Si-Chen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
24
|
Wang YJ, Wang YF, Kang WY, Lu WY, Wang YH, Tian P. A Highly Enantioselective Homoenolate Michael Addition/Esterification Sequence of Cyclohexadienone-Tethered Enals via NHC Catalysis. Org Lett 2023; 25:630-635. [PMID: 36662291 DOI: 10.1021/acs.orglett.2c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reported here is a highly enantioselective homoenolate Michael addition/esterification sequence of cyclohexadienone-tethered enals via N-heterocyclic carbene (NHC) catalysis, affording the enantiopure cis-hydrobenzofurans, cis-hydroindoles, and cis-hydroindenes. The NHC catalyst bearing a nitro group greatly enhances the stereocontrol, and a bulky N-aryl substituent of the triazolium salt in the catalyst is helpful for inhibiting the further aldol condensation after homoenolate Michael addition. The utility of this protocol is highlighted by a gram-scale experiment and versatile downstream transformations.
Collapse
Affiliation(s)
- Ya-Jie Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi-Fan Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen-Yu Kang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen-Ya Lu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
25
|
Yang X, Wei L, Wu Y, Zhou L, Zhang X, Chi YR. Atroposelective Access to 1,3-Oxazepine-Containing Bridged Biaryls via Carbene-Catalyzed Desymmetrization of Imines. Angew Chem Int Ed Engl 2023; 62:e202211977. [PMID: 36087019 DOI: 10.1002/anie.202211977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
We disclose herein an atroposelective synthesis of novel bridged biaryls containing medium-sized rings via N-heterocyclic carbene organocatalysis. The reaction starts with addition of the carbene catalyst to the aminophenol-derived aldimine substrate. Subsequent oxidation and intramolecular desymmetrization lead to the formation of 1,3-oxazepine-containing bridged biaryls in good yields and excellent enantioselectivities. These novel bridged biaryl products can be readily transformed into chiral phosphite ligands. Preliminary density function theory calculations suggest that the origin of enantioselectivity arises from the more favorable frontier molecular orbital interactions in the transition state leading to the major product.
Collapse
Affiliation(s)
- Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuelin Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liejin Zhou
- Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, P. R. China
| |
Collapse
|
26
|
Perveen S, Zhang S, Wang L, Song P, Ouyang Y, Jiao J, Duan X, Li P. Synthesis of Axially Chiral Biaryls via Enantioselective Ullmann Coupling of
ortho
‐Chlorinated Aryl Aldehydes Enabled by a Chiral 2,2′‐Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202212108. [DOI: 10.1002/anie.202212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Saima Perveen
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shuai Zhang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Linghua Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Peidong Song
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Jiao Jiao
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Xin‐Hua Duan
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Carlsson ACC, Karlsson S, Munday RH, Tatton MR. Approaches to Synthesis and Isolation of Enantiomerically Pure Biologically Active Atropisomers. Acc Chem Res 2022; 55:2938-2948. [PMID: 36194144 DOI: 10.1021/acs.accounts.2c00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomerism is a stereochemical phenomenon exhibited by molecules containing a rotationally restricted σ bond. Contrary to classical point chirality, the two atropisomeric stereoisomers exist as a dynamic mixture and can be interconverted without the requirement of breaking and reforming a bond. Although this feature increases structural complexity, atropisomers have become frequent targets in medicinal chemistry projects. Their axial chirality, e.g., from axially chiral biaryl motifs, gives access to unique 3D structures. It is often desirable to have access to both enantiomers of the atropisomers via a nonselective reaction during the early discovery phase as it allows the medicinal chemistry team to probe the structure activity relationship in both directions. However, once a single atropisomer is selected, it presents several problems. First, the pure single atropisomer may interconvert to the undesired stereoisomer under certain conditions. Second, separation of atropisomers is nontrivial and often requires expensive chiral stationary phases using chromatography or additives if a salt resolution approach is chosen. Other options can be kinetic resolution using enzymes or chiral catalysts. However, apart from the high cost often associated with the two latter methods, a maximum yield of only 50% of the desired atropisomer can be obtained. The ideal approach is to install the chiral atropisomeric axis enantioselectively or employing a dynamic kinetic resolution approach. In theory, both approaches have the potential to provide a single atropisomer in quantitative yield. This Account will discuss the successes/failures and challenges we have experienced in developing methods for resolution/separation and asymmetric synthesis of atropisomeric drug candidates in one of our early phase drug development projects. Suitability for the different methods at various stages of the drug development phase is discussed. Depending on the scale and time available, a separation of a mixture of atropisomers by chromatography was sometimes preferred, whereas asymmetric- or resolution approaches were desired for long-term supply. With the use of chromatography, the impact on separation efficiency and solvent consumption, depending on the nature of the substrate, is discussed. We hope that with this Account the readers will get a better view on the challenges medicinal and process chemists meet when designing new atropisomeric drug candidates and developing processes for manufacture of a single atropisomer.
Collapse
Affiliation(s)
- Anna-Carin C Carlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - Rachel H Munday
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield, Macclesfield SK10 2NA, United Kingdom
| | - Matthew R Tatton
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Macclesfield, Macclesfield SK10 2NA, United Kingdom
| |
Collapse
|
28
|
Balanna K, Barik S, Shee S, Gonnade RG, Biju AT. Dynamic kinetic resolution of γ,γ-disubstituted indole 2-carboxaldehydes via NHC-Lewis acid cooperative catalysis for the synthesis of tetracyclic ε-lactones. Chem Sci 2022; 13:11513-11518. [PMID: 36320396 PMCID: PMC9555563 DOI: 10.1039/d2sc03745a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 09/06/2024] Open
Abstract
The ubiquity of ε-lactones in various biologically active compounds inspired the development of efficient and enantioselective routes to these target compounds. Described herein is the enantioselective synthesis of indole-fused ε-lactones by the N-heterocyclic carbene (NHC)-Lewis acid cooperative catalyzed dynamic kinetic resolution (DKR) of in situ generated γ,γ-disubstituted indole 2-carboxaldehydes. The Bi(OTf)3-catalyzed Friedel-Crafts reaction of indole-2-carboxaldehyde with 2-hydroxy phenyl p-quinone methides generates γ,γ-disubstituted indole 2-carboxaldehydes, which in the presence of NHC and Bi(OTf)3 afforded the desired tetracyclic ε-lactones in up to 93% yield and >99 : 1 er. Moreover, preliminary studies on the mechanism of this formal [4 + 3] annulation are also provided.
Collapse
Affiliation(s)
- Kuruva Balanna
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Rajesh G Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune-411008 India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore-560012 India https://orgchem.iisc.ac.in/atbiju/
| |
Collapse
|
29
|
Qin W, Liu Y, Yan H. Enantioselective Synthesis of Atropisomers via Vinylidene ortho-Quinone Methides (VQMs). Acc Chem Res 2022; 55:2780-2795. [PMID: 36121104 DOI: 10.1021/acs.accounts.2c00486] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomers, arising from conformational restriction, are inherently chiral due to the intersecting dissymmetric planes. Since there are numerous applications of enantiopure atropisomers in catalyst design, drug discovery, and material science, the asymmetric preparation of these highly prized molecules has become a flourishing field in synthetic chemistry. A number of catalysts, synthetic procedures, and novel concepts have been developed for the manufacture of the atropisomeric molecules. However, due to the intrinsic properties of different types of atropisomers featuring biaryl, hetero-biaryl, or non-biaryl architectures, only very few methods pass the rigorous inspection and are considered generally applicable. The development of a broadly applicable synthetic strategy for various atropisomers is a challenge. In this Account, we summarize our recent studies on the enantioselective synthesis of atropisomers using the vinylidene ortho-quinone methides (VQMs) as pluripotent intermediates.The most appealing features of VQMs are the disturbed aromaticity and axial chirality of the allene fragment. At the outset, the applications of VQMs in organic synthesis have been neglected due to their principal liabilities: ephemeral nature, extraordinary reactivity, and multireaction sites. The domestication of this transient intermediate was demonstrated by in situ catalytic asymmetric generation of VQMs, and the reactivity and selectivity were fully explored by judiciously modifying precursors and tuning catalytic systems. A variety of axially chiral heterocycles were achieved through five-, six-, seven- and nine-membered ring formation of VQM intermediates with different kinds of branched nucleophilic functional groups. The axially chiral C-N axis could be constructed from VQM intermediates via N-annulation or desymmetrization of preformed C-N scaffolds. We take advantage of the high electrophilicity of VQMs toward a series of sulfur and carbon based nucleophiles leading to atropisomeric vinyl arenes. Furthermore, chiral helical compounds were realized by cycloaddition or consecutive annulation of VQM intermediates. These achievements demonstrated that the VQMs could work as a nuclear parent for the collective synthesis of distinct and complex optically active atropisomers. Recently, we have realized the isolation and structural characterization of the elusive VQMs, which were questioned as putative intermediates for decades. The successful isolation of VQMs provided direct evidence for their existence and an unprecedented opportunity to directly investigate their reactivity. The good thermal stability and reserved reactivity of the isolated VQMs demonstrated their great potential as synthetic reagents and expanded the border of VQM chemistry.
Collapse
Affiliation(s)
- Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
30
|
Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
31
|
Han T, Zhang Z, Wang M, Xu L, Mei G. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022; 61:e202207517. [DOI: 10.1002/anie.202207517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Tian‐Jiao Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zheng‐Xu Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Min‐Can Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Li‐Ping Xu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Guang‐Jian Mei
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
32
|
Cen S, Huang N, Lian D, Shen A, Zhao MX, Zhang Z. Conformational enantiodiscrimination for asymmetric construction of atropisomers. Nat Commun 2022; 13:4735. [PMID: 35961985 PMCID: PMC9374765 DOI: 10.1038/s41467-022-32432-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023] Open
Abstract
Molecular conformations induced by the rotation about single bonds play a crucial role in chemical transformations. Revealing the relationship between the conformations of chiral catalysts and the enantiodiscrimination is a formidable challenge due to the great difficulty in isolating the conformers. Herein, we report a chiral catalytic system composed of an achiral catalytically active unit and an axially chiral 1,1'-bi-2-naphthol (BINOL) unit which are connected via a C-O single bond. The two conformers of the catalyst induced by the rotation about the C-O bond, are determined via single-crystal X-ray diffraction and found to respectively lead to the formation of highly important axially chiral 1,1'-binaphthyl-2,2'-diamine (BINAM) and 2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN) derivatives in high yields (up to 98%), with excellent enantioselectivities (up to 98:2 e.r.) and opposite absolute configurations. The results highlight the importance of conformational dynamics of chiral catalysts in asymmetric catalysis.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Nini Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Dongsheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ahui Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| |
Collapse
|
33
|
Han TJ, Zhang ZX, Wang MC, Xu LP, Mei GJ. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Zheng-Xu Zhang
- Shandong University of Technology College of Chemistry CHINA
| | | | - Li-Ping Xu
- Shandong University of Technology College of Chemistry CHINA
| | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
34
|
Li HH, Zhang JY, Li S, Wang YB, Cheng JK, Xiang SH, Tan B. Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Tang Y, Wu G, Jin S, Liu Y, Ma L, Zhang S, Rouh H, Ali AIM, Wang JY, Xu T, Unruh D, Surowiec K, Li G. From Center-to-Multilayer Chirality: Asymmetric Synthesis of Multilayer Targets with Electron-Rich Bridges. J Org Chem 2022; 87:5976-5986. [PMID: 35442684 DOI: 10.1021/acs.joc.2c00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric synthesis of new atropisomerically multilayered chiral targets has been achieved by taking advantage of the strategy of center-to-multilayer chirality and double Suzuki-Miyaura couplings. Diastereomers were readily separated via flash column chromatography and well characterized. Absolute configuration assignment was determined by X-ray structural analysis. Five enantiomerically pure isomers possessing multilayer chirality were assembled utilizing anchors involving electron-rich aromatic connections. An overall yield of 0.69% of the final target with hydroxyl attachment was achieved over 11 steps from commercially available starting materials.
Collapse
Affiliation(s)
- Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Guanzhao Wu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Shengzhou Jin
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yangxue Liu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Liulei Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Ahmed I M Ali
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jia-Yin Wang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.,Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Feng F, Zhang S, Yang L, Li G, Xu W, Qu H, Zhang J, Dhinakaran MK, Xu C, Cheng J, Li H. Highly Chiral Selective Resolution in Pillar[6]arenes Functionalized Microchannel Membranes. Anal Chem 2022; 94:6065-6070. [PMID: 35384661 DOI: 10.1021/acs.analchem.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High flux microchannel membranes have the potential for large scale separations. However, it is prevented by poor enantioselectivity. Therefore, the development of a high-enantioselective microchannel membrane is of great importance for large scale chiral separations. In this work, chiral gold nanoparticles are incorporated into the microchannel membrane to astringe the large pores and improve the enantioselectivity. Here, the gold nanoparticles are functionalized by l-phenylalanine-derived pil-lararenes (l-Phe-P6@AuNPs) as the chiral receptor of R-phenylglycinol (R-PGC) over its enantiomer. This chiral Au NPs coated microchannel membrane (l-Phe-P6@AuNPs microchannel) shows a selectivity of 5.40 for R-PGC and a flux of 140.35 nmol·cm-2·h-1, where the enantioselectivity is improved, ensuring its flux. Compared with the enantioselectivity and flux of nanochannel membranes reported in literatures, the l-Phe-P6@AuNPs microchannel has the advantage for enantioselectivity and flux for chiral separation.
Collapse
Affiliation(s)
- Fudan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haonan Qu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | | | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
37
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N-Heterocyclic-Carbene-Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022; 61:e202117340. [PMID: 35100461 DOI: 10.1002/anie.202117340] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Axially chiral aldehydes have received increasing attention in enantioselective catalysis. However, only very few catalytic methods have been developed to construct structurally diverse axially chiral aldehydes. We herein describe an NHC-catalyzed atroposelective esterification of biaryl dialdehydes as a general and practical strategy for the construction of axially chiral aldehydes. Mechanistic studies indicate that coupling proceeds through a novel combination of NHC-catalyzed desymmetrization of the dialdehydes and kinetic resolution. This protocol features excellent enantioselectivity, mild conditions, good functional-group tolerance, and applicability to late-stage functionalization and provides a modular platform for the synthesis of axially chiral aldehydes and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
38
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N‐Heterocyclic‐Carbene‐Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Jiaqiong Sun
- School of Environment Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
39
|
Cheng F, Duan DS, Jiang LM, Li BS, Wang JX, Zhou YJ, Jiao HY, Wu T, Zhu DY, Wang SH. Copper-Catalyzed Asymmetric Ring-Opening Reaction of Cyclic Diaryliodonium Salts with Imides. Org Lett 2022; 24:1394-1399. [PMID: 35132855 DOI: 10.1021/acs.orglett.2c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient copper-catalyzed asymmetric ring-opening reaction of diaryliodonium salts with imides has been developed, affording a wide range of axially chiral 2-imidobiaryl compounds with excellent enantioselectivities and better convertibility. The potential utility of the current method has been supported by the synthesis of two known chiral ligands with better efficiency, which would be of great significance to the development of other catalytic asymmetric reactions.
Collapse
Affiliation(s)
- Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dong-Sen Duan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Li-Ming Jiang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jia-Xuan Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Yu-Jia Zhou
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - He-Yu Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Tao Wu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
40
|
Yan JL, Maiti R, Ren SC, Tian W, Li T, Xu J, Mondal B, Jin Z, Chi YR. Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nat Commun 2022; 13:84. [PMID: 35013298 PMCID: PMC8748895 DOI: 10.1038/s41467-021-27771-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Axially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to > 99:1 e.r., > 20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.
Collapse
Affiliation(s)
- Jia-Lei Yan
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Rakesh Maiti
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shi-Chao Ren
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jun Xu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| |
Collapse
|
41
|
Zhao W, Liu J, He X, Jiang H, Lu L, Xiao W. N-Heterocyclic Carbene (NHC)-Catalyzed Desymmetrization of Biaryldialdehydes to Construct Axially Chiral Aldehydes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhang J, Qiao Q, Wu Z, Pang Z, Shi Q, Qiao Y, Wang Y, wei D. Mechanism and origin of selectivities for NHC-catalyzed synthesis of axially chiral benzothiophene/benzofuran-fused biaryls. Org Biomol Chem 2022; 20:1662-1670. [DOI: 10.1039/d1ob02429a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By performing density functional theory (DFT) calculations, we investigated and identified the fundamental pathway for N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral benzothiophene-fused biaryl using enal and 2-benzyl-benzothiophene-3-carbaldehyde, which includes...
Collapse
|
43
|
Yao T, Li J, Wang J, Zhao C. Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Xiao X, Lu YJ, Tian HY, Zhou HJ, Li JW, Yao YP, Ke M, Chen FE. Organocatalytic atroposelective N-alkylation: divergent synthesis of axially chiral sulfonamides and biaryl amino phenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00219a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Axial chirality exists ubiquitously in numerous natural products and has been extensively recognized for decades in pharmaceuticals and enantioselective transformations. The development of efficient methodologies to obtain enantiopure structures bearing...
Collapse
|
45
|
Xu Y, Zhai TY, Xu Z, Ye LW. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Song R, Xie Y, Jin Z, Chi YR. Carbene‐Catalyzed Asymmetric Construction of Atropisomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Runjiang Song
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yongtao Xie
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
47
|
Woldegiorgis AG, Lin X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J Org Chem 2021; 17:2729-2764. [PMID: 34876929 PMCID: PMC8609246 DOI: 10.3762/bjoc.17.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.
Collapse
Affiliation(s)
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
48
|
|
49
|
Yang G, Li Z, Liu Y, Guo D, Sheng X, Wang J. Organocatalytic Higher-Order [8+2] Cycloaddition for the Assembly of Atropoenantiomeric 3-Arylindolizines. Org Lett 2021; 23:8109-8113. [PMID: 34590868 DOI: 10.1021/acs.orglett.1c03220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present an unprecedented atroposelective [8+2] cycloaddition reaction between pyridinium/isoquinolinium ylides and ynals. It is worth noting that this protocol represents a new example of the organocatalyzed atropoenantioselective higher-order cycloaddition reaction, providing various axial chiral 3-arylindolizines in good yields and high enantioselectivities. In addition, the obtained axially chiral 3-aryldolizines also provide many opportunities for structural transformations and potential drug discovery.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yuhan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xijun Sheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
50
|
Yang G, Sun S, Li Z, Liu Y, Wang J. Organocatalytic atroposelective heterocycloaddition to access axially chiral 2-arylquinolines. Commun Chem 2021; 4:144. [PMID: 36697620 PMCID: PMC9814953 DOI: 10.1038/s42004-021-00580-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 01/28/2023] Open
Abstract
Axially chiral heterobiaryls play a vital role in asymmetric synthesis and drug discovery. However, there are few reports on the synthesis of atropisomeric heterobiaryls compared with axially chiral biaryls. Thus, the rapid enantioselective construction of optically active heterobiaryls and their analogues remains an attractive challenge. Here, we report a concise chiral amine-catalyzed atroposelective heterocycloaddition reaction of alkynes with ortho-aminoarylaldehydes, and obtain a new class of axially chiral 2-arylquinoline skeletons with high yields and excellent enantioselectivities. In addition, the axially chiral 2-arylquinoline framework with different substituents is expected to be widely used in enantioselective synthesis.
Collapse
Affiliation(s)
- Gongming Yang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Shaofa Sun
- grid.470508.e0000 0004 4677 3586College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Zhipeng Li
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Yuhan Liu
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Jian Wang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China ,grid.470508.e0000 0004 4677 3586College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| |
Collapse
|