1
|
Phosphorescent extensophores expose elastic nonuniformity in polymer networks. Nat Commun 2023; 14:537. [PMID: 36725874 PMCID: PMC9892573 DOI: 10.1038/s41467-023-36249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Networks and gels are soft elastic solids of tremendous technological importance that consist of cross-linked polymers whose structure and connectivity at the molecular level are fundamentally nonuniform. Pre-failure local mechanical responses are not understood at the level of individual crosslinks, despite the enormous attention given to their macroscopic mechanical responses and to developing optical probes to detect their loci of mechanical failure. Here, introducing the extensophore concept to measure nondestructive forces using an optical probe with continuous force readout proportional to deformation, we show that the crosslinks in an elastic polymer network extend, fluctuate, and deform with a wide range of molecular individuality. Requiring little specialized equipment, this foundational single-molecule phosphorescence approach, applied here to polymer science and engineering, can be useful to a broad science and engineering community.
Collapse
|
2
|
Topology mediates transport of nanoparticles in macromolecular networks. Nat Commun 2022; 13:4094. [PMID: 35835763 PMCID: PMC9283426 DOI: 10.1038/s41467-022-31861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Diffusion transport of nanoparticles in confined environments of macromolecular networks is common in diverse physical systems and regulates many biological responses. Macromolecular networks possess various topologies, featured by different numbers of degrees and genera. Although the network topologies can be manipulated from a molecular level, how the topology impacts the transport of nanoparticles in macromolecular networks remains unexplored. Here, we develop theoretical approaches combined with simulations to study nanoparticle transport in a model system consisting of network cells with defined topologies. We find that the topology of network cells has a profound effect on the free energy landscape experienced by a nanoparticle in the network cells, exhibiting various scaling laws dictated by the topology. Furthermore, the examination of the impact of cell topology on the detailed behavior of nanoparticle dynamics leads to different dynamical regimes that go beyond the particulars regarding the local network loop. The results might alter the conventional picture of the physical origin of transport in networks. Macromolecular networks relevant for biological processes and technological applications, are often characterized by complex architectures. The authors uncover the impact of topology on the properties of nanoparticle transport in macromolecular networks.
Collapse
|
3
|
Astral hydrogels mimic tissue mechanics by aster-aster interpenetration. Nat Commun 2021; 12:4277. [PMID: 34257316 PMCID: PMC8277779 DOI: 10.1038/s41467-021-24663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
Many soft tissues are compression-stiffening and extension-softening in response to axial strains, but common hydrogels are either inert (for ideal chains) or tissue-opposite (for semiflexible polymers). Herein, we report a class of astral hydrogels that are structurally distinct from tissues but mechanically tissue-like. Specifically, hierarchical self-assembly of amphiphilic gemini molecules produces radial asters with a common core and divergently growing, semiflexible ribbons; adjacent asters moderately interpenetrate each other via interlacement of their peripheral ribbons to form a gel network. Resembling tissues, the astral gels stiffen in compression and soften in extension with all the experimental data across different gel compositions collapsing onto a single master curve. We put forward a minimal model to reproduce the master curve quantitatively, underlying the determinant role of aster-aster interpenetration. Compression significantly expands the interpenetration region, during which the number of effective crosslinks is increased and the network strengthened, while extension does the opposite. Looking forward, we expect this unique mechanism of interpenetration to provide a fresh perspective for designing and constructing mechanically tissue-like materials.
Collapse
|
4
|
Joyner K, Yang S, Duncan GA. Microrheology for biomaterial design. APL Bioeng 2020; 4:041508. [PMID: 33415310 PMCID: PMC7775114 DOI: 10.1063/5.0013707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Microrheology analyzes the microscopic behavior of complex materials by measuring the diffusion and transport of embedded particle probes. This experimental method can provide valuable insight into the design of biomaterials with the ability to connect material properties and biological responses to polymer-scale dynamics and interactions. In this review, we discuss how microrheology can be harnessed as a characterization method complementary to standard techniques in biomaterial design. We begin by introducing the core principles and instruments used to perform microrheology. We then review previous studies that incorporate microrheology in their design process and highlight biomedical applications that have been supported by this approach. Overall, this review provides rationale and practical guidance for the utilization of microrheological analysis to engineer novel biomaterials.
Collapse
Affiliation(s)
- Katherine Joyner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
5
|
Qiang Z, Wang M. 100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Lett 2020; 9:1342-1356. [PMID: 35638626 DOI: 10.1021/acsmacrolett.0c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past few decades there has been a revolution in the field of optical microscopy with emerging capabilities such as super-resolution and single-molecule fluorescence techniques. Combined with the classical advantages of fluorescence imaging, such as chemical labeling specificity, and noninvasive sample preparation and imaging, these methods have enabled significant advances in our polymer community. This Viewpoint discusses several of these capabilities and how they can uniquely offer information where other characterization techniques are limited. Several examples are highlighted that demonstrate the ability of fluorescence microscopy to understand key questions in polymer science such as single-molecule diffusion and orientation, 3D nanostructural morphology, and interfacial and multicomponent dynamics. Finally, we briefly discuss opportunities for further advances in techniques that may allow them to make an even greater contribution in polymer science.
Collapse
Affiliation(s)
- Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Gu Y, Zhao J, Johnson JA. Polymer Networks: From Plastics and Gels to Porous Frameworks. Angew Chem Int Ed Engl 2020; 59:5022-5049. [PMID: 31310443 DOI: 10.1002/anie.201902900] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Polymer networks, which are materials composed of many smaller components-referred to as "junctions" and "strands"-connected together via covalent or non-covalent/supramolecular interactions, are arguably the most versatile, widely studied, broadly used, and important materials known. From the first commercial polymers through the plastics revolution of the 20th century to today, there are almost no aspects of modern life that are not impacted by polymer networks. Nevertheless, there are still many challenges that must be addressed to enable a complete understanding of these materials and facilitate their development for emerging applications ranging from sustainability and energy harvesting/storage to tissue engineering and additive manufacturing. Here, we provide a unifying overview of the fundamentals of polymer network synthesis, structure, and properties, tying together recent trends in the field that are not always associated with classical polymer networks, such as the advent of crystalline "framework" materials. We also highlight recent advances in using molecular design and control of topology to showcase how a deep understanding of structure-property relationships can lead to advanced networks with exceptional properties.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Julia Zhao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Gu Y, Zhao J, Johnson JA. Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201902900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuwei Gu
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Julia Zhao
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jeremiah A. Johnson
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
8
|
Abstract
This article summarizes recent progress on biomimetic subcellular structures and discusses integration of these isolated systems.
Collapse
Affiliation(s)
- Shuying Yang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Lingxiang Jiang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
9
|
Xie Q, Chen X, Wu T, Wang T, Cao Y, Granick S, Li Y, Jiang L. Synthetic asters as elastic and radial skeletons. Nat Commun 2019; 10:4954. [PMID: 31672981 PMCID: PMC6823511 DOI: 10.1038/s41467-019-13009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The radial geometry with rays radiated from a common core occurs ubiquitously in nature for its symmetry and functions. Herein, we report a class of synthetic asters with well-defined core-ray geometry that can function as elastic and radial skeletons to harbor nano- and microparticles. We fabricate the asters in a single, facile, and high-yield step that can be readily scaled up; specifically, amphiphilic gemini molecules self-assemble in water into asters with an amorphous core and divergently growing, twisted crystalline ribbons. The asters can spontaneously position microparticles in the cores, along the radial ribbons, or by the outer rims depending on particle sizes and surface chemistry. Their mechanical properties are determined on single- and multiple-aster levels. We further maneuver the synthetic asters as building blocks to form higher-order structures in virtue of aster-aster adhesion induced by ribbon intertwining. We envision the astral structures to act as rudimentary spatial organizers in nanoscience for coordinated multicomponent systems, possibly leading to emergent, synergistic functions. Nanosystems capable of organisation and the formation of structures are of interest in nanotechnology. Here, the authors report on synthetic asters made of gemini surfactant which are able to position microparticles based on size and chemical composition which can also be organised into higher order structures.
Collapse
Affiliation(s)
- Qingqiao Xie
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xixi Chen
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Tiankuo Wang
- Collaborative Innovation Center of Advanced Microstructures, Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Departments of Chemistry and Physics, UNIST, Ulsan, 44919, Republic of Korea
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Lingxiang Jiang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China. .,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| |
Collapse
|