1
|
Schmidlin K, Ogbunugafor CB, Alexander S, Geiler-Samerotte K. Environment by environment interactions (ExE) differ across genetic backgrounds (ExExG). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593194. [PMID: 38766025 PMCID: PMC11100745 DOI: 10.1101/2024.05.08.593194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While the terms "gene-by-gene interaction" (GxG) and "gene-by-environment interaction" (GxE) are widely recognized in the fields of quantitative and evolutionary genetics, "environment-byenvironment interaction" (ExE) is a term used less often. In this study, we find that environmentby-environment interactions are a meaningful driver of phenotypes, and moreover, that they differ across different genotypes (suggestive of ExExG). To support this conclusion, we analyzed a large dataset of roughly 1,000 mutant yeast strains with varying degrees of resistance to different antifungal drugs. Our findings reveal that the effectiveness of a drug combination, relative to single drugs, often differs across drug resistant mutants. Remarkably, even mutants that differ by only a single nucleotide change can have dramatically different drug × drug (ExE) interactions. We also introduce a new framework that more accurately predicts the direction and magnitude of ExE interactions for some mutants. Understanding how ExE interactions change across genotypes (ExExG) is crucial not only for modeling the evolution of pathogenic microbes, but also for enhancing our knowledge of the underlying cell biology and the sources of phenotypic variance within populations. While the significance of ExExG interactions has been overlooked in evolutionary and population genetics, these fields and others stand to benefit from understanding how these interactions shape the complex behavior of living systems.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| | - C. Brandon Ogbunugafor
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT,06511
- Santa Fe Institute, Santa Fe, NM, 87501
| | - Sastokas Alexander
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| |
Collapse
|
2
|
Baier F, Gauye F, Perez-Carrasco R, Payne JL, Schaerli Y. Environment-dependent epistasis increases phenotypic diversity in gene regulatory networks. SCIENCE ADVANCES 2023; 9:eadf1773. [PMID: 37224262 DOI: 10.1126/sciadv.adf1773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis confounds our understanding of how mutations affect the expression patterns of gene regulatory networks, a challenge exacerbated by the dependence of epistasis on the environment. We used the toolkit of synthetic biology to systematically assay the effects of pairwise and triplet combinations of mutant genotypes on the expression pattern of a gene regulatory network expressed in Escherichia coli that interprets an inducer gradient across a spatial domain. We uncovered a preponderance of epistasis that can switch in magnitude and sign across the inducer gradient to produce a greater diversity of expression pattern phenotypes than would be possible in the absence of such environment-dependent epistasis. We discuss our findings in the context of the evolution of hybrid incompatibilities and evolutionary novelties.
Collapse
Affiliation(s)
- Florian Baier
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Florence Gauye
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | | | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Santos-Moreno J, Tasiudi E, Kusumawardhani H, Stelling J, Schaerli Y. Robustness and innovation in synthetic genotype networks. Nat Commun 2023; 14:2454. [PMID: 37117168 PMCID: PMC10147661 DOI: 10.1038/s41467-023-38033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Genotype networks are sets of genotypes connected by small mutational changes that share the same phenotype. They facilitate evolutionary innovation by enabling the exploration of different neighborhoods in genotype space. Genotype networks, first suggested by theoretical models, have been empirically confirmed for proteins and RNAs. Comparative studies also support their existence for gene regulatory networks (GRNs), but direct experimental evidence is lacking. Here, we report the construction of three interconnected genotype networks of synthetic GRNs producing three distinct phenotypes in Escherichia coli. Our synthetic GRNs contain three nodes regulating each other by CRISPR interference and governing the expression of fluorescent reporters. The genotype networks, composed of over twenty different synthetic GRNs, provide robustness in face of mutations while enabling transitions to innovative phenotypes. Through realistic mathematical modeling, we quantify robustness and evolvability for the complete genotype-phenotype map and link these features mechanistically to GRN motifs. Our work thereby exemplifies how GRN evolution along genotype networks might be driving evolutionary innovation.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
- Department of Medicine and Life Sciences, Pompeu Fabra University, 00803, Barcelona, Spain
| | - Eve Tasiudi
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hadiastri Kusumawardhani
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Joerg Stelling
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Brettner L, Ho WC, Schmidlin K, Apodaca S, Eder R, Geiler-Samerotte K. Challenges and potential solutions for studying the genetic and phenotypic architecture of adaptation in microbes. Curr Opin Genet Dev 2022; 75:101951. [PMID: 35797741 DOI: 10.1016/j.gde.2022.101951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
All organisms are defined by the makeup of their DNA. Over billions of years, the structure and information contained in that DNA, often referred to as genetic architecture, have been honed by a multitude of evolutionary processes. Mutations that cause genetic elements to change in a way that results in beneficial phenotypic change are more likely to survive and propagate through the population in a process known as adaptation. Recent work reveals that the genetic targets of adaptation are varied and can change with genetic background. Further, seemingly similar adaptive mutations, even within the same gene, can have diverse and unpredictable effects on phenotype. These challenges represent major obstacles in predicting adaptation and evolution. In this review, we cover these concepts in detail and identify three emerging synergistic solutions: higher-throughput evolution experiments combined with updated genotype-phenotype mapping strategies and physiological models. Our review largely focuses on recent literature in yeast, and the field seems to be on the cusp of a new era with regard to studying the predictability of evolution.
Collapse
|
5
|
Park S, Supek F, Lehner B. Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers. Nat Commun 2021; 12:7051. [PMID: 34862370 PMCID: PMC8642467 DOI: 10.1038/s41467-021-27242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
The classic two-hit model posits that both alleles of a tumor suppressor gene (TSG) must be inactivated to cause cancer. In contrast, for some oncogenes and haploinsufficient TSGs, a single genetic alteration can suffice to increase tumor fitness. Here, by quantifying the interactions between mutations and copy number alterations (CNAs) across 10,000 tumors, we show that many cancer genes actually switch between acting as one-hit or two-hit drivers. Third order genetic interactions identify the causes of some of these switches in dominance and dosage sensitivity as mutations in other genes in the same biological pathway. The correct genetic model for a gene thus depends on the other mutations in a genome, with a second hit in the same gene or an alteration in a different gene in the same pathway sometimes representing alternative evolutionary paths to cancer.
Collapse
Affiliation(s)
- Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Ben Lehner
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
6
|
Kryazhimskiy S. Emergence and propagation of epistasis in metabolic networks. eLife 2021; 10:e60200. [PMID: 33527897 PMCID: PMC7924954 DOI: 10.7554/elife.60200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Epistasis is often used to probe functional relationships between genes, and it plays an important role in evolution. However, we lack theory to understand how functional relationships at the molecular level translate into epistasis at the level of whole-organism phenotypes, such as fitness. Here, I derive two rules for how epistasis between mutations with small effects propagates from lower- to higher-level phenotypes in a hierarchical metabolic network with first-order kinetics and how such epistasis depends on topology. Most importantly, weak epistasis at a lower level may be distorted as it propagates to higher levels. Computational analyses show that epistasis in more realistic models likely follows similar, albeit more complex, patterns. These results suggest that pairwise inter-gene epistasis should be common, and it should generically depend on the genetic background and environment. Furthermore, the epistasis coefficients measured for high-level phenotypes may not be sufficient to fully infer the underlying functional relationships.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
7
|
Goldstein I, Ehrenreich IM. The complex role of genetic background in shaping the effects of spontaneous and induced mutations. Yeast 2020; 38:187-196. [PMID: 33125810 PMCID: PMC7984271 DOI: 10.1002/yea.3530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022] Open
Abstract
Spontaneous and induced mutations frequently show different phenotypic effects across genetically distinct individuals. It is generally appreciated that these background effects mainly result from genetic interactions between the mutations and segregating loci. However, the architectures and molecular bases of these genetic interactions are not well understood. Recent work in a number of model organisms has tried to advance knowledge of background effects both by using large‐scale screens to find mutations that exhibit this phenomenon and by identifying the specific loci that are involved. Here, we review this body of research, emphasizing in particular the insights it provides into both the prevalence of background effects across different mutations and the mechanisms that cause these background effects. A large fraction of mutations show different effects in distinct individuals. These background effects are mainly caused by epistasis with segregating loci. Mapping studies show a diversity of genetic architectures can be involved. Genetically complex changes in gene expression are often, but not always, causative.
Collapse
Affiliation(s)
- Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| |
Collapse
|
8
|
Wen J, Ford CT, Janies D, Shi X. A parallelized strategy for epistasis analysis based on Empirical Bayesian Elastic Net models. Bioinformatics 2020; 36:3803-3810. [PMID: 32227194 DOI: 10.1093/bioinformatics/btaa216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Epistasis reflects the distortion on a particular trait or phenotype resulting from the combinatorial effect of two or more genes or genetic variants. Epistasis is an important genetic foundation underlying quantitative traits in many organisms as well as in complex human diseases. However, there are two major barriers in identifying epistasis using large genomic datasets. One is that epistasis analysis will induce over-fitting of an over-saturated model with the high-dimensionality of a genomic dataset. Therefore, the problem of identifying epistasis demands efficient statistical methods. The second barrier comes from the intensive computing time for epistasis analysis, even when the appropriate model and data are specified. RESULTS In this study, we combine statistical techniques and computational techniques to scale up epistasis analysis using Empirical Bayesian Elastic Net (EBEN) models. Specifically, we first apply a matrix manipulation strategy for pre-computing the correlation matrix and pre-filter to narrow down the search space for epistasis analysis. We then develop a parallelized approach to further accelerate the modeling process. Our experiments on synthetic and empirical genomic data demonstrate that our parallelized methods offer tens of fold speed up in comparison with the classical EBEN method which runs in a sequential manner. We applied our parallelized approach to a yeast dataset, and we were able to identify both main and epistatic effects of genetic variants associated with traits such as fitness. AVAILABILITY AND IMPLEMENTATION The software is available at github.com/shilab/parEBEN.
Collapse
Affiliation(s)
- Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Colby T Ford
- Department of Bioinformatics and Genomics, College of Computing and Informatics.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|