1
|
Wu F, Chen X, Zhang H, Zhao Y. One-Step Synthesis of Graphene-Based Hybrid Structures with Surface Microspheres with a Template-Free Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12499-12509. [PMID: 40373158 DOI: 10.1021/acs.langmuir.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The flexible assembly properties of GO nanosheets in a solution system enable them to be effectively constructed into novel and ordered macroscopic material structures. Among various 3D structures, graphene hollow spheres (GHSs) have attracted great attention due to their wide application potential such as compounds in catalyst carriers and electrode materials. In this paper, a novel template-free self-assembly method was proposed to produce GHSs with better spherical shape, thinner walls, and sizes at the microscale. A bubble generator was used to introduce uniform and numerous bubbles in the GO sheets, inducing curling and wrinkling around the GO/water interface. The structural evolution of the GO dispersion during hydrothermal and drying processes was investigated after different treatments. It was found that the acidification treatment promotes the hydrothermal reduction reaction of GO sheets, which leads to the reduction of their oxygen content and the decrease of their interlayer spacing (d-spacing). Furthermore, the micro- and nanobubble treatment contributes to the homogeneous dispersion of GO sheets and induces their curling behavior. When the hydrothermal reaction products were dried at 100 °C, the release of solvent and gas from the GO sheets was inhibited by the small d-spacing, leading to the expansion of the surface layers and the formation of graphene hollow microspheres. The detailed formation mechanism of graphene hollow microspheres was verified by molecular dynamics (MD) simulations of water molecule permeation behavior with different graphene layer spaces. The findings of this study will contribute to the structural design of graphene-based materials.
Collapse
Affiliation(s)
- Fan Wu
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
| | - Xueyan Chen
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, Heilongjiang, PR China
| | - Hong Zhang
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
| | - Yue Zhao
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, Heilongjiang, PR China
| |
Collapse
|
2
|
Quan Y, He P, Ding G. Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:630. [PMID: 40278495 PMCID: PMC12029253 DOI: 10.3390/nano15080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Converting graphene oxide (GO) nanosheets into high-performance paper-like GO films has significant practical value. However, it is still challenging because the mechanical properties significantly decreased when the nanosheets are assembled into films. The simultaneous attainment of high tensile strength, high modulus, and relatively high toughness remains a formidable challenge. Here, we demonstrated an effective approach involving the incorporation of high oxidized graphene oxide (HOGO) and borate, to enhance the mechanical properties of GO films. X-ray photoelectron spectroscopy (XPS) measurements and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) revealed the synergistic effects of hydrogen and covalent bonding from HOGO and borate, respectively. Additionally, wide-angle X-ray scattering (WAXS) analysis indicated a notable enhancement in the orientation of the GO in the resulting films, characterized by the Herman's orientation factor (ƒ = 0.927), attributable to the combined action of hydrogen and covalent bonding. The borate-crosslinked GO+HOGO films exhibited exceptional mechanical properties, with an impressive strength (417.2 MPa), high modulus (43.8 GPa), and relatively high toughness (2.5 MJ m-3). This innovative assembly strategy presents a promising avenue for achieving desirable mechanical properties, thereby enhancing the potential for commercial applications.
Collapse
Affiliation(s)
- Yiwei Quan
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Moghadam F, Zhang C, Li Z, Li J, Zhai M, Li K. Structurally Stable Hollow-Fiber-Based Porous Graphene Oxide Membranes with Improved Rejection Performance by Selective Patching of Framework Defects with Metal-Organic Framework Crystals. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1803-1812. [PMID: 39700517 PMCID: PMC11783547 DOI: 10.1021/acsami.4c13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Graphene oxide (GO)-based membranes have demonstrated great potential in water treatment. However, microdefects in the framework of GO membranes induced by the imperfect stacking of GO nanosheets undermine their size-sieving ability and structural stability in aqueous systems. This study proposes a targeted growth approach by growing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals precisely to patch microdefects as well as to cross-link the porous graphene oxide (PGO) flakes coated on the outer surface of the hollow fiber (HF) alumina substrate (named the hybrid PGO/ZIF-8 membrane). This method simultaneously improves their structural stability and size-sieving performance without compromising their water permeance. Various structural and elemental analyses were used to elucidate the targeted growth of the ZIF-8 crystals. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the targeted coordination interaction of oxygen moieties on the edges of PGO nanosheets with metal ions of ZIF-8 crystals, allowing for the precise growth of the ZIF-8 nanocrystals in the PGO membranes. The XPS depth profile analysis revealed the uniform distribution of the ZIF-8 precursor throughout the PGO/ZIF-8 membrane. The resultant membrane showed a water permeance of 4 L m-2 h-1 bar-1 and maintained a very stable performance under pressure and prolonged cross-flow operation. Notably, the molecular weight cutoff (MWCO) improved considerably from 570 to 320 g/mol without sacrificing any water permeance after the targeted growth of ZIF-8. This research paves the way for the preparation of highly selective and stable PGO-based membranes for applications in industrial wastewater treatment.
Collapse
Affiliation(s)
- Farhad Moghadam
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| | - Chenxi Zhang
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| | - Zihao Li
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| | - Jianing Li
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| | - Mengjiao Zhai
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| | - Kang Li
- Barrer Centre, Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
4
|
Liu G, Li X, Li C, Zheng Q, Wang Y, Xiao R, Huang F, Tian H, Wang C, Chen X, Shao J. Efficient Fabrication of Disordered Graphene with Improved Ion Accessibility, Ion Conductivity, and Density for High-Performance Compact Capacitive Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405155. [PMID: 39120479 PMCID: PMC11481205 DOI: 10.1002/advs.202405155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
High-performance compact capacitive energy storage is vital for many modern application fields, including grid power buffers, electric vehicles, and portable electronics. However, achieving exceptional volumetric performance in supercapacitors is still challenging and requires effective fabrication of electrode films with high ion-accessible surface area and fast ion diffusion capability while simultaneously maintaining high density. Herein, a facile, efficient, and scalable method is developed for the fabrication of dense, porous, and disordered graphene through spark-induced disorderly opening of graphene stacks combined with mechanical compression. The obtained disordered graphene achieves a high density of 1.18 g cm-3, sixfold enhanced ion conductivity compared to common laminar graphene, and an ultrahigh volumetric capacitance of 297 F cm-3 in ionic liquid electrolyte. The fabricated stack cells deliver a volumetric energy density of 94.2 Wh L-1 and a power density of 13.7 kW L-1, representing a critical breakthrough in capacitive energy storage. Moreover, the proposed disordered graphene electrodes are assembled into ionogel-based all-solid-state pouch cells with high mechanical stability and multiple optional outputs, demonstrating great potential for flexible energy storage in practical applications.
Collapse
Affiliation(s)
- Gangqiang Liu
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiangming Li
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Congming Li
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Qinwen Zheng
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Yingche Wang
- Xi'an Institute of Electromechanical Information TechnologyXi'anShaanxi710065China
| | - Ronglin Xiao
- Shaanxi Coal Chemical Industry Technology Research Institute Co., LtdXi'anShaanxi710075China
| | - Fei Huang
- Shaanxi Coal Chemical Industry Technology Research Institute Co., LtdXi'anShaanxi710075China
| | - Hongmiao Tian
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chunhui Wang
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoliang Chen
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jinyou Shao
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| |
Collapse
|
5
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Chen W, Abedin MJ, Barua T, Mirshekarloo MS, El Meragawi S, Majumder M. Customized Production of Holey Graphene Oxides via a Continuous Flow Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304227. [PMID: 37649176 DOI: 10.1002/smll.202304227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Continuous flow manufacturing is an innovative technology mainly applied in the chemical and pharmaceutical industries that is progressively being adapted to the manufacturing of nanomaterials to overcome the challenge of reproducing a product with consistent characteristics at a large scale. Here, a flow photochemical system is designed and prototyped for the synthesis of holey graphene oxides (hGOs). Compared to existing methods for the synthesis of hGO, the process is fast, highly scalable, and controllable. Through a combination of rigorous data analysis using machine learning algorithms on transmission electron microscope images and systematic studies of process parameters, it is demonstrated that characteristics of the produced hGO (i.e., porosity and pore size) are remarkably reproducible to the extent that it can be predicted by empirical models of processing-property correlations. Depending on the tailored nanopore structures, the synthesized hGOs out-performed GO in a range of applications that can benefit from the nanoporous two-dimensional (2D) sheets such as in supercapacitors, gas adsorption, and nanofiltration membranes. These results are significant in offering new perspectives on the low-cost industrialization of 2D nanomaterials.
Collapse
Affiliation(s)
- Wanqing Chen
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with Two-dimensional Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Md Joynul Abedin
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with Two-dimensional Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Titon Barua
- AFRL Laboratory, Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Meysam Sharifzadeh Mirshekarloo
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, VIC, 3800, Australia
| | - Sally El Meragawi
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with Two-dimensional Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with Two-dimensional Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
7
|
Park H, Lee KH, Noh SH, Eom W, Huang J, Han TH. Holey Sheets Enhance the Packing and Osmotic Energy Harvesting of Graphene Oxide Membranes. ACS NANO 2024; 18:18584-18591. [PMID: 38941515 DOI: 10.1021/acsnano.4c04493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Layered membranes assembled from two-dimensional (2D) building blocks such as graphene oxide (GO) are of significant interest in desalination and osmotic power generation because of their ability to selectively transport ions through interconnected 2D nanochannels between stacked layers. However, architectural defects in the final assembled membranes (e.g., wrinkles, voids, and folded layers), which are hard to avoid due to mechanical compliant issues of the sheets during the membrane assembly, disrupt the ionic channel pathways and degrade the stacking geometry of the sheets. This leads to degraded ionic transport performance and the overall structural integrity. In this study, we demonstrate that introducing in-plane nanopores on GO sheets is an effective way to suppress the formation of such architectural imperfections, leading to a more homogeneous membrane. Stacking of porous GO sheets becomes significantly more compact, as the presence of nanopores makes the sheets mechanically softer and more compliant. The resulting membranes exhibit ideal lamellar microstructures with well-aligned and uniform nanochannel pathways. The well-defined nanochannels afford excellent ionic conductivity with an effective transport pathway, resulting in fast, selective ion transport. When applied as a nanofluidic membrane in an osmotic power generation system, the holey GO membrane exhibits higher osmotic power density (13.15 W m-2) and conversion efficiency (46.6%) than the pristine GO membrane under a KCl concentration gradient of 1000-fold.
Collapse
Affiliation(s)
- Hun Park
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| | - Ki Hyun Lee
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Hyun Noh
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Wonsik Eom
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiaxing Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
8
|
Krukiewicz K, Contessotto P, Nedjari S, Martino MM, Redenski I, Gabet Y, Speranza G, O'Brien T, Altankov G, Awaja F. Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models. BIOMATERIALS ADVANCES 2024; 161:213867. [PMID: 38669824 DOI: 10.1016/j.bioadv.2024.213867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the pro-osteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| | - Paolo Contessotto
- Department of Molecular Medicine, Università degli Studi di Padova, Padua, Italy.
| | - Salima Nedjari
- Molecular Dynamics at Cell-Biomaterial Interface, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| | - Idan Redenski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | | | - Timothy O'Brien
- Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| | - George Altankov
- ICREA & Institute for Bioengineering of Catalonia, Barcelona, Spain; Medical University Pleven, Bulgaria
| | - Firas Awaja
- Department of Medicine, University of Galway, Galway, Ireland; Engmat Ltd., Clybaun Road, Galway, Ireland.
| |
Collapse
|
9
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
10
|
Wang C, Cui X, Wang S, Dong W, Hu H, Cai X, Jiang C, Zhang Z, Liu L. Anisotropic mechanical properties of α-MoO 3 nanosheets. NANOSCALE 2024; 16:4140-4147. [PMID: 38333953 DOI: 10.1039/d3nr06427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The mechanical behaviors of 2D materials are fundamentally important for their potential applications in various fields. α-Molybdenum trioxide (α-MoO3) crystals with unique electronic, optical, and electrochemical properties, have attracted extensive attention for their use in optoelectronic and energy conversion devices. From a mechanical viewpoint, however, there is limited information available on the mechanical properties of α-MoO3. Here, we developed a capillary force-assisted peeling method to directly transfer α-MoO3 nanosheets onto arbitrary substrates. Comparatively, we could effectively avoid surface contamination arising from the polymer-assisted transfer method. Furthermore, with the help of an in situ push-to-pull (PTP) device during SEM, we systematically investigated the tensile properties of α-MoO3. The measured Young's modulus and fracture strengths along the c-axis (91.7 ± 13.7 GPa and 2.1 ± 0.9 GPa, respectively) are much higher than those along the a-axis (55.9 ± 8.6 GPa and 0.8 ± 0.3 GPa, respectively). The in-plane mechanical anisotropy ratio can reach ∼1.64. Both Young's modulus and the fracture strength of MoO3 show apparent size dependence. Additionally, the multilayer α-MoO3 nanosheets exhibited brittle fracture with interplanar sliding due to poor van der Waals interaction. Our study provides some key points regarding the mechanical properties and fracture behavior of layered α-MoO3 nanosheets.
Collapse
Affiliation(s)
- Congying Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuwei Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- CAS Key Laboratory Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China.
| | - Shijun Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Xiaoyong Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Chao Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Zhong Zhang
- CAS Key Laboratory Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China.
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Yang J, Li M, Fang S, Wang Y, He H, Wang C, Zhang Z, Yuan B, Jiang L, Baughman RH, Cheng Q. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024; 383:771-777. [PMID: 38359121 DOI: 10.1126/science.adj3549] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Graphene and two-dimensional transition metal carbides and/or nitrides (MXenes) are important materials for making flexible energy storage devices because of their electrical and mechanical properties. It remains a challenge to assemble nanoplatelets of these materials at room temperature into in-plane isotropic, free-standing sheets. Using nanoconfined water-induced basal-plane alignment and covalent and π-π interplatelet bridging, we fabricated Ti3C2Tx MXene-bridged graphene sheets at room temperature with isotropic in-plane tensile strength of 1.87 gigapascals and moduli of 98.7 gigapascals. The in-plane room temperature electrical conductivity reached 1423 siemens per centimeter, and volumetric specific capacity reached 828 coulombs per cubic centimeter. This nanoconfined water-induced alignment likely provides an important approach for making other aligned macroscopic assemblies of two-dimensional nanoplatelets.
Collapse
Affiliation(s)
- Jiao Yang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Mingzhu Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Bicheng Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Cho H, Lee C, Lee C, Lee S, Kim S. Robust, Ultrathin, and Highly Sensitive Reduced Graphene Oxide/Silk Fibroin Wearable Sensors Responded to Temperature and Humidity for Physiological Detection. Biomacromolecules 2023; 24:2606-2617. [PMID: 37075303 PMCID: PMC10266372 DOI: 10.1021/acs.biomac.3c00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Skin temperature and skin humidity are used for monitoring physiological processes, such as respiration. Despite advances in wearable temperature and humidity sensors, the fabrication of a durable and sensitive sensor for practical uses continues to pose a challenge. Here, we developed a durable, sensitive, and wearable temperature and humidity sensor. A reduced graphene oxide (rGO)/silk fibroin (SF) sensor was fabricated by employing a layer-by-layer technique and thermal reduction treatment. Compared with rGO, the elastic bending modulus of rGO/SF could be increased by up to 232%. Furthermore, an evaluation of the performance of an rGO/SF sensor showed that it had outstanding robustness: it could withstand repeatedly applied temperature and humidity loads and repeated bending. The developed rGO/SF sensor is promising for practical applications in healthcare and biomedical monitoring.
Collapse
Affiliation(s)
- Hyeonho Cho
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - Chanui Lee
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - ChaBum Lee
- J.
Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - Sunghan Kim
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
13
|
Sun Y, Sun J, Sanchez JS, Xia Z, Xiao L, Chen R, Palermo V. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage. Chem Commun (Camb) 2023; 59:2571-2583. [PMID: 36749576 DOI: 10.1039/d2cc06772b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Energy storage devices are important components in portable electronics, electric vehicles, and the electrical distribution grid. Batteries and supercapacitors have achieved great success as the spearhead of electrochemical energy storage devices, but need to be further developed in order to meet the ever-increasing energy demands, especially attaining higher power and energy density, and longer cycling life. Rational design of electrode materials plays a critical role in developing energy storage systems with higher performance. Graphene, the well-known 2D allotrope of carbon, with a unique structure and excellent properties has been considered a "magic" material with its high energy storage capability, which can not only aid in addressing the issues of the state-of-the-art lithium-ion batteries and supercapacitors, but also be crucial in the so-called post Li-ion battery era covering different technologies, e.g., sodium ion batteries, lithium-sulfur batteries, structural batteries, and hybrid supercapacitors. In this feature article, we provide a comprehensive overview of the strategies developed in our research to create graphene-based composite electrodes with better ionic conductivity, electron mobility, specific surface area, mechanical properties, and device performance than state-of-the-art electrodes. We summarize the strategies of structure manipulation and surface modification with specific focus on tackling the existing challenges in electrodes for batteries and supercapacitors by exploiting the unique properties of graphene-related materials.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Jinhua Sun
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Jaime S Sanchez
- Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramon de la Sagra 3, Parque Tecnologico de Mostoles, 28935, Mostoles, Spain
| | - Zhenyuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. .,Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| | - Linhong Xiao
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ruiqi Chen
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Vincenzo Palermo
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. .,Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
14
|
Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat Commun 2022; 13:7340. [PMID: 36446803 PMCID: PMC9708659 DOI: 10.1038/s41467-022-35226-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium carbide MXene combines high mechanical and electrical properties and low infrared emissivity, making it of interest for flexible electromagnetic interference (EMI) shielding and thermal camouflage film materials. Conventional wisdom holds that large MXene is the preferable building block to assemble high-performance films. However, the voids in the films comprising large MXene degrade their properties. Although traditional crosslinking strategies can diminish the voids, the electron transport between MXene flakes is usually disrupted by the insulating polymer bonding agents, reducing the electrical conductivity. Here we demonstrate a sequential densification strategy to synergistically remove the voids between MXene flakes while strengthening the interlayer electron transport. Small MXene flakes were first intercalated to fill the voids between multilayer large flakes, followed by interfacial bridging of calcium ions and borate ions to eliminate the remaining voids, including those between monolayer flakes. The obtained MXene films are compact and exhibit high tensile strength (739 MPa), Young's modulus (72.4 GPa), electrical conductivity (10,336 S cm-1), and EMI shielding capacity (71,801 dB cm2 g-1), as well as excellent oxidation resistance and thermal camouflage performance. The presented strategy provides an avenue for the high-performance assembly of other two-dimensional flakes.
Collapse
|
15
|
Bioinspired stretchable molecular composites of 2D-layered materials and tandem repeat proteins. Proc Natl Acad Sci U S A 2022; 119:e2120021119. [PMID: 35881808 PMCID: PMC9351368 DOI: 10.1073/pnas.2120021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein based composites, such as nacre and bone, show astounding evolutionary capabilities, including tunable physical properties. Inspired by natural composites, we studied assembly of atomistically thin inorganic sheets with genetically engineered polymeric proteins to achieve mechanically compliant and ultra-tough materials. Although bare inorganic nanosheets are brittle, we designed flexible composites with proteins, which are insensitive to flaws due to critical structural length scale (∼2 nm). These proteins, inspired by squid ring teeth, adhere to inorganic sheets via secondary structures (i.e., β-sheets and α-helices), which is essential for producing high stretchability (59 ± 1% fracture strain) and toughness (54.8 ± 2 MJ/m3). We find that the mechanical properties can be optimized by adjusting the protein molecular weight and tandem repetition. These exceptional mechanical responses greatly exceed the current state-of-the-art stretchability for layered composites by over a factor of three, demonstrating the promise of engineering materials with reconfigurable physical properties.
Collapse
|
16
|
Liu W, Li Y, Xu L, Wang G, Ma X, Wang Y. Biomimic Heterostructured Graphene Oxide Membranes via Supramolecular-Mediated Intercalation Assembly for Efficient Water Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200461. [PMID: 35384313 DOI: 10.1002/smll.202200461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) lamellar membranes have attracted increasing attention for efficient water purification. However, the low water-permeability, structural failure in aqua and high production cost have significantly restricted their practical large-scale applications. Inspired by the structures of glomerular filtration barrier (GFB) and nacre, a high-performance biomimic membrane via supramolecular-mediated intercalation assembly is reported, where rod-shaped cyclodextrin (CD) functionalized attapulgite (ATP-CD) is intercalated into CD-modified graphene oxide (GO-CD) lamellar channels, followed by locking adjacent ATP-CD and GO-CD through tannic acid (TA) and CD supramolecular networks. The formed GFB-like heterostructure endows the membrane with excellent water transport capability and the bionic "brick and mortar" nacre configuration boosts its anti-swelling stability simultaneously. The heterostructured GO membranes (≈100 nm) fabricated in this way exhibit a good water permeability of 55.6 L m-2 h-1 bar-1 (≈20-fold higher than GO membrane) maintaining excellent dye rejection of >99% during 480 h immersion. Given the low-cost materials (ATP, CD, and TA) and the modification generality, this economic strategy can hopefully achieve large-scale membrane fabrication and afford high applicability, which promotes the practical engineering applications of such 2D material membranes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Linlin Xu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Qinghai, 810007, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Wang Z, Mao B, Zhao M, Calatayud DG, Qian W, Li P, Hu Z, Fu H, Zhao X, Yan S, Kou Z, He D. Ultrafast Macroscopic Assembly of High-Strength Graphene Oxide Membranes by Implanting an Interlaminar Superhydrophilic Aisle. ACS NANO 2022; 16:3934-3942. [PMID: 35225592 DOI: 10.1021/acsnano.1c09319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A macroscopic-assembled graphene oxide (GO) membrane with sustainable high strength presents a bright future for its applications in ionic and molecular filtration for water purification or fast force response for sensors. Traditionally, the bottom-up macroscopic assembly of GO sheets is optimized by widening the interlaminar space for expediting water passage, frequently leading to a compromise in strength, assembly time, and ensemble thickness. Herein, we rationalize this strategy by implanting a superhydrophilic bridge of cobalt-based metal-organic framework nanosheets (NMOF-Co) as an additional water "aisle" into the interlaminar space of GO sheets (GO/NMOF-Co), resulting in a high-strength macroscopic membrane ensemble with tunable thickness from the nanometer scale to the centimeter scale. The GO/NMOF-Co membrane assembly time is only 18 s, 30800 times faster than that of pure GO (154 h). More importantly, the obtained membrane attains a strength of 124.4 MPa, which is more than 3 times higher than that of the GO membrane prepared through filtration. The effect of hydrophilicity on membrane assembly is also investigated by introducing different intercalants, suggesting that, except for the interlamellar spacing, the interlayered hydrophilicity plays a more decisive role in the macroscopic assembly of GO membranes. Our results give a fundamental implication for fast macroscopic assembly of high-strength 2D materials.
Collapse
Affiliation(s)
- Zhe Wang
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ming Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - David G Calatayud
- Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Kelsen 5, 28049 Madrid, Spain
| | - Wei Qian
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Peng Li
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhigang Hu
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Huaqiang Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Shilin Yan
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
19
|
High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Mao LB, Yu SH. Detecting and curing the voids in nacre-inspired layered MXene films. Sci Bull (Beijing) 2022; 67:347-349. [PMID: 36546084 DOI: 10.1016/j.scib.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Zhuang P, Guo Z, Wang S, Zhang Q, Zhang M, Fu L, Min H, Li B, Zhang K. Interfacial Hydrothermal Assembly of Three-Dimensional Lamellar Reduced Graphene Oxide Aerogel Membranes for Water Self-Purification. ACS OMEGA 2021; 6:30656-30665. [PMID: 34805693 PMCID: PMC8600619 DOI: 10.1021/acsomega.1c04466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Energy-saving membrane separation for water purification is increasingly desired, which requires appropriate nanofiltration membranes enabling to reject undesired solutes efficiently and allows high permeation of water. Herein, we report the fabrication of three-dimensional lamellar reduced graphene oxide (rGO) hydrogel membranes with a one-step, environment-friendly and water/vapor interfacial hydrothermal assembly process and the corresponding aerogel membranes by the freeze-drying method. The structures of the aerogel membranes can be tuned from lamellar to porously interconnected morphologies by controlling the volume of GO suspensions during the hydrothermal process. The rGO aerogel membrane was extremely flexible, which can be bent in liquid nitrogen and boiling water without any deformation, and highly stable in various solvents for at least 2 months. When used as nanofiltration membranes, the rGO aerogel membranes showed ∼100% rejection of organic dyes and a moderate water flux (up to 53 L m-2 h-1) only under the gravity of organic dye aqueous solutions of a 30 cm height. This water self-purification property of our flexible and stable aerogel membranes without extra energy consumption provides a possibility to make cheap, portable water purification devices for utilization in emergency and home-used water purification systems in the areas with electricity unavailable or inconvenient.
Collapse
Affiliation(s)
- Pengyu Zhuang
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
- Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhongya Guo
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shuang Wang
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Qi Zhang
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingjian Zhang
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lili Fu
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
- Guangzhou
Institute of Energy Conversion, Chinese
Academy of Sciences, Guangzhou 510640, China
| | - Han Min
- Zhengzhou
University, Zhengzhou 450001, China
| | - Bin Li
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ke Zhang
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| |
Collapse
|
22
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
| | - Qunfeng Cheng
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
23
|
Wan S, Chen Y, Fang S, Wang S, Xu Z, Jiang L, Baughman RH, Cheng Q. High-strength scalable graphene sheets by freezing stretch-induced alignment. NATURE MATERIALS 2021; 20:624-631. [PMID: 33542472 DOI: 10.1038/s41563-020-00892-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 11/25/2020] [Indexed: 05/14/2023]
Abstract
Efforts to obtain high-strength graphene sheets by near-room-temperature assembly have been frustrated by the misalignment of graphene layers, which degrades mechanical properties. While in-plane stretching can decrease this misalignment, it reappears when releasing the stretch. Here we use covalent and π-π inter-platelet bridging to permanently freeze stretch-induced alignment of graphene sheets, and thereby increase isotropic in-plane sheet strength to 1.55 GPa, in combination with a high Young's modulus, electrical conductivity and weight-normalized shielding efficiency. Moreover, the stretch-bridged graphene sheets are scalable and can be easily bonded together using a commercial resin without appreciably decreasing the performance, which establishes the potential for practical applications.
Collapse
Affiliation(s)
- Sijie Wan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Physics, Beihang University, Beijing, China
| | - Ying Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA.
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
24
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021; 60:18397-18410. [PMID: 33755316 DOI: 10.1002/anie.202102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/10/2022]
Abstract
Graphene materials have been widely applied in various fields because of their remarkable mechanical and electrical properties. However, two obstacles arise during the assembly of graphene platelets into macroscale graphene materials and composites that impair the performance of the resultant graphene materials: 1) the voids between the graphene platelets, and 2) the wrinkling of the graphene platelets. In the past decade, several strategies have been developed to eliminate these obstacles. These strategies result in strong macroscale graphene materials, such as graphene fibers with tensile strengths of over 3.4 GPa and sheets with tensile strengths of over 1.5 GPa, which have many practical applications. This Minireview summarizes the effective strategies for assembling graphene materials and compares their advantages and drawbacks. The preparation processes as well as the resulting fundamental mechanical properties and wide spectrum of electrical and magnetic properties are also discussed. Finally, our outlook for the future of this field is presented.
Collapse
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
Abstract
Graphene-based films with high toughness have many promising applications, especially for flexible energy storage and portable electrical devices. Achieving such high-toughness films, however, remains a challenge. The conventional mechanisms for improving toughness are crack arrest or plastic deformation. Herein we demonstrate black phosphorus (BP) functionalized graphene films with record toughness by combining crack arrest and plastic deformation. The formation of covalent bonding P-O-C between BP and graphene oxide (GO) nanosheets not only reduces the voids of GO film but also improves the alignment degree of GO nanosheets, resulting in high compactness of the GO film. After further chemical reduction and π-π stacking interactions by conjugated molecules, the alignment degree of rGO nanosheets was further improved, and the voids in lamellar graphene film were also further reduced. Then, the compactness of the resultant graphene films and the alignment degree of reduced graphene oxide nanosheets are further improved. The toughness of the graphene film reaches as high as ∼51.8 MJ m-3, the highest recorded to date. In situ Raman spectra and molecular dynamics simulations reveal that the record toughness is due to synergistic interactions of lubrication of BP nanosheets, P-O-C covalent bonding, and π-π stacking interactions in the resultant graphene films. Our tough black phosphorus functionalized graphene films with high tensile strength and excellent conductivity also exhibit high ambient stability and electromagnetic shielding performance. Furthermore, a supercapacitor based on the tough films demonstrated high performance and remarkable flexibility.
Collapse
|
26
|
Noh SH, Park H, Eom W, Lee HB, Kang DJ, Cho JY, Sung TH, Han TH. Graphene Foam Cantilever Produced via Simultaneous Foaming and Doping Effect of an Organic Coagulant. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10763-10771. [PMID: 31985203 DOI: 10.1021/acsami.9b19498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the role of cellular structures, which give three-dimensional robustness to graphene structures, a new type of graphene cantilever with mechanical resilience is introduced. Here, NH4SCN is incorporated into graphene oxide (GO) gel using it as a coagulant for GO fiber self-assembly, a foaming agent, and a dopant. Subsequent thermal treatment of the GO fiber at 600 °C results in the evolution of gaseous species from NH4SCN, yielding internally porous graphene cantilevers (NS-GF cantilevers). The results reveal that NS-GF cantilevers are doped with N and S and thus exhibit higher electrical conductivity (150 S cm-1) than that of their nonporous counterparts (38.4 S cm-1). Unlike conventional fibers, the NS-GF cantilevers exhibit mechanical resilience by bending under applied mechanical force but reverting to the original position upon release. The tip of the NS-GF cantilevers is coated with magnetic Fe3O4 particles, and fast mechanical movement is achieved by applying the magnetic field. Since the NS-GF cantilevers are highly conductive and elastic, they are employed as bendable, magnetodriven electrical switches that could precisely read on/off signals for >10 000 cycles. Our approach suggests a robust fabrication strategy to prepare highly electroconductive and mechanically elastic foam structures by introducing unique organic foaming agents.
Collapse
Affiliation(s)
- Sung Hyun Noh
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hun Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wonsik Eom
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hak Bong Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Yong Cho
- Department of Electrical Bio-Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Hyun Sung
- Department of Electrical Bio-Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|