1
|
Xu M, Chen Y, Lin Y, Wang D, Zheng X. Serum-derived exosomal microRNAs as biomarkers for postoperative delirium. Front Neurosci 2025; 19:1525230. [PMID: 40092071 PMCID: PMC11906430 DOI: 10.3389/fnins.2025.1525230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Postoperative delirium (POD) is a frequent and challenging complication in elderly surgical patients, marked by abrupt cognitive and attentional disturbances. Current POD diagnosis depends on clinical assessments that are time-intensive and lack predictive accuracy before surgery. Although previous research has explored biomarkers such as neuroinflammatory factors and Alzheimer's-related proteins to enhance POD prediction, single molecular markers have proven insufficient for reliable prognosis. Methods This study investigated serum exosomal miRNA expression profiles in postoperative patients to assess their association with POD. We compared miRNA expression between POD and non-POD groups through cognitive assessments and serum analyses. Additionally, enrichment analysis was conducted to determine the biological pathways regulated by differentially expressed miRNAs. Results Our analysis identified 57 miRNAs with significantly altered expression between POD and non-POD patients, including 16 upregulated and 41 downregulated miRNAs in the POD group. Enrichment analysis revealed that these miRNAs are involved in genes regulating neurotrophin signaling, neuroactive ligand-receptor interactions, and pathways that influence neuronal plasticity and cell viability. Discussion This study highlights specific miRNAs as potential biomarkers for POD and suggests their involvement in the underlying mechanisms of cognitive decline following surgery. By enhancing diagnostic capabilities and identifying potential therapeutic targets, our findings could lead to more effective POD management strategies for elderly patients. Further research is recommended to validate these miRNAs and evaluate their clinical utility for predictive screening and therapeutic interventions.
Collapse
Affiliation(s)
- Maokai Xu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yingjie Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yujun Lin
- Department of Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Danfeng Wang
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Velasco-Gomariz M, Sulzer J, Faber F, Fröhlich K. An sRNA overexpression library reveals AbnZ as a negative regulator of an essential translocation module in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkae1139. [PMID: 39657128 PMCID: PMC11724286 DOI: 10.1093/nar/gkae1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 12/17/2024] Open
Abstract
Small RNAs (sRNAs) play a crucial role in modulating target gene expression through short base-pairing interactions and serve as integral components of many stress response pathways and regulatory circuits in bacteria. Transcriptome analyses have facilitated the annotation of dozens of sRNA candidates in the ubiquitous environmental model bacterium Caulobacter crescentus, but their physiological functions have not been systematically investigated so far. To address this gap, we have established CauloSOEP, a multi-copy plasmid library of C. crescentus sRNAs, which can be studied in a chosen genetic background and under select conditions. Demonstrating the power of CauloSOEP, we identified sRNA AbnZ to impair cell viability and morphology. AbnZ is processed from the 3' end of the polycistronic abn mRNA encoding the tripartite envelope-spanning efflux pump AcrAB-NodT. A combinatorial approach revealed the essential membrane translocation module TamAB as a target of AbnZ, implying that growth inhibition by AbnZ is linked to repression of this system.
Collapse
Affiliation(s)
| | - Johannes Sulzer
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Franziska Faber
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
3
|
Lamb E, Pant D, Yang B, Hundley HA. A probe-based capture enrichment method for detection of A-to-I editing in low abundance transcripts. Methods Enzymol 2025; 710:55-75. [PMID: 39870451 DOI: 10.1016/bs.mie.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Exactly two decades ago, the ability to use high-throughput RNA sequencing technology to identify sites of editing by ADARs was employed for the first time. Since that time, RNA sequencing has become a standard tool for researchers studying RNA biology and led to the discovery of RNA editing sites present in a multitude of organisms, across tissue types, and in disease. However, transcriptome-wide sequencing is not without limitations. Most notably, RNA sequencing depth of a given transcript is correlated with expression, and sequencing depth impacts the ability to robustly detect RNA editing events. This chapter focuses on a method for enrichment of low-abundance transcripts that can facilitate more efficient sequencing and detection of RNA editing events. An important note is that while we describe aspects of the protocol important for capturing intron-containing transcripts, this probe-based enrichment method could be easily modified to assess editing within any low-abundance transcript. We also provide some perspectives on the current limitations as well as important future directions for expanding this technology to gain more insights into how RNA editing can impact transcript diversity.
Collapse
Affiliation(s)
- Emma Lamb
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States
| | - Dyuti Pant
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| | - Boyoon Yang
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana, United States
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States.
| |
Collapse
|
4
|
Qiu C, Crittenden SL, Carrick BH, Dillard LB, Costa Dos Santos SJ, Dandey VP, Dutcher RC, Viverette EG, Wine RN, Woodworth J, Campbell ZT, Wickens M, Borgnia MJ, Kimble J, Hall TMT. A higher order PUF complex is central to regulation of C. elegans germline stem cells. Nat Commun 2025; 16:123. [PMID: 39747099 PMCID: PMC11696143 DOI: 10.1038/s41467-024-55526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF binding elements (FBEs) in its 3'UTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discoveries of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predict an expanded regulatory repertoire of different assemblies of PUF-partner-RNA higher order complexes in nematode GSCs. This also suggests analogous PUF controls may await discovery in other biological contexts and organisms.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Venkata P Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Robert C Dutcher
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Elizabeth G Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Robert N Wine
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - Traci M Tanaka Hall
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
6
|
Reichel M, Schmidt O, Rettel M, Stein F, Köster T, Butter F, Staiger D. Revealing the Arabidopsis AtGRP7 mRNA binding proteome by specific enhanced RNA interactome capture. BMC PLANT BIOLOGY 2024; 24:552. [PMID: 38877390 PMCID: PMC11177498 DOI: 10.1186/s12870-024-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Biology, University of Copenhagen, København N, 2200, Denmark.
| | - Olga Schmidt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Qiu C, Crittenden SL, Carrick BH, Dillard LB, Costa Dos Santos SJ, Dandey VP, Dutcher RC, Viverette EG, Wine RN, Woodworth J, Campbell ZT, Wickens M, Borgnia MJ, Kimble J, Tanaka Hall TM. A higher order PUF complex is central to regulation of C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599074. [PMID: 38915480 PMCID: PMC11195197 DOI: 10.1101/2024.06.14.599074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Current address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Lucas B. Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Current address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephany J. Costa Dos Santos
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Venkata P. Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Robert C. Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Elizabeth G. Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert N. Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Zachary T. Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Traci M. Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Lead contact
| |
Collapse
|
8
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Naidoo D, Brennan R, de Lencastre A. Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis. Noncoding RNA 2023; 9:41. [PMID: 37624033 PMCID: PMC10458147 DOI: 10.3390/ncrna9040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in C. elegans, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.
Collapse
Affiliation(s)
- Devin Naidoo
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| | - Ryan Brennan
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| | - Alexandre de Lencastre
- Department of Molecular and Cellular Biology, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
10
|
Fuchs S, Danßmann C, Klironomos F, Winkler A, Fallmann J, Kruetzfeldt LM, Szymansky A, Naderi J, Bernhart SH, Grunewald L, Helmsauer K, Rodriguez-Fos E, Kirchner M, Mertins P, Astrahantseff K, Suenkel C, Toedling J, Meggetto F, Remke M, Stadler PF, Hundsdoerfer P, Deubzer HE, Künkele A, Lang P, Fuchs J, Henssen AG, Eggert A, Rajewsky N, Hertwig F, Schulte JH. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN. Nat Commun 2023; 14:3936. [PMID: 37402719 DOI: 10.1038/s41467-023-38747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Steffen Fuchs
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France.
| | - Clara Danßmann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Louisa-Marie Kruetzfeldt
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Julian Naderi
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Konstantin Helmsauer
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
- Lonza Drug Product Services, 4057, Basel, Switzerland
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fabienne Meggetto
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- The German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology, Helios Klinikum Berlin-Buch, 13125, Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Nikolaus Rajewsky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
11
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Cadoni E, De Paepe L, Colpaert G, Tack R, Waegeman D, Manicardi A, Madder A. A red light-triggered chemical tool for sequence-specific alkylation of G-quadruplex and I-motif DNA. Nucleic Acids Res 2023; 51:4112-4125. [PMID: 36971129 PMCID: PMC10201448 DOI: 10.1093/nar/gkad189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/03/2023] [Accepted: 03/12/2023] [Indexed: 08/21/2023] Open
Abstract
The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Ruben Tack
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Dries Waegeman
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Balzarini S, Van Ende R, Voet A, Geuten K. A widely applicable and cost-effective method for specific RNA-protein complex isolation. Sci Rep 2023; 13:6898. [PMID: 37106019 PMCID: PMC10140378 DOI: 10.1038/s41598-023-34157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Although methodological advances have been made over the past years, a widely applicable, easily scalable and cost-effective procedure that can be routinely used to isolate specific ribonucleoprotein complexes (RNPs) remains elusive. We describe the "Silica-based Acidic Phase Separation (SAPS)-capture" workflow. This versatile method combines previously described techniques in a cost-effective, optimal and widely applicable protocol. The specific RNP isolation procedure is performed on a pre-purified RNP sample instead of cell lysate. This combination of protocols results in an increased RNP/bead ratio and by consequence a reduced experimental cost. To validate the method, the 18S rRNP of S. cerevisiae was captured and to illustrate its applicability we isolated the complete repertoire of RNPs in A. thaliana. The procedure we describe can provide the community with a powerful tool to advance the study of the ribonome of a specific RNA molecule in any organism or tissue type.
Collapse
Affiliation(s)
- Sam Balzarini
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Roosje Van Ende
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Arnout Voet
- Lab of biomolecular modelling and design, KU Leuven, 3001, Leuven, Belgium
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
14
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
15
|
Crittenden SL, Seidel HS, Kimble J. Analysis of the C. elegans Germline Stem Cell Pool. Methods Mol Biol 2023; 2677:1-36. [PMID: 37464233 DOI: 10.1007/978-1-0716-3259-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the genetic and molecular regulation of stem cell self-renewal and progression of cells from a stem cell state to a differentiated state. The germline tissue is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated gametes at the other. A simple mesenchymal niche caps the GSC pool and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Notch signaling activates transcription of the key GSC regulators lst-1 and sygl-1 proteins in a gradient through the GSC pool. LST-1 and SYGL-1 proteins work with PUF RNA regulators in a self-renewal hub to maintain the GSC pool. In this chapter, we present methods for characterizing the C. elegans GSC pool and early stages of germ cell differentiation. The methods include examination of germlines in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutant phenotypes that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
17
|
Brenner JL, Jyo EM, Mohammad A, Fox P, Jones V, Mardis E, Schedl T, Maine EM. TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line. Dev Biol 2022; 491:43-55. [PMID: 36063869 PMCID: PMC9922029 DOI: 10.1016/j.ydbio.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.
Collapse
Affiliation(s)
- John L Brenner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin M Jyo
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vovanti Jones
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
18
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Vanden Broek K, Han X, Hansen D. Redundant mechanisms regulating the proliferation vs. differentiation balance in the C. elegans germline. Front Cell Dev Biol 2022; 10:960999. [PMID: 36120589 PMCID: PMC9479330 DOI: 10.3389/fcell.2022.960999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The proper production of gametes over an extended portion of the life of an organism is essential for a high level of fitness. The balance between germline stem cell (GSC) proliferation (self-renewal) and differentiation (production of gametes) must be tightly regulated to ensure proper gamete production and overall fitness. Therefore, organisms have evolved robust regulatory systems to control this balance. Here we discuss the redundancy in the regulatory system that controls the proliferation vs. differentiation balance in the C. elegans hermaphrodite germline, and how this redundancy may contribute to robustness. We focus on the various types of redundancy utilized to regulate this balance, as well as the approaches that have enabled these redundant mechanisms to be uncovered.
Collapse
|
20
|
Shakyawar S, Southekal S, Guda C. mintRULS: Prediction of miRNA–mRNA Target Site Interactions Using Regularized Least Square Method. Genes (Basel) 2022; 13:genes13091528. [PMID: 36140696 PMCID: PMC9498445 DOI: 10.3390/genes13091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of miRNA–mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our method also demonstrated high accuracy when validated against experimentally derived data from condition- and cell-specific studies and expression studies of miRNAs and target genes, both in human and mouse.
Collapse
Affiliation(s)
- Sushil Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation (CBIRI), University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
21
|
Fiszbein A, McGurk M, Calvo-Roitberg E, Kim G, Burge CB, Pai AA. Widespread occurrence of hybrid internal-terminal exons in human transcriptomes. SCIENCE ADVANCES 2022; 8:eabk1752. [PMID: 35044812 PMCID: PMC8769537 DOI: 10.1126/sciadv.abk1752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/23/2021] [Indexed: 06/12/2023]
Abstract
Messenger RNA isoform differences are predominantly driven by alternative first, internal, and last exons. Despite the importance of classifying exons to understand isoform structure, few tools examine isoform-specific exon usage. We recently observed that alternative transcription start sites often arise near internal exons, often creating “hybrid” first/internal exons. To systematically detect hybrid exons, we built the hybrid-internal-terminal (HIT) pipeline to classify exons depending on their isoform-specific usage. On the basis of splice junction reads in RNA sequencing data and probabilistic modeling, the HIT index identified thousands of previously misclassified hybrid first-internal and internal-last exons. Hybrid exons are enriched in long genes and genes involved in RNA splicing and have longer flanking introns and strong splice sites. Their usage varies considerably across human tissues. By developing the first method to classify exons according to isoform contexts, our findings document the occurrence of hybrid exons, a common quirk of the human transcriptome.
Collapse
Affiliation(s)
- Ana Fiszbein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Michael McGurk
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA, USA
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
22
|
Spiniello M, Scalf M, Casamassimi A, Abbondanza C, Smith LM. Towards an Ideal In Cell Hybridization-Based Strategy to Discover Protein Interactomes of Selected RNA Molecules. Int J Mol Sci 2022; 23:ijms23020942. [PMID: 35055128 PMCID: PMC8779001 DOI: 10.3390/ijms23020942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA–protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, ‘in cell’ hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different ‘in cell’ hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, 80131 Naples, Italy
- Correspondence: (M.S.); (A.C.)
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Correspondence: (M.S.); (A.C.)
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| |
Collapse
|
23
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Singh R, Wei L, Ghoshal UC. Micro-organic basis of functional gastrointestinal (GI) disorders: Role of microRNAs in GI pacemaking cells. Indian J Gastroenterol 2021; 40:102-110. [PMID: 33738768 DOI: 10.1007/s12664-021-01159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India.
| |
Collapse
|
25
|
Melo do Nascimento L, Egler F, Arnold K, Papavasiliou N, Clayton C, Erben E. Functional insights from a surface antigen mRNA-bound proteome. eLife 2021; 10:e68136. [PMID: 33783358 PMCID: PMC8051951 DOI: 10.7554/elife.68136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 01/13/2023] Open
Abstract
Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' variant surface glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2 (cyclin F-box protein 2), an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle, and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.
Collapse
Affiliation(s)
| | - Franziska Egler
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Katharina Arnold
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Nina Papavasiliou
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Esteban Erben
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| |
Collapse
|
26
|
Wei Z, Yuan X, Ding Q, Xu Y, Hong L, Wang J. CircATP5SL promotes infantile haemangiomas progression via IGF1R regulation by targeting miR-873-5p. Am J Transl Res 2021; 13:1322-1336. [PMID: 33841659 PMCID: PMC8014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Infantile haemangiomas (IH) are the most common soft-tissue tumours in infants. Several studies have demonstrated the importance of circular RNA (circRNA) for the regulation of various cancer cells. The present study aims to evaluate the functions and molecular mechanisms of circATP5SL in IH progression. In this study, we found that circATP5SL is significantly dysregulated in IH. We conducted Transwell, MTT, and flow cytometry analysis to evaluate the role of circATP5SL in IH cell proliferation, invasion, migration, and apoptosis. Meanwhile, by using subcellular distribution detection, as well as dual-luciferase reporter test and RIP analysis, it has been confirmed that miR-873-5p directly binds to the 3'UTR of IGF1R mRNA, thereby inhibiting the expression of IGF1R. Besides, circATP5SL promoted IGF1R expression by directly adsorbing miR-873-5p, an IGF1R inhibitor, thereby promoting cellular invasion, proliferation, and migration as well as inhibition of apoptosis. In summary, our study suggests that circATP5SL promotes IH progression by regulating IGF1R expression through adsorption of miR-873-5p, elucidating circATP5SL as a promising therapeutic target for the prognostication and treatment of IH.
Collapse
Affiliation(s)
- Zhiqiang Wei
- From The Department of Pediatric Surgery, The Ningbo Women and Children’s HospitalNingbo 315211, China
| | - Xiaoqi Yuan
- From The Department of Pediatric Surgery, The Ningbo Women and Children’s HospitalNingbo 315211, China
| | - Qi Ding
- From The Department of Diagnosis, Ningbo Diagnostic Pathology CenterNingbo 315021, China
| | - Yanan Xu
- From The Department of Pediatric Surgery, The Ningbo Women and Children’s HospitalNingbo 315211, China
| | - Lu Hong
- From The Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of MedicineNingbo 315020, Zhejiang Province, China
| | - Jianhua Wang
- From The Department of Pediatric Surgery, The Ningbo Women and Children’s HospitalNingbo 315211, China
- From The Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of MedicineNingbo 315020, Zhejiang Province, China
| |
Collapse
|
27
|
Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J, Staiger D, Ule J, Zavolan M. CLIP and complementary methods. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00018-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
29
|
Sarshar M, Scribano D, Ambrosi C, Palamara AT, Masotti A. Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions. Cancers (Basel) 2020; 12:E2174. [PMID: 32764361 PMCID: PMC7463924 DOI: 10.3390/cancers12082174] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, short non-coding microRNAs (miRNAs), including circulating and fecal miRNAs have emerged as important modulators of various cellular processes by regulating the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers in disease diagnosis and for the development of innovative therapeutic applications in several human conditions, including intestinal diseases. In this review, we explored the literature and summarized the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on colorectal cancer (CRC) and celiac disease (CD). The aim of this review is to highlight one fascinating aspect of fecal miRNA function related to gut microbiota shaping and bacterial metabolism influencing. The role of miRNAs as "messenger" molecules for inter kingdom communications will be analyzed to highlight their role in the complex host-bacteria interactions. Moreover, whether fecal miRNAs could open up new perspectives to develop novel suitable biomarkers for disease detection and innovative therapeutic approaches to restore microbiota balance will be discussed.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| |
Collapse
|
30
|
3' UTRs Regulate Protein Functions by Providing a Nurturing Niche during Protein Synthesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:95-104. [PMID: 31900325 DOI: 10.1101/sqb.2019.84.039206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Messenger RNAs (mRNAs) are the templates for protein synthesis as the coding region is translated into the amino acid sequence. mRNAs also contain 3' untranslated regions (3' UTRs) that harbor additional elements for the regulation of protein function. If the amino acid sequence of a protein is necessary and sufficient for its function, we call it 3' UTR-independent. In contrast, functions that are accomplished by protein complexes whose formation requires the presence of a specific 3' UTR are 3' UTR-dependent protein functions. We showed that 3' UTRs can regulate protein activity without affecting protein abundance, and alternative 3' UTRs can diversify protein functions. We currently think that the regulation of protein function by 3' UTRs is facilitated by the local environment at the site of protein synthesis, which we call the nurturing niche for nascent proteins. This niche is composed of the mRNA and the bound proteins that consist of RNA-binding proteins and recruited proteins. It enables the formation of specific protein complexes, as was shown for TIS granules, a recently discovered cytoplasmic membraneless organelle. This finding suggests that changing the niche for nascent proteins will alter protein activity and function, implying that cytoplasmic membraneless organelles can regulate protein function in a manner that is independent of protein abundance.
Collapse
|