1
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Romero-Zamora D, Rogers S, Low RRJ, Page SG, Lane BJE, Kosaka S, Robinson AB, French L, Lamm N, Ishikawa F, Hayashi MT, Cesare AJ. A CPC-shelterin-BTR axis regulates mitotic telomere deprotection. Nat Commun 2025; 16:2277. [PMID: 40097392 PMCID: PMC11914695 DOI: 10.1038/s41467-025-57456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeres prevent ATM activation by sequestering chromosome termini within telomere loops (t-loops). Mitotic arrest promotes telomere linearity and a localized ATM-dependent telomere DNA damage response (DDR) through an unknown mechanism. Using unbiased interactomics, biochemical screening, molecular biology, and super-resolution imaging, we found that mitotic arrest-dependent (MAD) telomere deprotection requires the combined activities of the Chromosome passenger complex (CPC) on shelterin, and the BLM-TOP3A-RMI1/2 (BTR) complex on t-loops. During mitotic arrest, the CPC component Aurora Kinase B (AURKB) phosphorylated both the TRF1 hinge and TRF2 basic domains. Phosphorylation of the TRF1 hinge domain enhances CPC and TRF1 interaction through the CPC Survivin subunit. Meanwhile, phosphorylation of the TRF2 basic domain promotes telomere linearity, activates a telomere DDR dependent on BTR-mediated double Holliday junction dissolution, and leads to mitotic death. We identify that the TRF2 basic domain functions in mitosis-specific telomere protection and reveal a regulatory role for TRF1 in controlling a physiological ATM-dependent telomere DDR. The data demonstrate that MAD telomere deprotection is a sophisticated active mechanism that exposes telomere ends to signal mitotic stress.
Collapse
Affiliation(s)
- Diana Romero-Zamora
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Samuel Rogers
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Ronnie Ren Jie Low
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Scott G Page
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Blake J E Lane
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Shunya Kosaka
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Andrew B Robinson
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Lucy French
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Noa Lamm
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Fuyuki Ishikawa
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
| | - Makoto T Hayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Szmyd R, Casolin S, French L, Manjón AG, Walter M, Cavalli L, Nelson CB, Page SG, Dhawan A, Hau E, Pickett HA, Gee HE, Cesare AJ. Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage. Nat Cell Biol 2025; 27:59-72. [PMID: 39805921 PMCID: PMC11735404 DOI: 10.1038/s41556-024-01557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2024] [Indexed: 01/16/2025]
Abstract
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division. Conversely, non-homologous end joining, microhomology-mediated end joining and single-strand annealing cooperate to enable damaged G1 cells to complete the first cell cycle with an aberrant cell division at the cost of delayed extrinsic lethality and interferon production. Targeting non-homologous end joining, microhomology-mediated end joining or single-strand annealing promotes mitotic death, while suppressing mitotic death enhances interferon production. Together the data indicate that a temporal repair hierarchy, coupled with cumulative DSB load, serves as a reliable predictor of mitotic catastrophe outcomes following genome damage. In this pathway, homologous recombination suppresses interferon production by promoting mitotic lethality.
Collapse
Affiliation(s)
- Radoslaw Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sienna Casolin
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Lucy French
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Anna G Manjón
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Melanie Walter
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Léa Cavalli
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Harriet E Gee
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia.
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia.
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
4
|
Feng S, Liu K, Shang J, Hoeg L, Pastore G, Yang W, Roy S, Sastre-Moreno G, Young JTF, Wu W, Xu D, Durocher D. Profound synthetic lethality between SMARCAL1 and FANCM. Mol Cell 2024; 84:4522-4537.e7. [PMID: 39510066 DOI: 10.1016/j.molcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
DNA replication stress is a threat to genome integrity. The large SNF2-family of ATPases participates in preventing and mitigating DNA replication stress by employing their ATP-driven motor to remodel DNA or DNA-bound proteins. To understand the contribution of these ATPases in genome maintenance, we undertook CRISPR-based synthetic lethality screens in human cells with three SNF2-type ATPases: SMARCAL1, ZRANB3, and HLTF. Here, we show that SMARCAL1 displays a profound synthetic-lethal interaction with FANCM, another ATP-dependent translocase involved in DNA replication and genome stability. Their combined loss causes severe genome instability that we link to chromosome breakage at loci enriched in simple repeats, which are known to challenge replication fork progression. Our findings illuminate a critical genetic buffering mechanism that provides an essential function for maintaining genome integrity.
Collapse
Affiliation(s)
- Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Kaiwen Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Graziana Pastore
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - William Yang
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Sabrina Roy
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Guillermo Sastre-Moreno
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Panda S, Roychowdhury T, Dutta A, Chakraborty S, Das T, Chatterjee S. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1. ACS Chem Biol 2024; 19:1433-1439. [PMID: 38959478 DOI: 10.1021/acschembio.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Most of the human cancers are dependent on telomerase to extend the telomeres. But ∼10% of all cancers use a telomerase-independent, homologous recombination mediated pathway called alternative lengthening of telomeres (ALT). Due to the poor prognosis, ALT status is not being considered yet in the diagnosis of cancer. No such specific treatment is available to date for ALT positive cancers. ALT positive cancers are dependent on replication stress to deploy DNA repair pathways to the telomeres to execute homologous recombination mediated telomere extension. SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1) is associated with the ALT telomeres to resolve replication stress thus providing telomere stability. Thus, the dependency on replication stress regulatory factors like SMARCAL1 made it a suitable therapeutic target for the treatment of ALT positive cancers. In this study, we found a significant downregulation of SMARCAL1 expression by stabilizing the G-quadruplex (G4) motif found in the promoter of SMARCAL1 by potent G4 stabilizers, like TMPyP4 and BRACO-19. SMARCAL1 downregulation led toward the increased localization of PML (promyelocytic leukemia) bodies in ALT telomeres and triggered the formation of APBs (ALT-associated promyelocytic leukemia bodies) in ALT positive cell lines, increasing telomere replication stress and DNA damage at a genomic level. Induction of replication stress and hyper-recombinogenic phenotype in ALT positive cells mediated by G4 stabilizing molecules already highlighted their possible application as a new therapeutic window to target ALT positive tumors. In accordance with this, our study will also provide a valuable insight toward the development of G4-based ALT therapeutics targeting SMARCAL1.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091 West Bengal, India
| | - Tanaya Roychowdhury
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, United States of America
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091 West Bengal, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091 West Bengal, India
| |
Collapse
|
6
|
Iervasi E, Coronel Vargas G, Bachetti T, Tkachenko K, Spallarossa A, Brullo C, Rosano C, Carta S, Barboro P, Profumo A, Ponassi M. A Proteomics Approach Identifies RREB1 as a Crucial Molecular Target of Imidazo-Pyrazole Treatment in SKMEL-28 Melanoma Cells. Int J Mol Sci 2024; 25:6760. [PMID: 38928466 PMCID: PMC11203724 DOI: 10.3390/ijms25126760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. Hence, ensuring access to novel and improved chemotherapeutic agents is imperative for patients grappling with this severe ailment. Pyrazole and its fused systems derived thereof are heteroaromatic moieties widely employed in medicinal chemistry to develop effective drugs for various therapeutic areas, including inflammation, pain, oxidation, pathogens, depression, and fever. In a previous study, we described the biochemical properties of a newly synthesized group of imidazo-pyrazole compounds. In this paper, to improve our knowledge of the pharmacological properties of these molecules, we conduct a differential proteomic analysis on a human melanoma cell line treated with one of these imidazo-pyrazole derivatives. Our results detail the changes to the SKMEL-28 cell line proteome induced by 24, 48, and 72 h of 3e imidazo-pyrazole treatment. Notably, we highlight the down-regulation of the Ras-responsive element binding protein 1 (RREB1), a member of the zinc finger transcription factors family involved in the tumorigenesis of melanoma. RREB1 is a downstream element of the MAPK pathway, and its activation is mediated by ERK1/2 through phosphorylation.
Collapse
Affiliation(s)
- Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Gabriela Coronel Vargas
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Tiziana Bachetti
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Kateryna Tkachenko
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (A.S.); (C.B.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (A.S.); (C.B.)
| | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Sonia Carta
- IRCCS Ospedale Policlinico San Martino, Nuclear Medicine Unit, L.go. R. Benzi, 10, 16132 Genova, Italy;
| | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (E.I.); (G.C.V.); (K.T.); (C.R.); (P.B.); (A.P.)
| |
Collapse
|
7
|
Nageshan RK, Ortega R, Krogan N, Cooper JP. Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown. Nat Commun 2024; 15:4707. [PMID: 38830842 PMCID: PMC11148042 DOI: 10.1038/s41467-024-48382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Persisting replication intermediates can confer mitotic catastrophe. Loss of the fission yeast telomere protein Taz1 (ortholog of mammalian TRF1/TRF2) causes telomeric replication fork (RF) stalling and consequently, telomere entanglements that stretch between segregating mitotic chromosomes. At ≤20 °C, these entanglements fail to resolve, resulting in lethality. Rif1, a conserved DNA replication/repair protein, hinders the resolution of telomere entanglements without affecting their formation. At mitosis, local nuclear envelope (NE) breakdown occurs in the cell's midregion. Here we demonstrate that entanglement resolution occurs in the cytoplasm following this NE breakdown. However, in response to taz1Δ telomeric entanglements, Rif1 delays midregion NE breakdown at ≤20 °C, in turn disfavoring entanglement resolution. Moreover, Rif1 overexpression in an otherwise wild-type setting causes cold-specific NE defects and lethality, which are rescued by membrane fluidization. Hence, NE properties confer the cold-specificity of taz1Δ lethality, which stems from postponement of NE breakdown. We propose that such postponement promotes clearance of simple stalled RFs, but resolution of complex entanglements (involving strand invasion between nonsister telomeres) requires rapid exposure to the cytoplasm.
Collapse
Affiliation(s)
- Rishi Kumar Nageshan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Raquel Ortega
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Yang SF, Nelson CB, Wells JK, Fernando M, Lu R, Allen JAM, Malloy L, Lamm N, Murphy VJ, Mackay JP, Deans AJ, Cesare AJ, Sobinoff AP, Pickett HA. ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway. Nat Commun 2024; 15:2210. [PMID: 38472229 PMCID: PMC10933417 DOI: 10.1038/s41467-024-46578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.
Collapse
Affiliation(s)
- Sile F Yang
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Jadon K Wells
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Madushan Fernando
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lisa Malloy
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Noa Lamm
- Nuclear Dynamics Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
10
|
Sobinoff AP, Di Maro S, Low RRJ, Benedetti R, Tomassi S, D'Aniello A, Russo R, Baglivo I, Chianese U, Pedone PV, Chambery A, Cesare AJ, Altucci L, Pickett HA, Cosconati S. Irreversible inhibition of TRF2 TRFH recruiting functions by a covalent cyclic peptide induces telomeric replication stress in cancer cells. Cell Chem Biol 2023; 30:1652-1665.e6. [PMID: 38065101 DOI: 10.1016/j.chembiol.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).
Collapse
Affiliation(s)
- Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Salvatore Di Maro
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ronnie R J Low
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy; Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Antonia D'Aniello
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosita Russo
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Paolo V Pedone
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy; BIOGEM, 83031 Ariano Irpino, Italy; Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program; IEOS CNR, Napoli, Italy
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| | - Sandro Cosconati
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
11
|
Morita TY, Yu J, Kashima Y, Kamata R, Yamamoto G, Minamide T, Mashima C, Yoshiya M, Sakae Y, Yamauchi T, Hakozaki Y, Kageyama SI, Nakamura A, Lightcap E, Tanaka K, Niu H, Kannan K, Ohashi A. CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade. Nat Commun 2023; 14:7490. [PMID: 37980406 PMCID: PMC10657413 DOI: 10.1038/s41467-023-43274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Serine/threonine kinase, cell division cycle 7 (CDC7) is critical for initiating DNA replication. TAK-931 is a specific CDC7 inhibitor, which is a next-generation replication stress (RS) inducer. This study preclinically investigates TAK-931 antitumor efficacy and immunity regulation. TAK-931 induce RS, generating senescence-like aneuploid cells, which highly expressed inflammatory cytokines and chemokines (senescence-associated secretory phenotype, SASP). In vivo multilayer-omics analyses in gene expression panel, immune panel, immunohistochemistry, RNA sequencing, and single-cell RNA sequencing reveal that the RS-mediated aneuploid cells generated by TAK-931 intensively activate inflammatory-related and senescence-associated pathways, resulting in accumulation of tumor-infiltrating immune cells and potent antitumor immunity and efficacy. Finally, the combination of TAK-931 and immune checkpoint inhibitors profoundly enhance antiproliferative activities. These findings suggest that TAK-931 has therapeutic antitumor properties and improved clinical benefits in combination with conventional immunotherapy.
Collapse
Affiliation(s)
- Tomoko Yamamori Morita
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ryo Kamata
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Gaku Yamamoto
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tatsunori Minamide
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Chiaki Mashima
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Miyuki Yoshiya
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yuta Sakae
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Toyohiro Yamauchi
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yumi Hakozaki
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Akito Nakamura
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Eric Lightcap
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Kosuke Tanaka
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Huifeng Niu
- Oncology Translational Science., TDCA, Inc., Lexington, MA, USA
| | | | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan.
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA.
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Cameron DP, Grosser J, Ladigan S, Kuzin V, Iliopoulou E, Wiegard A, Benredjem H, Jackson K, Liffers ST, Lueong S, Cheung PF, Vangala D, Pohl M, Viebahn R, Teschendorf C, Wolters H, Usta S, Geng K, Kutter C, Arsenian-Henriksson M, Siveke JT, Tannapfel A, Schmiegel W, Hahn SA, Baranello L. Coinhibition of topoisomerase 1 and BRD4-mediated pause release selectively kills pancreatic cancer via readthrough transcription. SCIENCE ADVANCES 2023; 9:eadg5109. [PMID: 37831776 PMCID: PMC10575591 DOI: 10.1126/sciadv.adg5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.
Collapse
Affiliation(s)
- Donald P. Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Swetlana Ladigan
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Iliopoulou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hajar Benredjem
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn Jackson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven T. Liffers
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F. Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Deepak Vangala
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Michael Pohl
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Richard Viebahn
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Surgery, Bochum, Germany
| | | | - Heiner Wolters
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Selami Usta
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Wolff Schmiegel
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Stephan A. Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Hoffman TE, Nangia V, Ryland C, Passanisi VJ, Armstrong C, Yang C, Spencer SL. Multiple cancers escape from multiple MAPK pathway inhibitors and use DNA replication stress signaling to tolerate aberrant cell cycles. Sci Signal 2023; 16:eade8744. [PMID: 37527351 PMCID: PMC10704347 DOI: 10.1126/scisignal.ade8744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway. In BRAF-driven melanoma cells treated with BRAF inhibitors, subpopulations of cells escape drug-induced quiescence through a nongenetic manner of adaptation and resume slow proliferation. Here, we found that this phenomenon is common to many cancer types driven by EGFR, KRAS, or BRAF mutations in response to multiple, clinically approved MAPK pathway inhibitors. In 2D cultures and 3D spheroid models of various cancer cell lines, a subset of cells escaped drug-induced quiescence within 4 days to resume proliferation. These "escapee" cells exhibited DNA replication deficits, accumulated DNA lesions, and mounted a stress response that depended on the ataxia telangiectasia and RAD3-related (ATR) kinase. We further identified that components of the Fanconi anemia (FA) DNA repair pathway are recruited to sites of mitotic DNA synthesis (MiDAS) in escapee cells, enabling successful completion of cell division. Analysis of patient tumor samples and clinical data correlated disease progression with an increase in DNA replication stress response factors. Our findings suggest that many MAPK pathway-mutant cancers rapidly escape drug action and that suppressing early stress tolerance pathways may achieve more durable clinical responses to MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Timothy E. Hoffman
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varuna Nangia
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado-Anschutz Medical School, Aurora, CO, 80045, USA
| | - C. Ryland
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Victor J. Passanisi
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Claire Armstrong
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Chen Yang
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L. Spencer
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Li F, Wang Y, Hwang I, Jang JY, Xu L, Deng Z, Yu EY, Cai Y, Wu C, Han Z, Huang YH, Huang X, Zhang L, Yao J, Lue NF, Lieberman PM, Ying H, Paik J, Zheng H. Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance. Nat Commun 2023; 14:1756. [PMID: 36991019 PMCID: PMC10060224 DOI: 10.1038/s41467-023-37480-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following recombination-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurosurgery, Southwest Hospital, Chongqing, 400038, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Yizhe Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ja-Young Jang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Libo Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Eun Young Yu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yiming Cai
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhenbo Han
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Xiangao Huang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ling Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Hoffman TE, Yang C, Nangia V, Ill CR, Spencer SL. Multiple cancer types rapidly escape from multiple MAPK inhibitors to generate mutagenesis-prone subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533211. [PMID: 36993538 PMCID: PMC10055235 DOI: 10.1101/2023.03.17.533211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway and many targeted inhibitors now exist for clinical use, but drug resistance remains a major issue. We recently showed that BRAF-driven melanoma cells treated with BRAF inhibitors can non-genetically adapt to drug within 3-4 days to escape quiescence and resume slow proliferation. Here we show that this phenomenon is not unique to melanomas treated with BRAF inhibitors but rather is widespread across many clinical MAPK inhibitors and cancer types driven by EGFR, KRAS, and BRAF mutations. In all treatment contexts examined, a subset of cells can escape drug-induced quiescence within four days to resume proliferation. These escapee cells broadly experience aberrant DNA replication, accumulate DNA lesions, spend longer in G2-M cell cycle phases, and mount an ATR-dependent stress response. We further identify the Fanconi anemia (FA) DNA repair pathway as critical for successful mitotic completion in escapees. Long-term cultures, patient samples, and clinical data demonstrate a broad dependency on ATR- and FA-mediated stress tolerance. Together, these results highlight the pervasiveness with which MAPK-mutant cancers are able to rapidly escape drug and the importance of suppressing early stress tolerance pathways to potentially achieve more durable clinical responses to targeted MAPK pathway inhibitors.
Collapse
|
17
|
Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528023. [PMID: 36798426 PMCID: PMC9934630 DOI: 10.1101/2023.02.10.528023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following homology-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.
Collapse
|
18
|
Romero-Zamora D, Hayashi MT. A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection. Sci Rep 2023; 13:645. [PMID: 36635307 PMCID: PMC9837040 DOI: 10.1038/s41598-023-27598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Telomeric ends form a loop structure (T-loop) necessary for the repression of ATM kinase activation throughout the normal cell cycle. However, cells undergoing a prolonged mitotic arrest are prone to lose the T-loop, resulting in Aurora B kinase-dependent mitotic telomere deprotection, which was proposed as an anti-tumor mechanism that eliminates precancerous cells from the population. The mechanism of mitotic telomere deprotection has not been elucidated. Here, we show that WRN, a RECQ helicase family member, can suppress mitotic telomere deprotection independently of its exonuclease and helicase activities. Truncation of WRN revealed that N-terminus amino acids 168-333, a region that contains a coiled-coil motif, is sufficient to suppress mitotic telomere deprotection without affecting both mitotic Aurora B-dependent spindle checkpoint and ATM kinase activity. The suppressive activity of the WRN168-333 fragment is diminished in cells partially depleted of TRF2, while WRN is required for complete suppression of mitotic telomere deprotection by TRF2 overexpression. Finally, we found that phosphomimetic but not alanine mutations of putative Aurora B target sites in the WRN168-333 fragment abolished its suppressive effect. Our findings reveal a non-enzymatic function of WRN, which may be regulated by phosphorylation in cells undergoing mitotic arrest. We propose that WRN enhances the protective function of TRF2 to counteract the hypothetical pathway that resolves the mitotic T-loop.
Collapse
Affiliation(s)
- Diana Romero-Zamora
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan
| | - Makoto T. Hayashi
- grid.258799.80000 0004 0372 2033IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan ,IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
19
|
Weiss JG, Gallob F, Rieder P, Villunger A. Apoptosis as a Barrier against CIN and Aneuploidy. Cancers (Basel) 2022; 15:cancers15010030. [PMID: 36612027 PMCID: PMC9817872 DOI: 10.3390/cancers15010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.
Collapse
Affiliation(s)
- Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43–512-9003-70380; Fax: +43–512-9003-73960
| |
Collapse
|
20
|
Dar AA, Bezrookove V, Nosrati M, Ice R, Patino JM, Vaquero EM, Parrett B, Leong SP, Kim KB, Debs RJ, Soroceanu L, Miller JR, Desprez PY, Cleaver JE, Salomonis N, McAllister S, Kashani-Sabet M. Bromodomain inhibition overcomes treatment resistance in distinct molecular subtypes of melanoma. Proc Natl Acad Sci U S A 2022; 119:e2206824119. [PMID: 35969744 PMCID: PMC9407673 DOI: 10.1073/pnas.2206824119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Therapy of BRAF-mutant melanoma with selective inhibitors of BRAF (BRAFi) and MEK (MEKi) represents a major clinical advance but acquired resistance to therapy has emerged as a key obstacle. To date, no clinical approaches successfully resensitize to BRAF/MEK inhibition. Here, we develop a therapeutic strategy for melanoma using bromosporine, a bromodomain inhibitor. Bromosporine (bromo) monotherapy produced significant anti-tumor effects against established melanoma cell lines and patient-derived xenografts (PDXs). Combinatorial therapy involving bromosporine and cobimetinib (bromo/cobi) showed synergistic anti-tumor effects in multiple BRAFi-resistant PDX models. The bromo/cobi combination was superior in vivo to standard BRAFi/MEKi therapy in the treatment-naive BRAF-mutant setting and to MEKi alone in the setting of immunotherapy-resistant NRAS- and NF1-mutant melanoma. RNA sequencing of xenografts treated with bromo/cobi revealed profound down-regulation of genes critical to cell division and mitotic progression. Bromo/cobi treatment resulted in marked DNA damage and cell-cycle arrest, resulting in induction of apoptosis. These studies introduce bromodomain inhibition, alone or combined with agents targeting the mitogen activated protein kinase pathway, as a rational therapeutic approach for melanoma refractory to standard targeted or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Altaf A. Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Ryan Ice
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - John M. Patino
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Edith M. Vaquero
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Brian Parrett
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Stanley P. Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Kevin B. Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Robert J. Debs
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Liliana Soroceanu
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - James R. Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Pierre-Yves Desprez
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - James E. Cleaver
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Sean McAllister
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, CA 94107
| |
Collapse
|
21
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Mattoo AR, Jessup JM. MCL‐1 interacts with MOF and BID to regulate H4K16 acetylation and homologous recombination repair. Cell Biol Int 2022; 46:1196-1203. [DOI: 10.1002/cbin.11831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
|
23
|
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022; 41:2719-2733. [PMID: 35393546 PMCID: PMC9076537 DOI: 10.1038/s41388-022-02291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells often experience high basal levels of DNA replication stress (RS), for example due to hyperactivation of oncoproteins like MYC or RAS. Therefore, cancer cells are considered to be sensitive to drugs that exacerbate the level of RS or block the intra S-phase checkpoint. Consequently, RS-inducing drugs including ATR and CHK1 inhibitors are used or evaluated as anti-cancer therapies. However, drug resistance and lack of biomarkers predicting therapeutic efficacy limit efficient use. This raises the question what determines sensitivity of individual cancer cells to RS. Here, we report that oncogenic RAS does not only enhance the sensitivity to ATR/CHK1 inhibitors by directly causing RS. Instead, we observed that HRASG12V dampens the activation of the P53-dependent transcriptional response to drug-induced RS, which in turn confers sensitivity to RS. We demonstrate that inducible expression of HRASG12V sensitized cells to ATR and CHK1 inhibitors. Using RNA-sequencing of FACS-sorted cells we discovered that P53 signaling is the sole transcriptional response to RS. However, oncogenic RAS attenuates the transcription of P53 and TGF-β pathway components which consequently dampens P53 target gene expression. Accordingly, live cell imaging showed that HRASG12V exacerbates RS in S/G2-phase, which could be rescued by stabilization of P53. Thus, our results demonstrate that transcriptional control of P53 target genes is the prime determinant in the response to ATR/CHK1 inhibitors and show that hyperactivation of the MAPK pathway impedes this response. Our findings suggest that the level of oncogenic MAPK signaling could predict sensitivity to intra-S-phase checkpoint inhibition in cancers with intact P53.
Collapse
|
24
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Andor N, Altrock PM, Jain N, Gomes AP. Tipping cancer cells over the edge: the context-dependent cost of high ploidy. Cancer Res 2021; 82:741-748. [PMID: 34785577 DOI: 10.1158/0008-5472.can-21-2794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Tetraploidy is an aneuploidy-permissive condition that can fuel tumorgenesis. The tip-over hypothesis of cytotoxic therapy-sensitivity proposes that therapy is effective if it pushes a cell's aneuploidy above a viable tipping point. But elevated aneuploidy alone may not account for this tipping point. Tissue micro-environments (TMEs) that lack sufficient resources to support tetraploid cells can explain the fitness cost of aneuploidy. Raw materials needed to generate deoxynucleotides, the building blocks of DNA, are candidate rate-limiting factors for the evolution of high-ploidy cancer cells. Understanding the resource cost of high ploidy is key to uncover its therapeutic vulnerabilities across tissue sites with versatile energy supplies.
Collapse
Affiliation(s)
- Noemi Andor
- Integrated Mathematical Oncology, Moffitt Cancer Center
| | - Philipp M Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology
| | | | - Ana P Gomes
- Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute
| |
Collapse
|
26
|
McDougall L, Kueh JTB, Ward J, Tyndall JDA, Woolley AG, Mehta S, Stayner C, Larsen DS, Eccles MR. Chemical Synthesis of the PAX Protein Inhibitor EG1 and Its Ability to Slow the Growth of Human Colorectal Carcinoma Cells. Front Oncol 2021; 11:709540. [PMID: 34722257 PMCID: PMC8549845 DOI: 10.3389/fonc.2021.709540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer is primarily a disease of the developed world. The incidence rate has continued to increase over time, reflecting both demographic and lifestyle changes, which have resulted in genomic and epigenomic modifications. Many of the epigenetic modifications occur in genes known to be closely associated with embryonic development and cellular growth. In particular, the paired box (PAX) transcription factors are crucial for correct tissue development during embryogenesis due to their role in regulating genes involved in proliferation and cellular maintenance. In a number of cancers, including colorectal cancer, the PAX transcription factors are aberrantly expressed, driving proliferation and thus increased tumour growth. Here we have synthesized and used a small molecule PAX inhibitor, EG1, to inhibit PAX transcription factors in HCT116 colorectal cell cultures which resulted in reduced proliferation after three days of treatment. These results highlight PAX transcription factors as playing an important role in the proliferation of HCT116 colorectal cancer cells, suggesting there may be a potential therapeutic role for inhibition of PAX in limiting cancer cell growth.
Collapse
Affiliation(s)
- Lorissa McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Jake Ward
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
27
|
Yoshida K, Fujita M. DNA damage responses that enhance resilience to replication stress. Cell Mol Life Sci 2021; 78:6763-6773. [PMID: 34463774 PMCID: PMC11072782 DOI: 10.1007/s00018-021-03926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA-protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication-transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA-protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
28
|
Schuck PL, Ball LE, Stewart JA. The DNA-binding protein CST associates with the cohesin complex and promotes chromosome cohesion. J Biol Chem 2021; 297:101026. [PMID: 34339741 PMCID: PMC8390553 DOI: 10.1016/j.jbc.2021.101026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/26/2023] Open
Abstract
Sister chromatid cohesion (SCC), the pairing of sister chromatids after DNA replication until mitosis, is established by loading of the cohesin complex on newly replicated chromatids. Cohesin must then be maintained until mitosis to prevent segregation defects and aneuploidy. However, how SCC is established and maintained until mitosis remains incompletely understood, and emerging evidence suggests that replication stress may lead to premature SCC loss. Here, we report that the ssDNA-binding protein CTC1-STN1-TEN1 (CST) aids in SCC. CST primarily functions in telomere length regulation but also has known roles in replication restart and DNA repair. After depletion of CST subunits, we observed an increase in the complete loss of SCC. In addition, we determined that CST associates with the cohesin complex. Unexpectedly, we did not find evidence of altered cohesin loading or mitotic progression in the absence of CST; however, we did find that treatment with various replication inhibitors increased the association between CST and cohesin. Because replication stress was recently shown to induce SCC loss, we hypothesized that CST may be required to maintain or remodel SCC after DNA replication fork stalling. In agreement with this idea, SCC loss was greatly increased in CST-depleted cells after exogenous replication stress. Based on our findings, we propose that CST aids in the maintenance of SCC at stalled replication forks to prevent premature cohesion loss.
Collapse
Affiliation(s)
- P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
29
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
30
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
31
|
Xiao L, Somers K, Murray J, Pandher R, Karsa M, Ronca E, Bongers A, Terry R, Ehteda A, Gamble LD, Issaeva N, Leonova KI, O'Connor A, Mayoh C, Venkat P, Quek H, Brand J, Kusuma FK, Pettitt JA, Mosmann E, Kearns A, Eden G, Alfred S, Allan S, Zhai L, Kamili A, Gifford AJ, Carter DR, Henderson MJ, Fletcher JI, Marshall G, Johnstone RW, Cesare AJ, Ziegler DS, Gudkov AV, Gurova KV, Norris MD, Haber M. Dual Targeting of Chromatin Stability By The Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Shows Significant Preclinical Efficacy in Neuroblastoma. Clin Cancer Res 2021; 27:4338-4352. [PMID: 33994371 DOI: 10.1158/1078-0432.ccr-20-2357] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/25/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.
Collapse
Affiliation(s)
- Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Rachael Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Anahid Ehteda
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, Department of Pathology and Lab Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina
| | - Katerina I Leonova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Aisling O'Connor
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Pooja Venkat
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Hazel Quek
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jennifer Brand
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Frances K Kusuma
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Jessica A Pettitt
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Erin Mosmann
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Adam Kearns
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Lei Zhai
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia.,School of Biomedical Engineering, University of Technology Sydney, Australia
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| | - Glenn Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Ricky W Johnstone
- Immune Defence Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,School of Women's and Children's Health, University of New South Wales Sydney, Randwick, New South Wales, Australia
| |
Collapse
|
32
|
Kang S, Cao J, Zhang M, Li X, Guo QL, Zeng H, Wei Z, Gong X, Wang J, Liu B, Shu B, Xu X, Huang ZS, Li D. Transcriptional regulation of telomeric repeat-containing RNA by acridine derivatives. RNA Biol 2021; 18:2261-2277. [PMID: 33749516 DOI: 10.1080/15476286.2021.1899652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.
Collapse
Affiliation(s)
- Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jiaojiao Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Huang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bobo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou and P.R. China
| | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou and P.R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| |
Collapse
|
33
|
Kinetics of DNA Repair in Vicia faba Meristem Regeneration Following Replication Stress. Cells 2021; 10:cells10010088. [PMID: 33430297 PMCID: PMC7825715 DOI: 10.3390/cells10010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The astonishing survival abilities of Vicia faba, one the earliest domesticated plants, are associated, among other things, to the highly effective replication stress response system which ensures smooth cell division and proper preservation of genomic information. The most crucial pathway here seems to be the ataxia telangiectasia-mutated kinase (ATM)/ataxia telangiectasia and Rad3-related kinase (ATR)-dependent replication stress response mechanism, also present in humans. In this article, we attempted to take an in-depth look at the dynamics of regeneration from the effects of replication inhibition and cell cycle checkpoint overriding causing premature chromosome condensation (PCC) in terms of DNA damage repair and changes in replication dynamics. We were able to distinguish a unique behavior of replication factors at the very start of the regeneration process in the PCC-induced cells. We extended the experiment and decided to profile the changes in replication on the level of a single replication cluster of heterochromatin (both alone and with regard to its position in the nucleus), including the mathematical profiling of the size, activity and shape. The results obtained during these experiments led us to the conclusion that even “chaotic” events are dealt with in a proper degree of order.
Collapse
|
34
|
Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol 2020; 22:1460-1470. [PMID: 33257806 DOI: 10.1038/s41556-020-00605-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Filamentous actin (F-actin) provides cells with mechanical support and promotes the mobility of intracellular structures. Although F-actin is traditionally considered to be cytoplasmic, here we reveal that nuclear F-actin participates in the replication stress response. Using live and super-resolution imaging, we find that nuclear F-actin is polymerized in response to replication stress through a pathway regulated by ATR-dependent activation of mTORC1, and nucleation through IQGAP1, WASP and ARP2/3. During replication stress, nuclear F-actin increases the nuclear volume and sphericity to counteract nuclear deformation. Furthermore, F-actin and myosin II promote the mobility of stressed-replication foci to the nuclear periphery through increasingly diffusive motion and directed movements along the nuclear actin filaments. These actin functions promote replication stress repair and suppress chromosome and mitotic abnormalities. Moreover, we find that nuclear F-actin is polymerized in vivo in xenograft tumours after treatment with replication-stress-inducing chemotherapeutic agents, indicating that this pathway has a role in human disease.
Collapse
|
35
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
36
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
37
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|