1
|
Pang Y, Li J, Hu H, Ung COL. Genetic associations of prostate cancer in China: a systematic review. BMC Cancer 2025; 25:604. [PMID: 40181298 PMCID: PMC11966891 DOI: 10.1186/s12885-025-13830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVES In recent years, there has been a notable increase in the incidence and mortality rates of prostate cancer (PCa) in China, highlighting it as a significant public health issue. This study aimed to investigate the genetic association of PCa in China to better inform national disease management and medical resource allocation. METHODS A systematic literature review was conducted using 5 English databases (Web of Science, PubMed, Embase, Cochrane, Scopus) and 1 Chinese database (CNKI) to identify articles published from database inception to October 8, 2022, which reported the genetic associations of PCa in China. RESULTS Of the 11,195 articles retrieved, 41 were included in the review. A total of 116 different polymorphisms (including single nucleotide polymorphisms, deletions, insertions, and repeat lengths) in 58 genes were studied in Chinese populations. Among these, 37 out of 51 polymorphisms in 28 candidate genes such as BIRC5, C2orf43, COX-2, CYR61 (IGFBP10), DNMT1, DNMT3B, EXO1, FOXP4, and 7 unmapped SNPs were found to have either a positive or negative effect on PCa risk. However, 18 variants in 5 genes remain controversial across different studies. Additionally, 23 SNPs in 16 genes were reported to be associated with disease stage, Gleason score, PSA levels, PCa risk, and clinicopathological characteristics of PCa in China. CONCLUSION In Chinese populations, PCa risk and clinical features may result from individual genes, gene-gene interactions, and gene-environment interactions. These findings provide important insights into the relationship between genetic susceptibility and PCa risk in Chinese men.
Collapse
Affiliation(s)
- Yimin Pang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Junjun Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
2
|
Sonehara K, Okada Y. Leveraging genome-wide association studies to better understand the etiology of cancers. Cancer Sci 2025; 116:288-296. [PMID: 39561785 PMCID: PMC11786324 DOI: 10.1111/cas.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Genome-wide association studies (GWAS) statistically assess the association between tens of millions of genetic variants in the whole genome and a phenotype of interest. Genome-wide association studies enable the elucidation of polygenic inheritance of cancer, in which myriad low-penetrance genetic variants collectively contribute to a substantial proportion of the heritable susceptibility. In addition to the robust genotype-phenotype associations provided by GWAS, combining GWAS data with functional genomic datasets or sophisticated statistical genetic methods unlocks deeper insights. Integrating genotype and molecular phenotyping data facilitates functional characterization of GWAS association signals through molecular quantitative trait loci mapping and transcriptome-wide association studies. Furthermore, aggregating genome-wide polygenic signals, including subthreshold associations, enables one to estimate genetic correlations across diverse phenotypes and helps in clinical risk predictions by evaluating polygenic risk scores. In this review, we begin by summarizing the rationale for GWAS of cancer, introduce recent methodological updates in the GWAS-derived downstream analyses, and demonstrate their applications to GWAS of cancers.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Genome Informatics, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Laboratory for Systems GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Laboratory for Systems GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI‐IFReC)Osaka UniversitySuitaJapan
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaJapan
| |
Collapse
|
3
|
Zhong M, Xu W, Tian P, Zhang Q, Wang Z, Liang L, Zhang Q, Yang Y, Lu Y, Wei G. An Inherited Allele Confers Prostate Cancer Progression and Drug Resistance via RFX6/HOXA10-Orchestrated TGFβ Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401492. [PMID: 38932472 PMCID: PMC11348203 DOI: 10.1002/advs.202401492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFβ/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.
Collapse
Affiliation(s)
- Mengjie Zhong
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Pan Tian
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qin Zhang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Limiao Liang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qixiang Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Yuehong Yang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Ying Lu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Gong‐Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| |
Collapse
|
4
|
Huang M, Wang J, Zhang Z, Zuo X. ZMIZ1 Regulates Proliferation, Autophagy and Apoptosis of Colon Cancer Cells by Mediating Ubiquitin-Proteasome Degradation of SIRT1. Biochem Genet 2024; 62:3245-3259. [PMID: 38214831 PMCID: PMC11289246 DOI: 10.1007/s10528-023-10573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024]
Abstract
There are nearly 1.15 million new cases of colon cancer, as well as 586,858 deaths from colon cancer worldwide in 2020. The aim of this study is to reveal whether ZMIZ1 can control the fate of colon cancer cells and the mechanism by which it functions. Specific shRNA transfection was used to knock down the expression of ZMIZ1 in colon cancer cell lines (HCT116 and HT29), and cell proliferation was detected using EdU and CCK-8 reagents, apoptosis by flow cytometry, and autophagy by western blot. The interaction of ZMIZ1 and SIRT1 was analyzed. Knockdown of ZMIZ1 significantly inhibited autophagy and proliferation, and induced apoptosis of HCT116 and HT29 cells. The mRNA level of SIRT1 was not affected by ZMIZ1 knockdown, but the protein level of SIRT1 was significantly decreased and the protein level of the SIRT1-specific substrate, acetylated FOXO3a, was reduced. Immunoprecipitation assays identified the interaction between SIRT1 and ZMIZ1 in HCT116 and HT29 cells. ZMIZ1 increased intracellular ubiquitination of SIRT1. Knockdown or pharmacological inhibition of SIRT1 neutralized the effects of ZMIZ knockdown on proliferation, autophagy and apoptosis in HCT116 and HT29 cells. ZMIZ1 may control the fate of colon cancer cells through the SIRT1/FOXO3a axis. Targeting ZMIZ1 would be beneficial for the treatment of colon cancer.
Collapse
Affiliation(s)
- Min Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China.
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Zhengrong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| |
Collapse
|
5
|
Gu J, Chery L, González GMN, Huff C, Strom S, Jones JA, Griffith DP, Canfield SE, Wang X, Huang X, Roberson P, Meng QH, Troncoso P, Ittmann M, Covinsky M, Scheurer M, Ramirez MI, Pettaway CA. A west African ancestry-associated SNP on 8q24 predicts a positive biopsy in African American men with suspected prostate cancer following PSA screening. Prostate 2024; 84:694-705. [PMID: 38477020 PMCID: PMC11240849 DOI: 10.1002/pros.24686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND African American (AA) men have the highest incidence and mortality rates of prostate cancer (PCa) among all racial groups in the United States. While race is a social construct, for AA men, this overlaps with west African ancestry. Many of the PCa susceptibility variants exhibit distinct allele frequencies and risk estimates across different races and contribute substantially to the large disparities of PCa incidence among races. We previously reported that a single-nucleotide polymorphism (SNP) in 8q24, rs7824364, was strongly associated with west African ancestry and increased risks of PCa in both AA and Puerto Rican men. In this study, we determined whether this SNP can predict biopsy positivity and detection of clinically significant disease (Gleason score [GS] ≥ 7) in a cohort of AA men with suspected PCa. METHODS SNP rs7824364 was genotyped in 199 AA men with elevated total prostate-specific antigen (PSA) (>2.5 ng/mL) or abnormal digital rectal exam (DRE) and the associations of different genotypes with biopsy positivity and clinically significant disease were analyzed. RESULTS The variant allele carriers were significantly over-represented in the biopsy-positive group compared to the biopsy-negative group (44% vs. 25.7%, p = 0.011). In the multivariate logistic regression analyses, variant allele carriers were at a more than a twofold increased risk of a positive biopsy (odds ratio [OR] = 2.14, 95% confidence interval [CI] = 1.06-4.32). Moreover, the variant allele was a predictor (OR = 2.26, 95% CI = 1.06-4.84) of a positive biopsy in the subgroup of patients with PSA < 10 ng/mL and normal DRE. The variant allele carriers were also more prevalent in cases with GS ≥ 7 compared to cases with GS < 7 and benign biopsy. CONCLUSIONS This study demonstrated that the west African ancestry-specific SNP rs7824364 on 8q24 independently predicted a positive prostate biopsy in AA men who were candidates for prostate biopsy subsequent to PCa screening.
Collapse
Affiliation(s)
- Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisly Chery
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara Strom
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey A. Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Donald P. Griffith
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven E. Canfield
- Divisions of Urology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela Roberson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing H. Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Micheal Covinsky
- Divisions of Pathology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Michael Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita Irizarry Ramirez
- Department of Graduate Studies, Clinical Laboratory Sciences, School of Health Professions, University of Puerto Rico, San Juan, Puerto Rico
| | - Curtis A. Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Akamatsu S, Naito Y, Nagayama J, Sano Y, Inoue S, Matsuo K, Sano T, Ishida S, Matsukawa Y, Kato M. Treatment escalation and de-escalation of de-novo metastatic castration-sensitive prostate cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:169-180. [PMID: 38962407 PMCID: PMC11219222 DOI: 10.18999/nagjms.86.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 07/05/2024]
Abstract
Androgen receptor signaling inhibitors combined with androgen deprivation therapy have become the standard of care for metastatic castration-sensitive prostate cancer (mCSPC), regardless of tumor volume or risk. However, survival of approximately one-third of these patients has not improved, necessitating further treatment escalation. On the other hand, for patients with oligometastatic mCSPC, there is an emerging role for local radiation therapy. Although data remain scarce, it is expected that treatment of both primary tumor as well as metastasis-directed therapy may improve survival outcomes. In these patients, systemic therapy may be de-escalated to intermittent therapy. However, precise risk stratification is necessary for risk-based treatment escalation or de-escalation. In addition to risk stratification based on clinical parameters, research has been conducted to incorporate genomic and/or transcriptomic data into risk stratification. In future, an integrated risk model is expected to precisely stratify patients and guide treatment strategies. Here, we first review the transition of the standard treatment for mCSPC over the last decade and further discuss the newest concept of escalating or de-escalating treatment using a multi-modal approach based on the currently available literature.
Collapse
Affiliation(s)
- Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Bau DT, Tsai CW, Chang WS, Yang JS, Liu TY, Lu HF, Wang YW, Tsai FJ. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol Carcinog 2024; 63:617-628. [PMID: 38390760 DOI: 10.1002/mc.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of prostate cancer (PCa) in Taiwan with 1844 cases and 80,709 controls. Thirteen independent single-nucleotide polymorphisms (SNPs) reached genome-wide significance (p < 5 × 10-8 ). Among these, three were distinct from previously identified loci: rs76072851 in CORO2B gene (15q23), odds ratio (OR) = 1.54, 95% confidence interval (CI), 1.36-1.76, p = 5.30 × 10-11 ; rs7837051, near two long noncoding RNA (lncRNA) genes, PRNCR1 and PCAT2 (8q24.21), OR = 1.41 (95% CI, 1.31-1.51), p = 8.77 × 10-21 ; and rs56339048, near an lncRNA gene, CASC8 (8q24.21), OR = 1.25 (95% CI, 1.16-1.35), p = 2.14 × 10-8 . We refined the lead SNPs for two previously identified SNPs in Taiwanese: rs13255059 (near CASC8), p = 9.02 × 10-43 , and rs1456315 (inside PRNCR1), p = 4.33 × 10-42 . We confirmed 35 out of 49 GWAS-identified East Asian PCa susceptibility SNPs. In addition, we identified two SNPs more specific to Taiwanese than East Asians: rs34295433 in LAMC1 (1q25.3) and rs6853490 in PDLIM5 (4q22.3). A weighted genetic risk score (GRS) was developed using the 40 validated SNPs and the area under the receiver-operating characteristic curve for the GRS to predict PCa was 0.67 (95% CI, 0.63-0.71). These identified SNPs provide valuable insights into the molecular mechanisms of prostate carcinogenesis in Taiwan and underscore the significant role of genetic susceptibility in regional differences in PCa incidence.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
10
|
Ito S, Liu X, Ishikawa Y, Conti DD, Otomo N, Kote-Jarai Z, Suetsugu H, Eeles RA, Koike Y, Hikino K, Yoshino S, Tomizuka K, Horikoshi M, Ito K, Uchio Y, Momozawa Y, Kubo M, Kamatani Y, Matsuda K, Haiman CA, Ikegawa S, Nakagawa H, Terao C. Androgen receptor binding sites enabling genetic prediction of mortality due to prostate cancer in cancer-free subjects. Nat Commun 2023; 14:4863. [PMID: 37612283 PMCID: PMC10447511 DOI: 10.1038/s41467-023-39858-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Prostate cancer (PrCa) is the second most common cancer worldwide in males. While strongly warranted, the prediction of mortality risk due to PrCa, especially before its development, is challenging. Here, we address this issue by maximizing the statistical power of genetic data with multi-ancestry meta-analysis and focusing on binding sites of the androgen receptor (AR), which has a critical role in PrCa. Taking advantage of large Japanese samples ever, a multi-ancestry meta-analysis comprising more than 300,000 subjects in total identifies 9 unreported loci including ZFHX3, a tumor suppressor gene, and successfully narrows down the statistically finemapped variants compared to European-only studies, and these variants strongly enrich in AR binding sites. A polygenic risk scores (PRS) analysis restricting to statistically finemapped variants in AR binding sites shows among cancer-free subjects, individuals with a PRS in the top 10% have a strongly higher risk of the future death of PrCa (HR: 5.57, P = 4.2 × 10-10). Our findings demonstrate the potential utility of leveraging large-scale genetic data and advanced analytical methods in predicting the mortality of PrCa.
Collapse
Affiliation(s)
- Shuji Ito
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Bone and Joint Diseases, Yokohama, Japan
- Department of Orthopedic Surgery, Shimane University, Izumo, Japan
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Yuki Ishikawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - David D Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nao Otomo
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | - Hiroyuki Suetsugu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Yoshinao Koike
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Hikino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Pharmacogenomics, Yokohama, Japan
| | - Soichiro Yoshino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Tomizuka
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Momoko Horikoshi
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Genomics of Diabetes and Metabolism, Yokohama, Japan
| | - Kaoru Ito
- RIKEN Center for Integrative Medical Sciences, The Cardiovascular Genomics and Informatics, Yokohama, Japan
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University, Izumo, Japan
| | - Yukihide Momozawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Genotyping Development, Yokohama, Japan
| | | | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Laboratory of Genome Technology, Human Genome Center, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Tokyo, Japan
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shiro Ikegawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Bone and Joint Diseases, Yokohama, Japan
| | - Hidewaki Nakagawa
- RIKEN Center for Integrative Medical Sciences, Laboratory for Cancer Genomics, Yokohama, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan.
- Shizuoka General Hospital, The Clinical Research Center, Shizuoka, Japan.
- School of Pharmaceutical Sciences, University of Shizuoka, The Department of Applied Genetics, Shizuoka, Japan.
| |
Collapse
|
11
|
Goto Y, Utsumi T, Maruo M, Kurozumi A, Noro T, Tanaka S, Sugawara S, Chiba K, Miyazaki K, Inoue A, Komaru A, Fukasawa S, Imamura Y, Sakamoto S, Nakatsu H, Suzuki H, Ichikawa T, Nagata M. Development and validation of novel nomogram to identify the candidates for extended pelvic lymph node dissection for prostate cancer patients in the robotic era. Int J Urol 2023; 30:659-665. [PMID: 37130793 DOI: 10.1111/iju.15195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES To determine candidates for extended pelvic lymph node dissection using a novel nomogram to assess the risk of lymph node invasion in Japanese prostate cancer patients in the robotic era. METHODS A total of 538 patients who underwent robot-assisted radical prostatectomy with extended pelvic lymph node dissection in three hospitals were retrospectively analyzed. Medical records were reviewed uniformly and the following data collected: prostate-specific antigen, age, clinical T stage, primary and secondary Gleason score at prostate biopsy, and percentage of positive core numbers. Finally, data from 434 patients were used for developing the nomogram and data from 104 patients were used for external validation. RESULTS Lymph node invasion was detected in 47 (11%) and 16 (15%) patients in the development and validation set, respectively. Based on multivariate analysis, prostate-specific antigen, clinical T stage ≥3, primary Gleason score, grade group 5, and percentage of positive cores were selected as variables to incorporate into the nomogram. The area under the curve values were 0.781 for the internal and 0.908 for the external validation, respectively. CONCLUSIONS The present nomogram can help urologists identify candidates for extended pelvic lymph node dissection concomitant with robot-assisted radical prostatectomy among patients with prostate cancer.
Collapse
Affiliation(s)
- Yusuke Goto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takanobu Utsumi
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | - Masafumi Maruo
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Akira Kurozumi
- Department of Urology, Asahi General Hospital, Chiba, Japan
| | - Takahide Noro
- Prostate Center and Division of Urology, Chiba Cancer Center, Chiba, Japan
| | - Satoki Tanaka
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Sugawara
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Kazuto Chiba
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Kanetaka Miyazaki
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Inoue
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Komaru
- Prostate Center and Division of Urology, Chiba Cancer Center, Chiba, Japan
| | - Satoshi Fukasawa
- Prostate Center and Division of Urology, Chiba Cancer Center, Chiba, Japan
| | - Yusuke Imamura
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Maki Nagata
- Department of Urology, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
13
|
Polygenic risk score for tumor aggressiveness and early-onset prostate cancer in Asians. Sci Rep 2023; 13:798. [PMID: 36646726 PMCID: PMC9842611 DOI: 10.1038/s41598-022-17515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023] Open
Abstract
We attempted to assess the performance of an ethnic-specific polygenic risk score (PRS) designed from a Korean population to predict aggressive prostate cancer (PCa) and early-onset (age < 60). A PRS score comprised of 22 SNPs was computed in 3695 patients gathered from one of 4 tertiary centers in Korea. Males with biopsy or radical prostatectomy-proven PCa were included for analysis, collecting additional clinical parameters such as age, BMI, PSA, Gleason Group (GG), and staging. Patients were divided into 4 groups of PRS quartiles. Intergroup differences were assessed, as well as risk ratio and predictive performance based on GG using logistic regression analysis and AUC. No significant intergroup differences were observed for BMI, PSA, and rate of ≥ T3a tumors on pathology. Rate of GG ≥ 2, GG ≥ 3, and GG ≥ 4 showed a significant pattern of increase by PRS quartile (p < 0.001, < 0.001, and 0.039, respectively). With the lowest PRS quartile as reference, higher PRS groups showed sequentially escalating risk for GG ≥ 2 and GG ≥ 3 pathology, with a 4.6-fold rise in GG ≥ 2 (p < 0.001) and 2.0-fold rise in GG ≥ 3 (p < 0.001) for the highest PRS quartiles. Combining PRS with PSA improved prediction of early onset csPCa (AUC 0.759) compared to PRS (AUC 0.627) and PSA alone (AUC 0.736). To conclude, an ethnic-specific PRS was found to predict susceptibility of aggressive PCa in addition to improving detection of csPCa when combined with PSA in early onset populations. PRS may have a role as a risk-stratification model in actual practice. Large scale, multi-ethnic trials are required to validate our results.
Collapse
|
14
|
Ruan X, Huang D, Huang J, Xu D, Na R. Application of European-specific polygenic risk scores for predicting prostate cancer risk in different ancestry populations. Prostate 2023; 83:30-38. [PMID: 35996327 DOI: 10.1002/pros.24431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polygenic risk score (PRS) has shown promise in predicting prostate cancer (PCa) risk. However, the application of PRS in non-European ancestry was poorly studied. METHODS We constructed PRS using 68, 86, or 128 PCa-associated single-nucleotide polymorphisms (SNPs) identified through a large-scale Genome-wide association study (GWAS) in the European ancestry population. A calibration approach was performed to adjust the PRS exact value for each ancestry. The study was conducted in East Asian (ChinaPCa Consortium, n = 2379), European (UK Biobank, n = 209,172), and African American (African Ancestry Prostate Cancer Consortium, n = 6016). RESULTS Individuals with the highest PRS (in >97.5th percentile) had over 2.5-fold increased risk of PCa than those with average PRS (in 40th-60th percentile) in both European (odds ratio [OR] = 3.79, 95% confidence interval [CI] = 3.46-4.16, p < 0.001) and Chinese (OR = 2.87, 95% CI = 1.29-6.40, p = 0.010), while slightly lower in African American (OR = 1.77, 95% CI = 1.22-2.58, p = 0.008). Compared with the lowest PRS (in <2.5th percentile), increased PRS was also associated with the earlier onset of PCa (All log-rank p < 0.05). The highest PRS contributed to having about 5- to 12-fold higher lifetime risk and 5-10 years earlier at disease onset than the lowest category across different ancestry populations. CONCLUSION We demonstrated that European-GWAS-based PRS could also significantly predict PCa risk in Asian ancestry and African ancestry populations.
Collapse
Affiliation(s)
- Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Na
- Division of Urology, Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Kurihara S, Matsui H, Ohtake N, Aoki M, Sekine Y, Arai S, Koike H, Suzuki K, Miyazawa Y. Variants in HOXB13, G132E and F127C, Are Associated With Prostate Cancer Risk in Japanese Men. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:542-548. [PMID: 36060024 PMCID: PMC9425588 DOI: 10.21873/cdp.10139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Several studies have reported on the relationship between HOXB13 variants and an increased prostate cancer (PC) risk. To our knowledge there are not many studies on HOXB13 mutations in Japanese patients with prostate cancer, and there many issues remain uninvestigated. We herein clarified the association between HOXB13 genetic variants and PC risk in a Japanese population. PATIENTS AND METHODS PC patients were diagnosed at the Gunma University Hospital and affiliated hospitals from 1994 to 2016. Sanger sequencing was performed on the coding regions of the HOXB13 gene in 152 familial PC (FPC) patients. Genotyping was performed on single nucleotide variants (SNVs) found in Sanger sequencing in 230 FPC patients from 152 pedigrees and 197 sporadic PC (SPC) patients and 144 controls. Allelic frequency and clinical data for each variant were studied in cases and controls. RESULTS G132E and F127C were identified in FPC patients. The frequencies of G132E and F127C were significantly higher compared to the control group (p=0.039). In three families, seven PC patients shared the G132E variant, within second-to-third-degree relatives. It was not possible to clarify to pathogenicity of each SNV alone. CONCLUSION We found two significant variants of the HOXB13 gene, G132E, F127C by analyzing and comparing gene samples from PC and non-PC patients. Furthermore, the HOXB13 G132E variant was found significantly increased in the FPC group.
Collapse
Affiliation(s)
- Sota Kurihara
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Masanori Aoki
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Seiji Arai
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidekazu Koike
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This study was conducted in order to review the outcomes regarding polygenic risk score (PRS) in prediction of prostate cancer (PCa). With the increasing proficiency of genetic analysis, assessment of PRS for prediction of PCa has been performed in numerous studies. Genetic risk prediction models for PCa that include hundreds to thousands of independent risk-associated variants are under development. For estimation of additive effect of multiple variants, the number of risk alleles carried by an individual is summed, and each variant is weighted according to its estimated effect size for generation of a PRS. RECENT FINDINGS Currently, regarding the accuracy of PRS alone, PCa detection rate ranged from 0.56 to 0.67. A higher rate of accuracy of 0.866-0.880 was observed for other models combining PRS with established clinical markers. The results of PRS from Asian populations showed a level of accuracy that is somewhat low compared with values from Western populations (0.63-0.67); however, recent results from Asian cohorts were similar to that of Western counterparts. Here, we review current PRS literature and examine the clinical utility of PRS for prediction of PCa. SUMMARY Emerging data from several studies regarding PRS in PCa could be the solution to adding predictive value to PCa risk estimation. Although commercial markers are available, development of a large-scale, well validated PRS model should be undertaken in the near future, in order to translate hypothetical scenarios to actual clinical practice.
Collapse
|
17
|
Huang J, Zhou X, Wang W, Zhou G, Zhang W, Gao Z, Wu X, Liu W. Combined analyses of RNA-sequence and Hi-C along with GWAS loci—A novel approach to dissect keloid disorder genetic mechanism. PLoS Genet 2022; 18:e1010168. [PMID: 35709140 PMCID: PMC9202908 DOI: 10.1371/journal.pgen.1010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
Keloid disorder is a tumour-like disease with invasive growth and a high recurrence rate. Genetic contribution is well expected due to the presence of autosomal dominant inheritance and various genetic mutations in keloid lesions. However, GWAS failed to reveal functional variants in exon regions but single nucleotide polymorphisms in the non-coding regions, suggesting the necessity of innovative genetic investigation. This study employed combined GWAS, RNA-sequence and Hi-C analyses to dissect keloid disorder genetic mechanisms using paired keloid tissues and normal skins. Differentially expressed genes, miRNAs and lncRNAs mined by RNA-sequence were identified to construct a network. From which, 8 significant pathways involved in keloid disorder pathogenesis were enriched and 6 of them were verified. Furthermore, topologically associated domains at susceptible loci were located via the Hi-C database and ten differentially expressed RNAs were identified. Among them, the functions of six molecules for cell proliferation, cell cycle and apoptosis were particularly examined and confirmed by overexpressing and knocking-down assays. This study firstly revealed unknown key biomarkers and pathways in keloid lesions using RNA-sequence and previously reported mutation loci, indicating a feasible approach to reveal the genetic contribution to keloid disorder and possibly to other diseases that are failed by GWAS analysis alone. Keloid disorder is a benign skin tumour characterized by uncontrolled fibroproliferative tissue growth, which only occurs in human beings with severe reoccurrence post-therapy. It affects several hundred million people with difficulty to control its growth and relapse. It has been long thought that exonic gene mutations must play an important role, but large-scaled GWAS analyses only revealed 3 single nucleotide polymorphisms in the non-coding regions as previously reported. For the first time, this study demonstrated that the true genetic mechanism is likely to be the dysfunctional epigenetic regulation caused by mutations in regulatory elements at the non-coding region as revealed by the combined analyses of GWAS, RNA-sequence and Hi-C data. This approach may lead to the breakthrough of keloid disorder genetic/epigenetic mechanism, if further large-scaled analyses are performed along with human keloid tissue Hi-C data.
Collapse
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - WenJie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Lomelí H. ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease. J Mol Med (Berl) 2022; 100:973-983. [PMID: 35670836 DOI: 10.1007/s00109-022-02216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/23/2023]
Abstract
Coregulator proteins interact with signal-dependent transcription factors to modify their transcriptional activity. ZMIZ1 and ZMIZ2 (zinc finger MIZ-type containing 1 and 2) are coregulators with nonredundant functions that share unique structural characteristics. Among other interacting domains, they possess a MIZ (Msx-interacting zinc finger) that relates them to members of the protein inhibitor of activated STAT (PIAS) family and provides them the capacity to function as SUMO E3 ligases. The ZMIZ proteins stimulate the activity of various signaling pathways, including the androgen receptor (AR), P53, SMAD3/4, WNT/β-catenin, and NOTCH1 pathways, and interact with the BAF chromatin remodeling complex. Due to their molecular versatility, ZMIZ proteins have pleiotropic effects and thus are important for embryonic development and for human diseases. Both have been widely associated with cancer, and ZMIZ1 has been very frequently identified as a risk allele for several autoimmune conditions and other disorders. Moreover, mutations in the coding region of the ZMIZ1 gene are responsible for a severe syndromic neurodevelopmental disability. Because the actions of coregulators are highly gene-specific, a better knowledge of the associations that exist between the function of the ZMIZ coregulators and human pathologies is expected to potentiate the use of ZMIZ1 and ZMIZ2 as new drug targets for diseases such as hormone-dependent cancers.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.
| |
Collapse
|
19
|
Prostate cancer risk in men of differing genetic ancestry and approaches to disease screening and management in these groups. Br J Cancer 2022; 126:1366-1373. [PMID: 34923574 PMCID: PMC9090767 DOI: 10.1038/s41416-021-01669-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is the second most common solid tumour in men worldwide and it is also the most common cancer affecting men of African descent. Prostate cancer incidence and mortality vary across regions and populations. Some of this is explained by a large heritable component of this disease. It has been established that men of African and African Caribbean ethnicity are predisposed to prostate cancer (PrCa) that can have an earlier onset and a more aggressive course, thereby leading to poorer outcomes for patients in this group. Literature searches were carried out using the PubMed, EMBASE and Cochrane Library databases to identify studies associated with PrCa risk and its association with ancestry, screening and management of PrCa. In order to be included, studies were required to be published in English in full-text form. An attractive approach is to identify high-risk groups and develop a targeted screening programme for them as the benefits of population-wide screening in PrCa using prostate-specific antigen (PSA) testing in general population screening have shown evidence of benefit; however, the harms are considered to weigh heavier because screening using PSA testing can lead to over-diagnosis and over-treatment. The aim of targeted screening of higher-risk groups identified by genetic risk stratification is to reduce over-diagnosis and treat those who are most likely to benefit.
Collapse
|
20
|
Prostate Cancer Susceptibility Loci Identified in GATA2 and ZMIZ1 in Chinese Population. Int J Genomics 2022; 2022:8553530. [PMID: 35372566 PMCID: PMC8970932 DOI: 10.1155/2022/8553530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Common genetic risk variants for prostate cancer (PCa) have been identified at approximately 170 loci using genome-wide association studies (GWAS), most of which were identified in European populations. Recently, GWAS were applied to a large Japanese cohort and identified 12 novel susceptibility loci associated with PCa risk. In this study, we aim to investigate PCa susceptibility loci in the Chinese population. The study data will be used to promote PCa risk control in China. Methods A total of 235 PCa patients and 252 control subjects (all unrelated) were enrolled in this case-control PCa study. Nine single nucleotide polymorphisms (SNPs) were genotyped in GATA2 (rs73862213, rs2335052, and rs10934857), ZMIZ1 (rs704017, rs77911174, and rs3740259), and SUN2 (rs78397383, rs5750680, and rs138705) genes. The associations between the candidate SNPs and PCa were analyzed using multiple-factor logistic regression and haplotype analysis. Results The allele frequency distributions of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were found to be significantly different between PCa cases and controls. Haplotype analysis revealed that the G-C-A haplotype of the GATA2 gene (order of SNPs: rs73862213-rs2335052-rs10934857) and the G-G-G haplotype of the ZMIZ1 gene (order of SNPs: rs704017-rs77911174-rs3740259) were associated with increased PCa risk. None of the SUN2 haplotypes were associated with PCa. Conclusions Our study data indicates that the minor alleles of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were associated with increased PCa risk. These findings greatly extended our knowledge of the etiology of PCa.
Collapse
|
21
|
Osman N, Shawky AEM, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure. BMC Genom Data 2022; 23:13. [PMID: 35176995 PMCID: PMC8851830 DOI: 10.1186/s12863-021-01021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. Results In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Conclusions Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01021-x.
Collapse
Affiliation(s)
- Noha Osman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Cell Biology, National Research Centre, Giza, 12622, Egypt.,Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Abd-El-Monsif Shawky
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
22
|
Akamatsu S, Terada N, Takata R, Kinoshita H, Shimatani K, Momozawa Y, Yamamoto M, Tada H, Kawamorita N, Narita S, Kato T, Nitta M, Kandori S, Koike Y, Inazawa J, Kimura T, Kimura H, Kojima T, Terachi T, Sugimoto M, Habuchi T, Arai Y, Yamamoto S, Matsuda T, Obara W, Kamoto T, Inoue T, Nakagawa H, Ogawa O. Clinical Utility of Germline Genetic Testing in Japanese Men Undergoing Prostate Biopsy. JNCI Cancer Spectr 2022; 6:pkac001. [PMID: 35118230 PMCID: PMC8807580 DOI: 10.1093/jncics/pkac001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background Multiple common variants and also rare variants in monogenic risk genes such as BRCA2 and HOXB13 have been reported to be associated with risk of prostate cancer (PCa); however, the clinical setting in which germline genetic testing could be used for PCa diagnosis remains obscure. Herein, we tested the clinical utility of a 16 common variant–based polygenic risk score (PRS) that has been developed previously for Japanese men and also evaluated the frequency of PCa-associated rare variants in a prospective cohort of Japanese men undergoing prostate biopsy. Methods A total of 1336 patients undergoing first prostate biopsy were included. PRS was calculated based on the genotype of 16 common variants, and sequencing of 8 prostate cancer–associated genes was performed by multiplex polymerase chain reaction based target sequencing. PRS was combined with clinical factors in logistic regression models to assess whether addition of PRS improves the prediction of biopsy positivity. Results The top PRS decile was associated with an odds ratio of 4.10 (95% confidence interval = 2.46 to 6.86) with reference to the patients at average risk, and the estimated lifetime absolute risk approached 20%. Among the patients with prostate specific antigen 2-10 ng/mL who had prebiopsy magnetic resonance imaging, high PRS had an equivalent impact on biopsy positivity as a positive magnetic resonance imaging finding. Rare variants were detected in 19 (2.37%) and 7 (1.31%) patients with positive and negative biopsies, respectively, with BRCA2 variants being the most prevalent. There was no association between PRS and high-risk rare variants. Conclusions Germline genetic testing could be clinically useful in both pre- and post-PSA screening settings.
Collapse
Affiliation(s)
- Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Cancer Genomics, Kanagawa, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Iwate, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Cancer Genomics, Kanagawa, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | | | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michio Yamamoto
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- RIKEN Center for Advanced Intelligence Project, Kanagawa, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Naoki Kawamorita
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takuma Kato
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masahiro Nitta
- Department of Urology, Tokai University School of Medicine, Kanagawa, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yusuke Koike
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Hiroko Kimura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Toshiro Terachi
- Department of Urology, Tokai University School of Medicine, Kanagawa, Japan
| | - Mikio Sugimoto
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shingo Yamamoto
- Department of Urology, Hyogo College of Medicine, Hyogo, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidewaki Nakagawa
- RIKEN Center for Integrative Medical Sciences, Laboratory for Cancer Genomics, Kanagawa, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
23
|
Song SH, Kim E, Woo E, Kwon E, Yoon S, Kim JK, Lee H, Oh JJ, Lee S, Hong SK, Byun SS. Prediction of clinically significant prostate cancer using polygenic risk models in Asians. Investig Clin Urol 2022; 63:42-52. [PMID: 34983122 PMCID: PMC8756152 DOI: 10.4111/icu.20210305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose To develop and evaluate the performance of a polygenic risk score (PRS) constructed in a Korean male population to predict clinically significant prostate cancer (csPCa). Materials and Methods Total 2,702 PCa samples and 7,485 controls were used to discover csPCa susceptible single nucleotide polymorphisms (SNPs). Males with biopsy-proven or post-radical prostatectomy Gleason score 7 or higher were included for analysis. After genotype imputation for quality control, logistic regression models were applied to test association and calculate effect size. Extracted candidate SNPs were further tested to compare predictive performance according to number of SNPs included in the PRS. The best-fit model was validated in an independent cohort of 311 cases and 822 controls. Results Of the 83 candidate SNPs with significant PCa association reported in previous literature, rs72725879 located in PRNCR1 showed the highest significance for PCa risk (odds ratio, 0.597; 95% confidence interval [CI], 0.555–0.641; p=4.3×10-45). Thirty-two SNPs within 26 distinct loci were further selected for PRS construction. Best performance was found with the top 29 SNPs, with AUC found to be 0.700 (95% CI, 0.667–0.734). Males with very-high PRS (above the 95th percentile) had a 4.92-fold increased risk for csPCa. Conclusions Ethnic-specific PRS was developed and validated in Korean males to predict csPCa susceptibility using the largest csPCa sample size in Asia. PRS can be a potential biomarker to predict individual risk. Future multi-ethnic trials are required to further validate our results.
Collapse
Affiliation(s)
- Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Eunkyung Kwon
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Procagen, Seongnam, Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Jin Oh
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Procagen, Seongnam, Korea.,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Liu D, Zhu J, Zhou D, Nikas EG, Mitanis NT, Sun Y, Wu C, Mancuso N, Cox NJ, Wang L, Freedland SJ, Haiman CA, Gamazon ER, Nikas JB, Wu L. A transcriptome-wide association study identifies novel candidate susceptibility genes for prostate cancer risk. Int J Cancer 2022; 150:80-90. [PMID: 34520569 PMCID: PMC8595764 DOI: 10.1002/ijc.33808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
A large proportion of heritability for prostate cancer risk remains unknown. Transcriptome-wide association study combined with validation comparing overall levels will help to identify candidate genes potentially playing a role in prostate cancer development. Using data from the Genotype-Tissue Expression Project, we built genetic models to predict normal prostate tissue gene expression using the statistical framework PrediXcan, a modified version of the unified test for molecular signatures and Joint-Tissue Imputation. We applied these prediction models to the genetic data of 79 194 prostate cancer cases and 61 112 controls to investigate the associations of genetically determined gene expression with prostate cancer risk. Focusing on associated genes, we compared their expression in prostate tumor vs normal prostate tissue, compared methylation of CpG sites located at these loci in prostate tumor vs normal tissue, and assessed the correlations between the differentiated genes' expression and the methylation of corresponding CpG sites, by analyzing The Cancer Genome Atlas (TCGA) data. We identified 573 genes showing an association with prostate cancer risk at a false discovery rate (FDR) ≤ 0.05, including 451 novel genes and 122 previously reported genes. Of the 573 genes, 152 showed differential expression in prostate tumor vs normal tissue samples. At loci of 57 genes, 151 CpG sites showed differential methylation in prostate tumor vs normal tissue samples. Of these, 20 CpG sites were correlated with expression of 11 corresponding genes. In this TWAS, we identified novel candidate susceptibility genes for prostate cancer risk, providing new insights into prostate cancer genetics and biology.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily G Nikas
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Nikos T Mitanis
- Department of Mathematics, University of the Aegean, Samos, Greece
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian, P. R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, 364012, P.R. China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, 364012, P.R. China
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Stephen J Freedland
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jason B Nikas
- Research & Development, Genomix Inc., Minneapolis, MN, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
25
|
Zhu Y, Wei Y, Zeng H, Li Y, Ng CF, Zhou F, He C, Sun G, Ni Y, Chiu PKF, Teoh JYC, Wang B, Pan J, Wan F, Dai B, Qin X, Lin G, Gan H, Wu J, Ye D. Inherited Mutations in Chinese Men With Prostate Cancer. J Natl Compr Canc Netw 2021; 20:54-62. [PMID: 34653963 DOI: 10.6004/jnccn.2021.7010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although China accounts for 7.8% of worldwide new prostate cancer (PCa) cases and 14.5% of new deaths according to GLOBOCAN 2020, the risk of PCa associated with germline mutations is poorly defined, hampered in part by lack of nationwide evidence. Here, we sequenced 19 PCa predisposition genes in 1,836 Chinese patients with PCa and estimated disease risk associated with inherited mutations. PATIENTS AND METHODS Patients were recruited from 4 tertiary cancer centers (n=1,160) and a commercial laboratory (n=676). Germline DNA was sequenced using a multigene panel, and pathogenic/likely pathogenic (P/LP) mutation frequencies in patients with PCa were compared with populations from the gnomAD (Genome Aggregation Database) and ChinaMAP (China Metabolic Analytics Project) databases. Clinical characteristics and progression-free survival were assessed by mutation status. RESULTS Of 1,160 patients from hospitals, 89.7% had Gleason scores ≥8, and 65.6% had metastases. P/LP mutations were identified in 8.49% of Chinese patients with PCa. Association with PCa risk was significant for mutations in ATM (odds ratio [OR], 5.9; 95% CI, 3.1-11.1), BRCA2 (OR, 15.3; 95% CI, 10.0-23.2), MSH2 (OR, 15.8; 95% CI, 4.2-59.6), and PALB2 (OR, 5.9; 95% CI, 2.7-13.2). Compared with those without mutations, patients with mutations in ATM, BRCA2, MSH2, or PALB2 showed a poor outcome with treatment using androgen deprivation therapy and abiraterone (hazard ratio, 2.19 [95% CI, 1.34-3.58] and 2.47 [95% CI, 1.23-4.96], respectively) but similar benefit from docetaxel. CONCLUSIONS The present multicenter study confirmed that a significant proportion of Chinese patients with PCa had inherited mutations and identified predisposition genes in this underreported ethnicity. These data provide empirical evidence for precision prevention and prognostic estimation in Chinese patients with PCa.
Collapse
Affiliation(s)
- Yao Zhu
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Yu Wei
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Hao Zeng
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Yonghong Li
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Chi-Fai Ng
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Fangjian Zhou
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Caiyun He
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou.,8Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou; and
| | - Guangxi Sun
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Yuchao Ni
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Peter K F Chiu
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Jeremy Y C Teoh
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Beihe Wang
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Jian Pan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Fangning Wan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Bo Dai
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Xiaojian Qin
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Guowen Lin
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Hualei Gan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,9Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junlong Wu
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Dingwei Ye
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|
26
|
Otte KA, Nolte V, Mallard F, Schlötterer C. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biol 2021; 22:211. [PMID: 34271951 PMCID: PMC8285869 DOI: 10.1186/s13059-021-02425-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Understanding the genetic architecture of temperature adaptation is key for characterizing and predicting the effect of climate change on natural populations. One particularly promising approach is Evolve and Resequence, which combines advantages of experimental evolution such as time series, replicate populations, and controlled environmental conditions, with whole genome sequencing. Recent analysis of replicate populations from two different Drosophila simulans founder populations, which were adapting to the same novel hot environment, uncovered very different architectures-either many selection targets with large heterogeneity among replicates or fewer selection targets with a consistent response among replicates. RESULTS Here, we expose the founder population from Portugal to a cold temperature regime. Although almost no selection targets are shared between the hot and cold selection regime, the adaptive architecture was similar. We identify a moderate number of targets under strong selection (19 selection targets, mean selection coefficient = 0.072) and parallel responses in the cold evolved replicates. This similarity across different environments indicates that the adaptive architecture depends more on the ancestry of the founder population than the specific selection regime. CONCLUSIONS These observations will have broad implications for the correct interpretation of the genomic responses to a changing climate in natural populations.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institute for Zoology, University of Cologne, Cologne, Germany
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005, Paris, France
| | | |
Collapse
|
27
|
Abstract
More than 40% of the risk of developing prostate cancer (PCa) is from genetic factors. Genome-wide association studies have led to the discovery of more than 140 variants associated with PCa risk. Polygenic risk scores (PRS) generated using these variants show promise in identifying individuals at much higher (and lower) lifetime risk than the average man. PCa PRS also improve the predictive value of prostate-specific antigen screening, may inform the age for starting PCa screening, and are informative for development of more aggressive tumors. Despite the promise, few clinical trials have evaluated the benefit of PCa PRS for clinical care.
Collapse
|
28
|
Albawardi A, Livingstone J, Almarzooqi S, Palanisamy N, Houlahan KE, Awwad AAA, Abdelsalam RA, Boutros PC, Bismar TA. Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry. Cancers (Basel) 2021; 13:cancers13102363. [PMID: 34068856 PMCID: PMC8153627 DOI: 10.3390/cancers13102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Prostate cancer is the most commonly diagnosed non-skin malignancy in men. Numerous studies have been undertaken to explore the role that genomics plays in prostate cancer initiation and progression. Most of this genomic data comes tumors arising in men with European or Asian ancestry, leaving other ancestry groups understudied. To fill this gap, we investigated the differences in copy number aberrations between prostate cancers arising in men of Middle Eastern ethnicity and those of European, African, or East Asian ethnicities in the hope of better understanding the incidence and risk of prostate cancer in different populations. We identified ancestry-specific gains and deletions, as well as differences in overall genomic instability between ancestry groups. This confirms that ancestry should be considered when investigating and characterizing biomarkers and molecular signatures relative to disease progression, prognosis, and potentially therapeutic targeting. Abstract Our knowledge of prostate cancer (PCa) genomics mainly reflects European (EUR) and Asian (ASN) populations. Our understanding of the influence of Middle Eastern (ME) and African (AFR) ancestry on the mutational profiles of prostate cancer is limited. To characterize genomic differences between ME, EUR, ASN, and AFR ancestry, fluorescent in situ hybridization (FISH) studies for NKX3-1 deletion and MYC amplification were carried out on 42 tumors arising in individuals of ME ancestry. These were supplemented by analysis of genome-wide copy number profiles of 401 tumors of all ancestries. FISH results of NKX3-1 and MYC were assessed in the ME cohort and compared to other ancestries. Gene level copy number aberrations (CNAs) for each sample were statistically compared between ancestry groups. NKX3-1 deletions by FISH were observed in 17/42 (17.5%) prostate tumors arising in men of ME ancestry, while MYC amplifications were only observed in 1/42 (2.3%). Using CNAs called from arrays, the incidence of NKX3-1 deletions was significantly lower in ME vs. other ancestries (20% vs. 52%; p = 2.3 × 10−3). Across the genome, tumors arising in men of ME ancestry had fewer CNAs than those in men of other ancestries (p = 0.014). Additionally, the somatic amplification of 21 specific genes was more frequent in tumors arising in men of ME vs. EUR ancestry (two-sided proportion test; Q < 0.05). Those included amplifications in the glutathione S-transferase family on chromosome 1 (GSTM1, GSTM2, GSTM5) and the IQ motif-containing family on chromosome 3 (IQCF1, IQCF2, IQCF13, IQCF4, IQCF5, IQCF6). Larger studies investigating ME populations are warranted to confirm these observations.
Collapse
Affiliation(s)
- Alia Albawardi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Julie Livingstone
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
| | - Saeeda Almarzooqi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System Detroit, Detroit, MI 48202, USA;
| | - Kathleen E. Houlahan
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | - Ramy A. Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Department of Pathology, Mansoura University, Mansoura 35516, Egypt
| | - Paul C. Boutros
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Urology, University of California, Los Angeles, CA 94607, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary-Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Alberta Precision Labs, Rockyview Hospital Laboratory, Department of Pathology & Laboratory Medicine, University of Calgary Cumming School of Medicine, 7007-14th Street SW, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
29
|
Shiota M, Akamatsu S, Narita S, Terada N, Fujimoto N, Eto M. Genetic Polymorphisms and Pharmacotherapy for Prostate Cancer. JMA J 2021; 4:99-111. [PMID: 33997443 PMCID: PMC8119070 DOI: 10.31662/jmaj.2021-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape of pharmacotherapy for prostate cancer has dramatically evolved, and multiple therapeutic options have become available for prostate cancer patients. Therefore, useful biomarkers to identify suitable candidates for treatment are required to maximize the efficacy of pharmacotherapy. Genetic polymorphisms such as single-nucleotide polymorphisms (SNPs) and tandem repeats have been shown to influence the therapeutic effects of pharmacotherapy for prostate cancer patients. For example, genetic polymorphisms in the genes involved in androgen receptor signaling are reported to be associated with the therapeutic outcome of androgen-deprivation therapy as well as androgen receptor-pathway inhibitors. In addition, SNPs in genes involved in drug metabolism and efflux pumps are associated with therapeutic effects of taxane chemotherapy. Thus, genetic polymorphisms such as SNPs are promising biomarkers to realize personalized medicine. Here, we overview the current findings on the influence of genetic polymorphisms on the outcome of pharmacotherapy for prostate cancer and discuss current issues as well as future visions in this field.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
31
|
Song SH, Byun SS. Polygenic risk score for genetic evaluation of prostate cancer risk in Asian populations: A narrative review. Investig Clin Urol 2021; 62:256-266. [PMID: 33943048 PMCID: PMC8100017 DOI: 10.4111/icu.20210124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Decreasing costs of genetic testing and interest in disease inheritance has changed the landscape of cancer prediction in prostate cancer (PCa), and guidelines now include genetic testing for high-risk groups. Familial and hereditary PCa comprises approximately 20% and 5% of all PCa, respectively. Multifaceted disorders like PCa are caused by a combinatory effect of rare genes of high penetrance and smaller genetic variants of relatively lower effect size. Polygenic risk score (PRS) is a novel tool utilizing PCa-associated single nucleotide polymorphisms (SNPs) identified from genome-wide association study (GWAS) to generate an additive estimate of an individual's lifetime genetic risk for cancer. However, most PRS are developed based on GWAS collected from mainly European populations and do not address ethnic differences in PCa genetics. This review highlights the attempts to generate a PRS tailored to Asian males including data from Korea, China, and Japan, and discuss the clinical implications for prediction of early onset and aggressive PCa.
Collapse
Affiliation(s)
- Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Wada Y, Maekawa M, Ohnishi T, Balan S, Matsuoka S, Iwamoto K, Iwayama Y, Ohba H, Watanabe A, Hisano Y, Nozaki Y, Toyota T, Shimogori T, Itokawa M, Kobayashi T, Yoshikawa T. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine 2020; 62:103130. [PMID: 33279456 PMCID: PMC7728824 DOI: 10.1016/j.ebiom.2020.103130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The pathophysiology of schizophrenia, a major psychiatric disorder, remains elusive. In this study, the role of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor (RXR) families, belonging to the ligand-activated nuclear receptor superfamily, in schizophrenia, was analyzed. METHODS The PPAR/RXR family genes were screened by exploiting molecular inversion probe (MIP)-based targeted next-generation sequencing (NGS) using the samples of 1,200 Japanese patients with schizophrenia. The results were compared with the whole-genome sequencing databases of the Japanese cohort (ToMMo) and the gnomAD. To reveal the relationship between PPAR/RXR dysfunction and schizophrenia, Ppara KO mice and fenofibrate (a clinically used PPARα agonist)-administered mice were assessed by performing behavioral, histological, and RNA-seq analyses. FINDINGS Our findings indicate that c.209-2delA, His117Gln, Arg141Cys, and Arg226Trp of the PPARA gene are risk variants for schizophrenia. The c.209-2delA variant generated a premature termination codon. The three missense variants significantly decreased the activity of PPARα as a transcription factor in vitro. The Ppara KO mice exhibited schizophrenia-relevant phenotypes, including behavioral deficits and impaired synaptogenesis in the cerebral cortex. Oral administration of fenofibrate alleviated spine pathology induced by phencyclidine, an N-methyl-d-aspartate (NMDA) receptor antagonist. Furthermore, pre-treatment with fenofibrate suppressed the sensitivity of mice to another NMDA receptor antagonist, MK-801. RNA-seq analysis revealed that PPARα regulates the expression of synaptogenesis signaling pathway-related genes. INTERPRETATION The findings of this study indicate that the mechanisms underlying schizophrenia pathogenesis involve PPARα-regulated transcriptional machinery and modulation of synapse physiology. Hence, PPARα can serve as a novel therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Yuina Wada
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan.
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Masanari Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan.
| |
Collapse
|
33
|
Albujja MH, Vasudevan R, Alghamdi S, Pei CP, Bin Mohd Ghani KA, Ranneh Y, Ismail PB. A review of studies examining the association between genetic biomarkers (short tandem repeats and single-nucleotide polymorphisms) and risk of prostate cancer: the need for valid predictive biomarkers. Prostate Int 2020; 8:135-145. [PMID: 33425790 PMCID: PMC7767939 DOI: 10.1016/j.prnil.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is a challenging polygenic disease because the genes that cause PCa remain largely elusive and are affected by several causal factors. Consequently, research continuously strives to identify a genetic marker which could be used as an indicator to predict the most vulnerable (i.e., predisposed) segments of the population to the disease or for the gene which may be directly responsible for PCa. To enhance the genetic etiology of PCa, this research sought to discover the key studies conducted in this field using data from the main journal publication search engines, as it was hoped that this could shed light on the main research findings from these studies, which in turn could assist in determining these genes or markers. From the research highlighted, the studies primarily used two kinds of markers: short tandem repeats or single-nucleotide polymorphisms. These markers were found to be quite prevalent in all the chromosomes within the research carried out. It also became apparent that the studies differed in both quantity and quality, as well as being conducted in a variety of societies. Links were also determined between the degree and strength of the relationship between these markers and the occurrence of the disease. From the studies identified, most recommended a larger and more diverse survey for the parameters which had not been studied before, as well as an increase in the size of the community (i.e., the population) being studied. This is an indication that work in this field is far from complete, and thus, current research remains committed toward finding genetic markers that can be used clinically for the diagnosis and screening of patients with PCa.
Collapse
Affiliation(s)
- Mohammed H. Albujja
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Forensic Sciences, Faculty of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Saudi Arabia
| | - Ramachandran Vasudevan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Malaysian Research Institute on Ageing (MYAGEING), Malaysia
| | - Saleh Alghamdi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Chong P. Pei
- School of Biosciences, Faculty of Health & Medical Sciences, Taylors University, Malaysia
| | - Khairul A. Bin Mohd Ghani
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Yazan Ranneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Patimah B. Ismail
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
34
|
Osman N, Shawky A, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.. [DOI: 10.1101/2020.10.06.328567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.
Collapse
|
35
|
Fiorica PN, Schubert R, Morris JD, Abdul Sami M, Wheeler HE. Multi-ethnic transcriptome-wide association study of prostate cancer. PLoS One 2020; 15:e0236209. [PMID: 32986714 PMCID: PMC7521738 DOI: 10.1371/journal.pone.0236209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The genetic risk for prostate cancer has been governed by a few rare variants with high penetrance and over 150 commonly occurring variants with lower impact on risk; however, most of these variants have been identified in studies containing exclusively European individuals. People of non-European ancestries make up less than 15% of prostate cancer GWAS subjects. Across the globe, incidence of prostate cancer varies with population due to environmental and genetic factors. The discrepancy between disease incidence and representation in genetics highlights the need for more studies of the genetic risk for prostate cancer across diverse populations. To better understand the genetic risk for prostate cancer across diverse populations, we performed PrediXcan and GWAS in a case-control study of 4,769 self-identified African American (2,463 cases and 2,306 controls), 2,199 Japanese American (1,106 cases and 1,093 controls), and 2,147 Latin American (1,081 cases and 1,066 controls) individuals from the Multiethnic Genome-wide Scan of Prostate Cancer. We used prediction models from 46 tissues in GTEx version 8 and five models from monocyte transcriptomes in the Multi-Ethnic Study of Atherosclerosis. Across the three populations, we predicted 19 gene-tissue pairs, including five unique genes, to be significantly (lfsr < 0.05) associated with prostate cancer. One of these genes, NKX3-1, replicated in a larger European study. At the SNP level, 110 SNPs met genome-wide significance in the African American study while 123 SNPs met significance in the Japanese American study. Fine mapping revealed three significant independent loci in the African American study and two significant independent loci in the Japanese American study. These identified loci confirm findings from previous GWAS of prostate cancer in diverse populations while PrediXcan-identified genes suggest potential new directions for prostate cancer research in populations across the globe.
Collapse
Affiliation(s)
- Peter N. Fiorica
- Department of Chemistry & Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ryan Schubert
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
- Department of Statistics, Loyola University Chicago, Chicago, IL, United States of America
| | - John D. Morris
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
| | - Mohammed Abdul Sami
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Heather E. Wheeler
- Department of Chemistry & Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
- Department of Public Health, Loyola University Chicago, Chicago, IL, United States of America
| |
Collapse
|
36
|
Brandão A, Paulo P, Teixeira MR. Hereditary Predisposition to Prostate Cancer: From Genetics to Clinical Implications. Int J Mol Sci 2020; 21:E5036. [PMID: 32708810 PMCID: PMC7404100 DOI: 10.3390/ijms21145036] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PrCa) ranks among the top five cancers for both incidence and mortality worldwide. A significant proportion of PrCa susceptibility has been attributed to inherited predisposition, with 10-20% of cases expected to occur in a hereditary/familial context. Advances in DNA sequencing technologies have uncovered several moderate- to high-penetrance PrCa susceptibility genes, most of which have previously been related to known hereditary cancer syndromes, namely the hereditary breast and ovarian cancer (BRCA1, BRCA2, ATM, CHEK2, and PALB2) and Lynch syndrome (MLH1, MSH2, MSH6, and PMS2) genes. Additional candidate genes have also been suggested, but further evidence is needed to include them in routine genetic testing. Recommendations based on clinical features, family history, and ethnicity have been established for more cost-efficient genetic testing of patients and families who may be at an increased risk of developing PrCa. The identification of alterations in PrCa predisposing genes may help to inform screening strategies, as well as treatment options, in the metastatic setting. This review provides an overview of the genetic basis underlying hereditary predisposition to PrCa, the current genetic screening recommendations, and the implications for clinical management of the disease.
Collapse
Affiliation(s)
- Andreia Brandão
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.)
| | - Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.)
| | - Manuel R. Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Biomedical Sciences Institute Abel Salazar (ICBAS), University of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
37
|
Pathway Analysis of Genes Identified through Post-GWAS to Underpin Prostate Cancer Aetiology. Genes (Basel) 2020; 11:genes11050526. [PMID: 32397189 PMCID: PMC7291227 DOI: 10.3390/genes11050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding the functional role of risk regions identified by genome-wide association studies (GWAS) has made considerable recent progress and is referred to as the post-GWAS era. Annotation of functional variants to the genes, including cis or trans and understanding their biological pathway/gene network enrichments, is expected to give rich dividends by elucidating the mechanisms underlying prostate cancer. To this aim, we compiled and analysed currently available post-GWAS data that is validated through further studies in prostate cancer, to investigate molecular biological pathways enriched for assigned functional genes. In total, about 100 canonical pathways were significantly, at false discovery rate (FDR) < 0.05), enriched in assigned genes using different algorithms. The results have highlighted some well-known cancer signalling pathways, antigen presentation processes and enrichment in cell growth and development gene networks, suggesting risk loci may exert their functional effect on prostate cancer by acting through multiple gene sets and pathways. Additional upstream analysis of the involved genes identified critical transcription factors such as HDAC1 and STAT5A. We also investigated the common genes between post-GWAS and three well-annotated gene expression datasets to endeavour to uncover the main genes involved in prostate cancer development/progression. Post-GWAS generated knowledge of gene networks and pathways, although continuously evolving, if analysed further and targeted appropriately, will have an important impact on clinical management of the disease.
Collapse
|