1
|
Xia J, Zhang Y, Jiang B. The evolution of machine learning potentials for molecules, reactions and materials. Chem Soc Rev 2025. [PMID: 40227021 DOI: 10.1039/d5cs00104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Recent years have witnessed the fast development of machine learning potentials (MLPs) and their widespread applications in chemistry, physics, and material science. By fitting discrete ab initio data faithfully to continuous and symmetry-preserving mathematical forms, MLPs have enabled accurate and efficient atomistic simulations in a large scale from first principles. In this review, we provide an overview of the evolution of MLPs in the past two decades and focus on the state-of-the-art MLPs proposed in the last a few years for molecules, reactions, and materials. We discuss some representative applications of MLPs and the trend of developing universal potentials across a variety of systems. Finally, we outline a list of open challenges and opportunities in the development and applications of MLPs.
Collapse
Affiliation(s)
- Junfan Xia
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaolong Zhang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bin Jiang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
2
|
Yang H, Liu X, Liu Y, Xu M, Li Z. Rotational energy transfer in the collision of N2O with He atom. J Chem Phys 2023; 159:124306. [PMID: 38127392 DOI: 10.1063/5.0160880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 12/23/2023] Open
Abstract
The quantum state-to-state rotationally inelastic quenching of N2O by colliding with a He atom is studied on an ab initio potential energy surface with N2O lying on its vibrational ground state. The cross sections for collision energies from 10-6-100 cm-1 and rate constants from 10-5-10 K are calculated employing the fully converged quantum close-coupling method for the quenching of the j = 1-6 rotational states of N2O. Numerous van der Waals shapes or Feshbach resonances are observed; the cross sections of different channels are found to follow the Wigner scaling law in the cold threshold regime and may intersect with each other. In order to interpret the mechanism and estimate the cross sections of the rotational energy transfer, we propose a minimal classical model of collision between an asymmetric double-shell ellipsoid and a point particle. The classical model reproduces the quantum scattering results and points out the attractive interactions and the potential asymmetry can affect the collision process. The resulting insights are expected to expand our interpretations of inelastic scattering and energy transfer in molecular collisions.
Collapse
Affiliation(s)
- Hanwei Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xinyang Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yuqian Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Mohan Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
3
|
Chen H, Buren B, Yang Z, Chen M. An effective approximation of Coriolis coupling in reactive scattering: application to the time-dependent wave packet calculations. Phys Chem Chem Phys 2023; 25:22927-22940. [PMID: 37591811 DOI: 10.1039/d3cp00530e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Coriolis coupling plays a crucial role in reactive scattering, but dynamics calculations including the complete Coriolis coupling significantly increase the difficulty of numerical evolution due to the corresponding expensive matrix processing. The coupled state approximation that completely ignores the off-diagonal Coriolis coupling saves computational cost significantly but its error is usually unacceptable. In this paper, an improved coupled state approximation inspired by recently published results [D. Yang, X. Hu, D. H. Zhang and D. Xie, J. Chem. Phys., 2018, 148, 084101.] of the inelastic scattering problem is extended to deal with the reactive scattering. The calculations using the time-dependent wave packet method reveal that the new method can accurately reproduce the rigorous results of the H + HD (j0 < 3) → D + H2 reaction and immensely improve the computational efficiency. Additionally, we extend the new method to the non-adiabatic Li(2p) + H2 (v0 = 0, j0 = 0, 1) → H + LiH reaction, showcasing its advantages of low computational cost and high accuracy.
Collapse
Affiliation(s)
- Hanghang Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, PR China
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
4
|
Yang D, Guo H, Xie D. Recent advances in quantum theory on ro-vibrationally inelastic scattering. Phys Chem Chem Phys 2023; 25:3577-3594. [PMID: 36602236 DOI: 10.1039/d2cp05069b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular collisions are of fundamental importance in understanding intermolecular interaction and dynamics. Its importance is accentuated in cold and ultra-cold collisions because of the dominant quantum mechanical nature of the scattering. We review recent advances in the time-independent approach to quantum mechanical characterization of non-reactive scattering in tetratomic systems, which is ideally suited for large collisional de Broglie wavelengths characteristic in cold and ultracold conditions. We discuss quantum scattering algorithms between two diatoms and between a triatom and an atom and their implementation, as well as various approximate schemes. They not only enable the characterization of collision dynamics in realistic systems but also serve as benchmarks for developing more approximate methods.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
Yang D, Liu L, Xie D, Guo H. Full-dimensional quantum studies of vibrational energy transfer dynamics between H 2O and Ar: theory assessing experiment. Phys Chem Chem Phys 2022; 24:13542-13549. [PMID: 35634902 DOI: 10.1039/d2cp01230h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first full-dimensional quantum mechanical calculations of the ro-vibrational inelastic scattering dynamics between water molecules and argon atoms on an accurate potential energy surface, using a recently developed time-independent quantum method based on the close-coupling approach. The state-to-state integral cross-sections and rate coefficients show strong observance of gap laws. The calculated thermal rate coefficients for the relaxation of the stretching fundamental states of H2O are in good agreement with experimental values, while those for the bending overtone state are approximately five times smaller than the values extracted through a previous kinetic modeling of fluorescence decay data. Our state-specific quantum scattering results suggest the need to reassess the kinetic modeling of the experimental data. This work advanced our understanding of the quantum dynamics of vibrationally inelastic energy transfer processes involving polyatomic molecules.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| | - Lu Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
6
|
Lu D, Chen J, Guo H, Li J. Vibrational energy pooling via collisions between asymmetric stretching excited CO 2: a quasi-classical trajectory study on an accurate full-dimensional potential energy surface. Phys Chem Chem Phys 2021; 23:24165-24174. [PMID: 34671798 DOI: 10.1039/d1cp03687d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In low temperature plasmas, energy transfer between asymmetric stretching excited CO2 molecules can be highly efficient, which leads to further excitation (and de-excitation) of the CO2 molecules: CO2(vas) + CO2(vas) → CO2(vas + 1) + CO2(vas - 1). Through such a vibrational ladder climbing mechanism, CO2 can be activated and eventually dissociates. To gain mechanistic insight of such processes, a full-dimensional accurate potential energy surface (PES) for the CO2 + CO2 system is developed using the permutational invariant polynomial-neural network method based on CCSD(T)-F12a/AVTZ energies at about 39 000 geometries. This PES is used in quasi-classical trajectory (QCT) studies of the vibrational energy transfer between CO2 molecules excited in the asymmetric stretching mode. A machine learning algorithm is used to determine state-specific rate coefficients for the vibrational transfer processes from a limited data set. In addition to the CO2(vas + 1) + CO2(vas - 1) channel, the QCT simulations revealed significant contributions from the CO2(vas + 2,3) + CO2(vas - 2,3) channels, particularly at low collision energies/temperatures. These multi-vibrational-quantum processes are attributed to enhanced energy flow in the collisional complex formed by enhanced dipole-dipole interaction between asymmetric stretching excited CO2 molecules.
Collapse
Affiliation(s)
- Dandan Lu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China. .,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
7
|
Yang D, Xie D, Guo H. A Time-Independent Quantum Approach to Ro-vibrationally Inelastic Scattering between Atoms and Triatomic Molecules. J Phys Chem A 2021; 125:6864-6871. [PMID: 34342998 DOI: 10.1021/acs.jpca.1c05237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A full-dimensional time-independent quantum mechanical theory for ro-vibrationally inelastic scattering of triatomic molecules with atoms is formulated. The Jacobi-Radau coordinate system used in the calculation allows not only a near perfect description of the vibrational problem but also the adaptation of the exchange symmetry for A2B type triatoms. The S-matrix elements are obtained by solving the close-coupling equations with contracted basis using the log-derivative method. This method is applied to the inelastic scattering of the water molecule by a chlorine atom, which sheds light on the energy gap law in energy transfer in atom-triatom collisions.
Collapse
Affiliation(s)
- Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Zhou B, Yang D, Xie D. Quantum dynamics of the energy transfer for vibrationally excited HF (v = 7) colliding with D 2 (v = 0): Theory assessing experiment. J Chem Phys 2021; 154:114303. [PMID: 33752381 DOI: 10.1063/5.0046452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is still challenging to accurately qualify the rate coefficients for vibrationally excited molecules in experiment. In particular, for the energy transfer between HF (v = 7) and D2 (v = 0), which is a prototype for near resonant collisional transfer of vibrational excitation from one molecule to the other, the two available experimental results of rate coefficients contradict each other by a factor of nearly 20. In order to benchmark these data, in this work, the rate coefficients of vibration-vibration energy transfer processes of this system at temperatures ranging from 100 to 1500 K were calculated by employing the coupled-states approximation based on our recently developed full-dimensional ab initio intermolecular potential energy surface. The state-to-state rate coefficients were found to follow the general energy gap law. The calculated total vibration-vibration energy transfer rate coefficients decrease with the increase in the angular momentum of HF at most temperatures. The vibrational relaxation rate coefficient decreases monotonously with the temperature, and the calculated result of 8.1 × 10-11 cm3 mol-1 s-1 at room temperature is in very good agreement with the experimental value reported by Dzelzkalns and Kaufman [J. Chem. Phys. 77, 3508 (1982)].
Collapse
Affiliation(s)
- Boyi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Liu Q, Yang D, Xie D. Quantum Dynamics of Rotational Energy Transfer Processes for N 2-HF and N 2-DF Systems. J Phys Chem A 2021; 125:349-355. [PMID: 33378618 DOI: 10.1021/acs.jpca.0c10420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rate coefficients of rotationally inelastic collision processes for N2-HF as well as N2-DF systems were calculated by applying the recently developed coupled-states approximation including the nearest neighbor Coriolis couplings approach, based on the full-dimensional ab initio intermolecular potential energy surface. It was found that the energy gap law governs these energy transfer processes. For rotational quenching of N2 (j1 = 2-10) by the ground rotational state of HF, j1 = 6 and 5 have the maximum quenching rate for ortho-N2 and para-N2, respectively. Quenching rate coefficients for initially excited HF and DF (j2 = 1) in collisions with N2 were also reported, where N2-DF has a larger quenching rate than N2-HF due to larger density of states of the N2-DF system.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Evaluating the Transition Towards Post-Carbon Cities: A Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To achieve the new European targets concerning CO2 emission reduction, the concept of a post-carbon city has been promoted, which is focused on low-energy and low-emission buildings provided with intelligent heating and cooling systems, electric and hybrid cars, and better public transport. This paradigm entails the inclusion of aspects not strictly related to energy exploitation but referring to environmental, social, and economic domains, such as improvement in local energy security, people’s opinion on different energy solutions, economic co-benefits for private users, environmental externalities, and so on. In this domain, it is of particular importance to provide the decision makers with evaluation tools able to consider the complexity of the impacts, thus leading to the choice of the most sustainable solutions. The paper aims to investigate the scientific literature in the context of evaluation frameworks for supporting decision problems related to the energy transition. The review is carried out through the scientific database SCOPUS. The analysis allows for systematizing the contributions according to the main families of evaluation methodologies, discussing to what extent they can be useful in real-world applications. The paper also proposes emerging trends and innovative research lines in the domain of energy planning and urban management. While the energy transition is an important trend, the analysis showed that few studies were conducted on the evaluation of projects, plans, and policies that aim to reach post-carbon targets. The scales of application refer mainly to global or national levels, while few studies have been developed at the district level. Life cycle thinking techniques, such as life cycle assessment and cost-benefit analysis, were widely used in this research field.
Collapse
|
11
|
Chen J, Li J, Bowman JM, Guo H. Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface. J Chem Phys 2020; 153:054310. [DOI: 10.1063/5.0015101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|