1
|
Singh DJ, Tuscano KM, Ortega AL, Dimri M, Tae K, Lee W, Muslim MA, Rivera Paz IM, Liu JL, Pierce LX, McClendon A, Gibson I, Livesay J, Sakaguchi TF. Forward genetics combined with unsupervised classifications identified zebrafish mutants affecting biliary system formation. Dev Biol 2024; 512:44-56. [PMID: 38729406 PMCID: PMC11983484 DOI: 10.1016/j.ydbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.
Collapse
Affiliation(s)
- Divya Jyoti Singh
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kathryn M Tuscano
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Amrhen L Ortega
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Manali Dimri
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kevin Tae
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - William Lee
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Muslim A Muslim
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Isabela M Rivera Paz
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jay L Liu
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lain X Pierce
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Allyson McClendon
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Isabel Gibson
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jodi Livesay
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Takuya F Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Randriamanantsoa SJ, Raich MK, Saur D, Reichert M, Bausch AR. Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids. iScience 2024; 27:110299. [PMID: 39055943 PMCID: PMC11269295 DOI: 10.1016/j.isci.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.
Collapse
Affiliation(s)
- Samuel J. Randriamanantsoa
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Marion K. Raich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Dieter Saur
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
| | - Maximilian Reichert
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
- Technical University of Munich, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, Translational Pancreatic Cancer Research Center, 81675 Munich, Germany
| | - Andreas R. Bausch
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| |
Collapse
|
3
|
Raab M, Christodoulou E, Krishnankutty R, Gradinaru A, Walker AD, Olaizola P, Younger NT, Lyons AM, Jarman EJ, Gournopanos K, von Kriegsheim A, Waddell SH, Boulter L. Van Gogh-like 2 is essential for the architectural patterning of the mammalian biliary tree. J Hepatol 2024; 81:108-119. [PMID: 38460794 DOI: 10.1016/j.jhep.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFβ signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.
Collapse
Affiliation(s)
- Michaela Raab
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Andreea Gradinaru
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Paula Olaizola
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | - Edward Joseph Jarman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | | | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK; Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK.
| |
Collapse
|
4
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
5
|
Jin Q, Hu Y, Gao Y, Zheng J, Chen J, Gao C, Peng J. Hhex and Prox1a synergistically dictate the hepatoblast to hepatocyte differentiation in zebrafish. Biochem Biophys Res Commun 2023; 686:149182. [PMID: 37922575 DOI: 10.1016/j.bbrc.2023.149182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The specification of endoderm cells to prospective hepatoblasts is the starting point for hepatogenesis. However, how a prospective hepatoblast gains the hepatic fate remains elusive. Previous studies have shown that loss-of-function of either hhex or prox1a alone causes a small liver phenotype but without abolishing the hepatocyte differentiation, suggesting that absence of either Hhex or Prox1a alone is not sufficient to block the hepatoblast differentiation. Here, via genetic studies of the zebrafish two single (hhex-/- and prox1a-/-) and one double (hhex-/-prox1a-/-) mutants, we show that simultaneous loss-of-function of the hhex and prox1a two genes does not block the endoderm cells to gain the hepatoblast potency but abolishes the hepatic differentiation from the prospective hepatoblast. Consequently, the hhex-/-prox1a-/- double mutant displays a liverless phenotype that cannot be rescued by the injection of bmp2a mRNA. Taken together, we provide strong evidences showing that Hhex teams with Prox1a to act as a master control of the differentiation of the prospective hepatoblasts towards hepatocytes.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqing Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiayi Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
6
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
7
|
Mi J, Liu KC, Andersson O. Decoding pancreatic endocrine cell differentiation and β cell regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadf5142. [PMID: 37595046 PMCID: PMC10438462 DOI: 10.1126/sciadv.adf5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
In contrast to mice, zebrafish have an exceptional yet elusive ability to replenish lost β cells in adulthood. Understanding this framework would provide mechanistic insights for β cell regeneration, which may be extrapolated to humans. Here, we characterize a krt4-expressing ductal cell type, which is distinct from the putative Notch-responsive cells, showing neogenic competence and giving rise to the majority of endocrine cells during postembryonic development. Furthermore, we demonstrate a marked ductal remodeling process featuring a Notch-responsive to krt4+ luminal duct transformation during late development, indicating several origins of krt4+ ductal cells displaying similar transcriptional patterns. Single-cell transcriptomics upon a series of time points during β cell regeneration unveil a previously unrecognized dlb+ transitional endocrine precursor cell, distinct regulons, and a differentiation trajectory involving cellular shuffling through differentiation and dedifferentiation dynamics. These results establish a model of zebrafish pancreatic endocrinogenesis and highlight key values of zebrafish for translational studies of β cell regeneration.
Collapse
Affiliation(s)
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
8
|
Papadakos SP, Dedes N, Gkolemi N, Machairas N, Theocharis S. The EPH/Ephrin System in Pancreatic Ductal Adenocarcinoma (PDAC): From Pathogenesis to Treatment. Int J Mol Sci 2023; 24:3015. [PMID: 36769332 PMCID: PMC9917762 DOI: 10.3390/ijms24033015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology, adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have compelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning the development, physiology and homeostasis of the pancreas.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Dedes
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Jin Q, Gao Y, Shuai S, Chen Y, Wang K, Chen J, Peng J, Gao C. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. J Genet Genomics 2022; 49:1101-1113. [PMID: 36460297 DOI: 10.1016/j.jgg.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yayue Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Gao Y, Jin Q, Gao C, Chen Y, Sun Z, Guo G, Peng J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022; 11:3290. [PMID: 36291156 PMCID: PMC9600436 DOI: 10.3390/cells11203290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes for the larval intestine and liver, but also a considerable number of feature genes for marking the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes. Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for studying cell patterning and specification during the early development of the zebrafish intestine and liver.
Collapse
Affiliation(s)
- Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Jin
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Caviglia S, Unterweger IA, Gasiūnaitė A, Vanoosthuyse AE, Cutrale F, Trinh LA, Fraser SE, Neuhauss SCF, Ober EA. FRaeppli: a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish. Development 2022; 149:276363. [DOI: 10.1242/dev.199615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.
Collapse
Affiliation(s)
- Sara Caviglia
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Iris A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Akvilė Gasiūnaitė
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Alexandre E. Vanoosthuyse
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Stephan C. F. Neuhauss
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| |
Collapse
|
12
|
Lewis AE, Kuwahara A, Franzosi J, Bush JO. Tracheal separation is driven by NKX2-1-mediated repression of Efnb2 and regulation of endodermal cell sorting. Cell Rep 2022; 38:110510. [PMID: 35294885 PMCID: PMC9033272 DOI: 10.1016/j.celrep.2022.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 11/05/2022] Open
Abstract
The mechanisms coupling fate specification of distinct tissues to their physical separation remain to be understood. The trachea and esophagus differentiate from a single tube of definitive endoderm, requiring the transcription factors SOX2 and NKX2-1, but how the dorsoventral site of tissue separation is defined to allocate tracheal and esophageal cell types is unknown. Here, we show that the EPH/EPHRIN signaling gene Efnb2 regulates tracheoesophageal separation by controlling the dorsoventral allocation of tracheal-fated cells. Ventral loss of NKX2-1 results in disruption of separation and expansion of Efnb2 expression in the trachea independent of SOX2. Through chromatin immunoprecipitation and reporter assays, we find that NKX2-1 likely represses Efnb2 directly. Lineage tracing shows that loss of NKX2-1 results in misallocation of ventral foregut cells into the esophagus, while mosaicism for NKX2-1 generates ectopic NKX2-1/EPHRIN-B2 boundaries that organize ectopic tracheal separation. Together, these data demonstrate that NKX2-1 coordinates tracheal specification with tissue separation through the regulation of EPHRIN-B2 and tracheoesophageal cell sorting. Lewis et al. show that, in the development of the mammalian trachea and esophagus, cell fate specification is coupled with morphogenesis by NKX2-1-mediated repression of Efnb2. This establishes an EPH/EPHRIN boundary that drives cell allocation and physical separation of the trachea and esophagus.
Collapse
Affiliation(s)
- Ace E Lewis
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akela Kuwahara
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacqueline Franzosi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Ghaffari K, Pierce LX, Roufaeil M, Gibson I, Tae K, Sahoo S, Cantrell JR, Andersson O, Lau J, Sakaguchi TF. NCK-associated protein 1 like (nckap1l) minor splice variant regulates intrahepatic biliary network morphogenesis. PLoS Genet 2021; 17:e1009402. [PMID: 33739979 PMCID: PMC8032155 DOI: 10.1371/journal.pgen.1009402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediated nckap1l deletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver of nckap1l mutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show that nckap1l genetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that although nckap1l was previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
Collapse
Affiliation(s)
- Kimia Ghaffari
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lain X. Pierce
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Maria Roufaeil
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Isabel Gibson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kevin Tae
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Saswat Sahoo
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James R. Cantrell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jasmine Lau
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Takuya F. Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Brandt ZJ, Echert AE, Bostrom JR, North PN, Link BA. Core Hippo pathway components act as a brake on Yap and Taz in the development and maintenance of the biliary network. Development 2020; 147:dev184242. [PMID: 32439761 PMCID: PMC7328147 DOI: 10.1242/dev.184242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
The development of the biliary system is a complex yet poorly understood process, with relevance to multiple diseases, including biliary atresia, choledochal cysts and gallbladder agenesis. We present here a crucial role for Hippo-Yap/Taz signaling in this context. Analysis of sav1 mutant zebrafish revealed dysplastic morphology and expansion of both intrahepatic and extrahepatic biliary cells, and ultimately larval lethality. Biliary dysgenesis, but not larval lethality, is driven primarily by Yap signaling. Re-expression of Sav1 protein in sav1-/- hepatocytes is able to overcome these initial deficits and allows sav1-/- fish to survive, suggesting cell non-autonomous signaling from hepatocytes. Examination of sav1-/- rescued adults reveals loss of gallbladder and formation of dysplastic cell masses expressing biliary markers, suggesting roles for Hippo signaling in extrahepatic biliary carcinomas. Deletion of stk3 revealed that the phenotypes observed in sav1 mutant fish function primarily through canonical Hippo signaling and supports a role for phosphatase PP2A, but also suggests Sav1 has functions in addition to facilitating Stk3 activity. Overall, this study defines a role for Hippo-Yap signaling in the maintenance of both intra- and extrahepatic biliary ducts.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Ashley E Echert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Paula N North
- Department of Pediatric Pathology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| |
Collapse
|