1
|
Fan X, Tang Y, Zhang J, Ma K, Xu Z, Liu Y, Xue B, Cao Y, Mei D, Wang W, Wei G, Tao K. Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410471. [PMID: 39840461 PMCID: PMC12005802 DOI: 10.1002/advs.202410471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications. Herein, a gaseous organization strategy is proposed with the physical vapor deposition (PVD) technology, allowing the bio-organic monomers not only self-assemble into architectures well-established from the solvent-based approaches but morphologies distinct from those delivered from the liquid cases. Specifically, 9-fluorenylmethyloxycarbonyl-phenylalanine-phenylalanine (Fmoc-FF) self-assembles into spheres with tailored dimensions in the gaseous environment rather than conventional nanofibers, due to the distinct organization mechanisms. Arraying of the spherical architectures can integrate their behaviors, thus endorsing the bio-organic film the ability of programmable optoelectronic properties, which can be employed to design P-N heterojunction-based bio-photocapacitors for non-invasive and nongenetic neurostimulations. The findings demonstrate that the gaseous strategy may offer an alternative approach to achieve unprecedented bio-organic superstructures, and allow ordering into large-scale arrays for behavior integration, potentially paving the avenue of developing supramolecular devices and promoting the practical applications of bio-organic architectonics.
Collapse
Affiliation(s)
- Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- Zhejiang‐Ireland Joint Laboratory of Bio‐Organic Dielectrics & DevicesSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Yiming Tang
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (Ministry of Education)Fudan UniversityShanghai200438China
| | - Jiahao Zhang
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- Zhejiang‐Ireland Joint Laboratory of Bio‐Organic Dielectrics & DevicesSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Kang Ma
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- Zhejiang‐Ireland Joint Laboratory of Bio‐Organic Dielectrics & DevicesSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093China
| | - Yuying Liu
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (Ministry of Education)Fudan UniversityShanghai200438China
| | - Bin Xue
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093China
| | - Yi Cao
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021China
- Institute for Brain SciencesNanjing UniversityNanjing210093China
- Chemistry and Biomedicine innovation centerNanjing UniversityNanjing210093China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| | - Wei Wang
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093China
- Institute for Brain SciencesNanjing UniversityNanjing210093China
| | - Guanghong Wei
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (Ministry of Education)Fudan UniversityShanghai200438China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- Zhejiang‐Ireland Joint Laboratory of Bio‐Organic Dielectrics & DevicesSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
D’Andrea LD, Romanelli A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. Int J Mol Sci 2024; 25:12435. [PMID: 39596501 PMCID: PMC11594392 DOI: 10.3390/ijms252212435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Obtaining new materials by exploiting the self-assembly of biomolecules is a very challenging field. In recent years, short peptides and nucleic acids have been used as scaffolds to produce supramolecular structures for different applications in the biomedical and technological fields. In this review, we will focus on the self-assembly of peptide nucleic acids (PNAs), their conjugates with peptides, or other molecules. We will describe the physical properties of the assembled systems and, where described, the application they were designed for.
Collapse
Affiliation(s)
- Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, via M. Bianco 9, 20131 Milano, Italy;
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Venezian 21, 20133 Milan, Italy
| |
Collapse
|
3
|
Li S, Xie Y, Zhang B, Liu Y, Xu S, Wu H, Du R, Wang ZG. A Host-Guest Approach to Engineering Oxidase-Mimetic Assembly with Substrate Selectivity and Dynamic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45319-45326. [PMID: 39145897 DOI: 10.1021/acsami.4c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and β-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Xie
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Todkari IA, Chaudhary P, Kulkarni MJ, Ganesh KN. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Org Biomol Chem 2024; 22:6810-6821. [PMID: 39113548 DOI: 10.1039/d4ob00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nucleic acids (DNA and RNA) can form diverse secondary structures ranging from hairpins to duplex, triplex, G4-tetraplex and C4-i-motifs. Many of the DNA analogues designed as antisense oligonucleotides (ASO) are also adept at embracing such folded structures, although to different extents with altered stabilities. One such analogue, peptide nucleic acid (PNA), which is uncharged and achiral, forms hybrids with complementary DNA/RNA with greater stability and specificity than DNA:DNA/RNA hybrids. Like DNAs, these single-stranded PNAs can form PNA:DNA/RNA duplexes, PNA:DNA:PNA triplexes, PNA-G4 tetraplexes and PNA-C4-i-motifs. We have recently designed Janus-like bimodal PNAs endowed with two different nucleobase sequences on either side of a single aminoethylglycyl (aeg) PNA backbone and shown that these can simultaneously bind to two complementary DNA sequences from both faces of PNA. This leads to the formation of supramolecular polyplexes such as double duplexes, triple duplexes and triplexes of double duplexes with appropriate complementary DNA/RNA. Herein, we demonstrate that Janus/bimodal PNA with a poly G-sequence on the triazole side of the PNA backbone and mixed bases on the t-amide side, templates the initial formation of a (PNA-G5)4 tetraplex (triazole side), followed by the formation of a PNA:DNA duplex (t-amide side). Such a polyplex shows synergistic overall stabilisation compared to the isolated duplexes/quadruplex. The assembly of polyplexes with a shared backbone for duplexes and tetraplexes is programmable and may have potential applications in the self-assembly of nucleic acid nano- and origami structures. It is also shown that Janus PNAs enter the cells better than the standard aeg-PNA oligomers, and hence have implications for in vivo applications as well.
Collapse
Affiliation(s)
- Iranna Annappa Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Preeti Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | - Mahesh J Kulkarni
- Division of Biochemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India
| |
Collapse
|
5
|
Bagchi D, Maity A, Chakraborty A. Metal Ion-Induced Unusual Stability of the Metastable Vesicle-like Intermediates Evolving during the Self-Assembly of Phenylalanine: Prominent Role of Surface Charge Inversion. J Phys Chem Lett 2024; 15:4468-4476. [PMID: 38631022 DOI: 10.1021/acs.jpclett.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The underlying mechanism and intermediate formation in the self-assembly of aromatic amino acids, peptides, and proteins remain elusive despite numerous reports. We, for the first time, report that one can stabilize the intermediates by tuning the metal ion-amino acid interaction. Microscopic and spectroscopic investigations of the self-assembly of carboxybenzyl (Z)-protected phenylalanine (ZF) reveal that the bivalent metal ions eventually lead to the formation of fibrillar networks similar to blank ZF whereas the trivalent ions develop vesicle-like intermediates that do not undergo fibrillation for a prolonged time. The time-lapse measurement of surface charge reveals that the surface charge of blank ZF and in the presence of bivalent metal ions changes from a negative value to zero, implying unstable intermediates leading to the fibril network. Strikingly, a prominent charge inversion from an initial negative value to a positive value in the presence of trivalent metal ions imparts unusual stability to the metastable intermediates.
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
6
|
Sarkar S. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Biopolymers 2024; 115:e23567. [PMID: 37792292 DOI: 10.1002/bip.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.
Collapse
Affiliation(s)
- Srijani Sarkar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
7
|
Sakar S, Anderson CF, Schneider JP. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angew Chem Int Ed Engl 2024; 63:e202313507. [PMID: 38057633 PMCID: PMC10872331 DOI: 10.1002/anie.202313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Herein, peptide nucleic acids (PNAs) are employed in the design of a participatory duplex PNA-peptide crosslinking agent. Biophysical and mechanical studies show that crosslinkers present during peptide assembly leading to hydrogelation participate in the formation of fibrils while simultaneously installing crosslinks into the higher-order network that constitutes the peptide gel. The addition of 2 mol % crosslinker into the assembling system results in a ~100 % increase in mechanical stiffness without affecting the rate of peptide assembly or the local morphology of fibrils within the gel network. Stiffness enhancement is realized by only affecting change in the elastic component of the viscoelastic gel. A synthesis of the PNA-peptide duplex crosslinkers is provided that allows facile variation in peptide composition and addresses the notorious hydrophobic content of PNAs. This crosslinking system represents a new tool for modulating the mechanical properties of peptide-based hydrogels.
Collapse
Affiliation(s)
- Srijani Sakar
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Caleb F Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Du P, Xu S, Wu H, Liu Y, Wang ZG. Histidine-Based Supramolecular Nanoassembly Exhibiting Dual Enzyme-Mimetic Functions: Altering the Tautomeric Preference of Histidine to Tailor Oxidative/Hydrolytic Catalysis. NANO LETTERS 2023; 23:11461-11468. [PMID: 38079506 DOI: 10.1021/acs.nanolett.3c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Challenges persist in replicating enzyme-like active sites with functional group arrangements in supramolecular catalysis. In this study, we present a supramolecular material comprising Fmoc-modified histidine and copper. We also investigated the impact of noncanonical amino acids (δmH and εmH), isomers of histidine, on the catalytic process. The Fmoc-δmH-based nanoassembly exhibits an approximately 15-fold increase in oxidative activity and an ∼50-fold increase in hydrolytic activity compared to Fmoc-εmH (kcat/Km). This distinction arises from differences in basicity and ligation properties between the ε- and δ-nitrogen of histidine. The addition of guanosine monophosphate further enhances the oxidative activity of the histidine- and methylated histidine-based catalysts. The Fmoc-δmH/Cu2+-based nanoassembly catalyzes the oxidation/hydrolysis cascade of 2',7'-dichlorofluorescein diacetate, benefiting from the synergistic effect between the copper center and the nonligating ε-nitrogen of histidine. These findings advance the biomimetic catalyst design and provide insights into the mechanistic role of essential residues in natural systems.
Collapse
Affiliation(s)
- Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Beran GJO. Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials. Chem Sci 2023; 14:13290-13312. [PMID: 38033897 PMCID: PMC10685338 DOI: 10.1039/d3sc03903j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The reliability of organic molecular crystal structure prediction has improved tremendously in recent years. Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also now be predicted with increasing rates of success. These advances are ushering in a new era where crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing the computational methods that enable successful crystal structure prediction, this perspective presents case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can transform how scientists approach problems involving the organic solid state. Applications to pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding of which predicted crystal structures can actually be produced experimentally and other outstanding challenges are discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
10
|
Liu J, Wu H, Liu Y, Wang ZG. Colorimetric Sensor Based on the Oxidase-Mimic Supramolecular Catalyst for Selective and Sensitive Biomolecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48945-48951. [PMID: 37823579 DOI: 10.1021/acsami.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We have engineered a colorimetric sensor capable of selective and sensitive detection of amino acids. This sensor employs a supramolecular copper-dependent oxidase mimic as the probe, stemming from our prior research. The oxidase mimic is constructed through the self-assembly of commercially available guanosine monophosphate (GMP), Fmoc-lysine, and Cu2+. It catalyzes the formation of a red product with a maximum absorbance at 510 nm. The changes in color and absorbance are responsive to both the concentrations and types of amino acids present. This effect is most pronounced in the presence of histidine, with a detection limit (LOD) of 6.4 nM. Furthermore, the catalytic probe can distinguish histidine from histamine and imidazole propionate, as well as 1-methyl-histidine from 3-methyl-histidine, based on their distinct coordination capacities with copper. This underscores the high selectivity of the sensing platform. Both theoretical simulations and experimental results (including UV-vis spectra, fluorescence, and EPR) indicate that the amino acids may engage in copper center coordination, thereby impeding O2 access to copper─a pivotal aspect of the oxidase catalysis. This sensing platform, characteristic of its swift response, simple fabrication, and exceptional sensitivity and selectivity, can also be applied to detect other biological analytes such as nucleotides. It holds potential for use in environmental and biochemical analyses.
Collapse
Affiliation(s)
- Junhong Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Yu H, Zhang S, Yang H, Miao J, Ma X, Xiong W, Chen G, Ji T. Specific interaction based drug loading strategies. NANOSCALE HORIZONS 2023; 8:1523-1528. [PMID: 37592921 DOI: 10.1039/d3nh00165b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Drug carriers have been commonly used for drug control release, enhancing drug efficacy and/or minimizing side-effects. However, it is still difficult to get a high loading efficiency when encapsulating super hydrophilic drugs with a narrow therapeutic index, such as many neurotoxins. Increasing the carrier proportion can improve drug loading to a certain degree, while the burst released drug when the formulation enters the body may cause overdose side-effects. Moreover, high-dose carriers themselves may increase the metabolic burden of the body. Hence, new drug carriers and/or loading strategies are urgently needed to promote the applications of these drugs. This minireview will introduce drug loading strategies based on specific interactions (between drugs and carriers) and will discuss the challenges and perspectives of these strategies. This work is expected to provide alternative inspiration for the delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- Haoqi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhui Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Huiru Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Jiamin Miao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310012, China.
| | - Xu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Wei Xiong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310012, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310012, China.
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310012, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Grelska J, Jurkiewicz K, Nowok A, Pawlus S. Computer simulations as an effective way to distinguish supramolecular nanostructure in cyclic and phenyl alcohols. Phys Rev E 2023; 108:024603. [PMID: 37723707 DOI: 10.1103/physreve.108.024603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/02/2023] [Indexed: 09/20/2023]
Abstract
Molecular dynamics simulations supported by x-ray-diffraction experimental data were utilized to demonstrate how replacing the cyclic ring with the phenyl one in molecules of alcohols significantly differentiates their nanostructure by reducing the number of H-bonded clusters. Besides, molecules in the phenyl alcohols associate themselves in clusters via phenyl ring organization which likely is the result of OH⋯π and π⋯π interactions. Thus, at room temperature, the supramolecular structure of phenyl alcohols is more heterogeneous and governed by the formation of various clusters arising due to three types of interactions, while in cyclic alcohols, the H bonding controls the association of molecules. We believe that our methodology could be applied to better understand the fundamental process of association via H bonding and the competitive aggregation caused by phenyl rings.
Collapse
Affiliation(s)
- Joanna Grelska
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Andrzej Nowok
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
| | - Sebastian Pawlus
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
13
|
Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang ZG. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Nat Commun 2023; 14:4040. [PMID: 37419896 PMCID: PMC10328989 DOI: 10.1038/s41467-023-39779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.
Collapse
Affiliation(s)
- Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Jikun Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
Cheng Y, Xu J, Li L, Cai P, Li Y, Jiang Q, Wang W, Cao Y, Xue B. Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for the Engineering of Fully Degradable Force Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207269. [PMID: 36775849 PMCID: PMC10104669 DOI: 10.1002/advs.202207269] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable piezoelectric force sensors can be used as implantable medical devices for monitoring physiological pressures of impaired organs or providing essential stimuli for drug delivery and tissue regeneration without the need of additional invasive removal surgery or battery power. However, traditional piezoelectric materials, such as inorganic ceramics and organic polymers, show unsatisfactory degradability, and cytotoxicity. Amino acid crystals are biocompatible and exhibit outstanding piezoelectric properties, but their small crystal size makes it difficult to align the crystals for practical applications. Here, a mechanical-annealing strategy is reported for engineering all-organic biodegradable piezoelectric force sensors using natural amino acid crystals as piezoelectric materials. It is shown that the piezoelectric constant of the mechanical-annealed crystals can reach 12 times that of the single crystal powders. Moreover, mechanical annealing results in flat and smooth surfaces, thus improving the contact of the crystal films with the electrodes and leading to high output voltages of the devices. The packaged force sensors can be used to monitor dynamic motions, including muscle contraction and lung respiration, in vivo for 4 weeks and then gradually degrade without causing obvious inflammation or systemic toxicity. This work provides a way to engineer all-organic and biodegradable force sensors for potential clinical applications.
Collapse
Affiliation(s)
- Yuanqi Cheng
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| | - Juan Xu
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Lan Li
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Pingqiang Cai
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE)School of Chemistry and Materials ScienceNanjing University of Information Science & TechnologyNanjing210044P. R. China
| | - Qing Jiang
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| | - Bin Xue
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| |
Collapse
|
15
|
Taylor ER, Sato A, Jones I, Gudeangadi PG, Beal DM, Hopper JA, Xue WF, Reithofer MR, Serpell CJ. Tuning dynamic DNA- and peptide-driven self-assembly in DNA-peptide conjugates. Chem Sci 2022; 14:196-202. [PMID: 36605750 PMCID: PMC9769108 DOI: 10.1039/d2sc02482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecular classes, combining the high level of programmability found with DNA, with the chemical diversity of peptides. These hybrid systems offer potential in fields such as therapeutics, nanotechnology, and robotics. Using the first DNA-β-turn peptide conjugate, we present three studies investigating the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.
Collapse
Affiliation(s)
- Emerald R. Taylor
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Akiko Sato
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Isobel Jones
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Prashant G. Gudeangadi
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - David M. Beal
- School of Biosciences, University of KentStacey BuildingCanterburyKentCT2 7NJUK
| | - James A. Hopper
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| | - Wei-Feng Xue
- School of Biosciences, University of KentStacey BuildingCanterburyKentCT2 7NJUK
| | - Michael R. Reithofer
- Department of Inorganic Chemistry, University of ViennaWähringer Straße. 421090ViennaAustria
| | - Christopher J. Serpell
- School of Chemistry and Forensic Science, University of KentIngram BuildingCanterburyKentCT2 7NHUK
| |
Collapse
|
16
|
Mosseri A, Sancho‐Albero M, Leone M, Nava D, Secundo F, Maggioni D, De Cola L, Romanelli A. Chiral Fibers Formation Upon Assembly of Tetraphenylalanine Peptide Conjugated to a PNA Dimer. Chemistry 2022; 28:e202200693. [PMID: 35474351 PMCID: PMC9325372 DOI: 10.1002/chem.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Self‐assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino‐acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self‐assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self‐assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine‐thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA “at” is replaced by guanine‐cytosine dimer “gc”, disordered structures are observed. Spectroscopic characterization of the self‐assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Maria Sancho‐Albero
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Marilisa Leone
- Istituto di Biostrutture e Bioimmagini – CNR via Mezzocannone 16 80134 Naples Italy
| | - Donatella Nava
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR via Mario Bianco 9 Milan 20131 Italy
| | - Daniela Maggioni
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Luisa De Cola
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| |
Collapse
|
17
|
Jones CM, Schüz B. Stable and momentary psychosocial correlates of everyday smoking: An application of Temporal Self-Regulation Theory. J Behav Med 2022; 45:50-61. [PMID: 34363146 PMCID: PMC8818630 DOI: 10.1007/s10865-021-00248-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Smoking is one of the leading causes of non-communicable disease mortality and morbidity. Smoking behaviour is determined by both stable, person-level (e.g., motivation, nicotine dependence) and variable, situation-level factors (e.g., urges, cues). However, most theoretical approaches to understanding health behaviours so far have not integrated these two spheres of influence. Temporal Self-Regulation Theory (TST) integrates these person-level and situation-level factors, but has not yet been comprehensively applied to predicting smoking behaviour. We use Ecological Momentary Assessment to examine the utility of TST in predicting daily smoking. 46 smokers reported individual and environmental cues right after smoking and at random time points during the day. Cognitions, self-control, past behaviour, and nicotine dependence were assessed at baseline. Multi-level logistic regressions show that smoking is largely guided by momentary cues, but individual motivation can buffer their influence. This suggests that TST is a useful integrative approach to understand modifiable determinants of smoking and thus intervention targets.
Collapse
Affiliation(s)
- Christopher M Jones
- Institute of Public Health and Nursing Research, University of Bremen, Grazer Str. 4, 28359, Bremen, Germany.
| | - Benjamin Schüz
- Institute of Public Health and Nursing Research, University of Bremen, Grazer Str. 4, 28359, Bremen, Germany
| |
Collapse
|
18
|
Diaferia C, Avitabile C, Leone M, Gallo E, Saviano M, Accardo A, Romanelli A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chemistry 2021; 27:14307-14316. [PMID: 34314536 PMCID: PMC8597081 DOI: 10.1002/chem.202102481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Peptides and nucleic acids can self-assemble to give supramolecular structures that find application in different fields, ranging from the delivery of drugs to the obtainment of materials endowed with optical properties. Forces that stabilize the "suprastructures" typically are hydrogen bonds or aromatic interactions; in case of nucleic acids, Watson-Crick pairing drives self-assembly while, in case of peptides, backbone hydrogen bonds and interactions between aromatic side chains trigger the formation of structures, such as nanotubes or ribbons. Molecules containing both aromatic peptides and nucleic acids could in principle exploit different forces to self-assemble. In this work we meant to investigate the self-assembly of mixed systems, with the aim to understand which forces play a major role and determine formation/structure of aggregates. We therefore synthesized conjugates of the peptide FF to the peptide nucleic acid dimer "gc" and characterized their aggregates by different spectroscopic techniques, including NMR, CD and fluorescence.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR)Via Mezzocannone 1680134NaplesItaly
| | | | - Michele Saviano
- Institute of Crystallography (CNR)Via Amendola 12270126BariItaly
| | - Antonella Accardo
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | - Alessandra Romanelli
- Department of Pharmaceutical SciencesUniversity of MilanVia Venezian 2120133MilanItaly
| |
Collapse
|
19
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
20
|
Scognamiglio PL, Platella C, Napolitano E, Musumeci D, Roviello GN. From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides. Molecules 2021; 26:3558. [PMID: 34200901 PMCID: PMC8230524 DOI: 10.3390/molecules26123558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.
Collapse
Affiliation(s)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy
| | | |
Collapse
|
21
|
Higashi SL, Rozi N, Hanifah SA, Ikeda M. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. Int J Mol Sci 2020; 21:E9458. [PMID: 33322664 PMCID: PMC7763079 DOI: 10.3390/ijms21249458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
Collapse
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Basavalingappa V, Xue B, Rencus‐Lazar S, Wang W, Tao K, Cao Y, Gazit E. Self‐Assembled Quadruplex‐Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Sigal Rencus‐Lazar
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Wei Wang
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
- State Key Lab of Fluid Power Transmission and Control Department of Mechanical Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|