1
|
Qin L, Chen X, Pan Z, Li Y, Huang W, Chen M, Huang Y, Qin M, Liao X, Wei Z, Liu W. Low-cost dual-channel probe for accurate point-of-care serodiagnosis of acute pancreatitis. Colloids Surf B Biointerfaces 2025; 254:114803. [PMID: 40398276 DOI: 10.1016/j.colsurfb.2025.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Multi-channel probes are important tools for accurate serodiagnostics. Yet, their use generally relies on expensive integrated equipment, which hinders their wide use in point-of-care diagnostics. In this study, we report a low-cost dual-channel probe Cu-S-ALG for the accurate quantification of H2S in serum by using inexpensive incandescent lamp and mobile phone with near-infrared camera as signal excitation and collection devices respectively. With thiol addition, the Cu-S-ALG nanogel is stabler than the conversional Cu-based nanogels in the presence of H2S, which makes it a low-cost and reliable sensor. Meanwhile, this sensor requires less expensive instrumentation than traditional multi-channel sensors (< €500 vs > €4000). Further using serum H2S level as a biomarker, we constructed test strips and optimal thresholds, achieving accurate point-of-care serodiagnostics of acute pancreatitis with reliable precision rate of 95.83 %, which is significantly higher than the conversional single signal methods (77.50 - 83.00 %).
Collapse
Affiliation(s)
- Lili Qin
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xulin Chen
- Orthopedic and Joint Surgery Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongjie Pan
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuquan Li
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wengui Huang
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Chen
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yafen Huang
- Quality and Safety Management Office, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Xianquan Liao
- Department of Chemistry, Capital Normal University, Beijing, China.
| | - Zheng Wei
- HIMS, University of Amsterdam, Amsterdam, the Netherlands.
| | - Wei Liu
- Department of Orthopedic Trauma & Hand and Foot Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Department of Medical Engineering, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Huang W, Zong J, Li M, Li TF, Pan S, Xiao Z. Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis. ACS NANO 2025; 19:16224-16247. [PMID: 40266286 DOI: 10.1021/acsnano.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized treatment. However, over 30% of patients with epilepsy exhibit negative results on electroencephalography and magnetic resonance imaging (MRI), which can lead to misdiagnosis and subsequent delays in treatment. Consequently, enhancing diagnostic methodologies is imperative for effective epilepsy management. The integration of nanomaterials with biomedicine has led to the development of diagnostic tools for epilepsy. Key advancements include nanomaterial-enhanced neural electrodes, contrast agents, and biochemical sensors. Nanomaterials improve the quality of electrophysiological signals and broaden the detection range of electrodes. In imaging, functionalized magnetic nanoparticles enhance MRI sensitivity, facilitating localization of the epileptogenic zone. NIR-II nanoprobes enable tracking of seizure-related biomarkers with deep tissue penetration. Furthermore, nanomaterials enhance the sensitivity of biochemical sensors for detecting epilepsy biomarkers, which is crucial for early detection. These advancements significantly increase diagnostic sensitivity and specificity. However, challenges remain, particularly regarding biosafety, quality control, and the scalability of fabrication processes. Overcoming these obstacles is essential for successful clinical translation. Artificial-intelligence-based big data analytics can facilitate the development of diagnostic tools by screening nanomaterials with specific properties. This approach may help to address current limitations and improve both effectiveness and safety. This review explores the application of nanomaterials in the diagnosis and detection of epilepsy, with the objective of inspiring innovative ideas and strategies to enhance diagnostic effectiveness.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Zhang Y, Zhang B, Guo Z, Lu S, Li Y, Zhang R. A miniaturized colorimetric-photoacoustic dual-mode device for point-of-care testing of ascorbic acid and ascorbate oxidase. Anal Chim Acta 2025; 1341:343685. [PMID: 39880497 DOI: 10.1016/j.aca.2025.343685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Real-time and rapid detection of ingredients in food has important significance for food safety. However, traditional detection methods not only require bulky and costly instruments but also are often based on single-mode analysis, limiting their accuracy and applications in point-of-care testing. Herein, an integrated and miniaturized dual-mode device based on colorimetric and photoacoustic (PA) principles is developed, using Au@Ag nanoparticles (Au@AgNPs) as signal probe and ascorbic acid (AA) and ascorbate oxidase (AAO) as analytes. RESULTS AA can reduce Ag + into Ag0, leading to in-situ growth of Ag shell on the surface of triangular gold nanoplates (AuNPLs) to form Au@AgNPs. Whereas, AAO can catalyze the decomposition of AA, blocking the formation of Au@AgNPs. These changes affect the optical property of Au@AgNPs, further leading to colorimetric and PA changes. A dual-channel test strip was fabricated by immobilizing AuNPLs onto filter paper as the substrate. With a sample volume of 10 μL, linear ranges of 30-500 μM for AA and 10-60 U L-1 for AAO were obtained. The practicability is further demonstrated through the analysis of several food samples. SIGNIFICANCE This established colorimetric-PA dual-mode device improves analysis accuracy by cross-corroboration between the two modes. Its user-friendly design and minimal sample preparation requirement make it suitable for on-site detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yajie Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Zixuan Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Siyu Lu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Yunlan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Liu Y, Knaus T, Wei Z, Zhang J, Damian M, Ronneberger S, Zhu X, Seeberger PH, Zhang H, Mutti FG, Loeffler FF. Confined Flash Printing and Synthesis of Stable Perovskite Nanofilms under Ambient Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409592. [PMID: 39308199 DOI: 10.1002/adma.202409592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
The fabrication of stable perovskite nanofilm patterns is important for the development of functional optical devices. However, current production approaches are limited by the requirement for strict inert gas protection and long processing times. Here, a confined flash printing synthesis method is presented to generate perovskite nanofilms under ambient conditions, combining precursor transfer, perovskite synthesis, crystallization, and polymer protection in a single step within milliseconds. A laser simultaneously prints and induces the flash synthesis, confined in a polymer nanofilm, under normal ambient conditions. Due to its simplicity and flexibility, the method enables the combination and screening of many different perovskite precursor materials on various substrates. Besides for the development of novel perovskite materials and devices, the nanofilms can be applied for biodetection. The unique H2O2-responsive property of the ultrathin perovskite quantum dot film is applied for biomolecule detection based on oxidase-catalyzed enzymatic reactions.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Tanja Knaus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Zheng Wei
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Junfang Zhang
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Matteo Damian
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sebastian Ronneberger
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Campus Golm, 14476, Potsdam, Germany
| | - Xingjun Zhu
- School of Physical Science and Technology, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Peter H Seeberger
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Hong Zhang
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Francesco G Mutti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Felix F Loeffler
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Liu Y, Wei Z. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. CHEM REC 2024; 24:e202400100. [PMID: 39235547 DOI: 10.1002/tcr.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Indexed: 09/06/2024]
Abstract
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
Collapse
Affiliation(s)
- Yuxin Liu
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zheng Wei
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Yang H, Zheng J, Wang W, Lin J, Wang J, Liu L, Wu W, Zhang C, Zhang M, Fu Y, Yang B, Liao Y. Zr-MOF Carrier-Enhanced Dual-Mode Biosensing Platforms for Rapid and Sensitive Diagnosis of Mpox. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405848. [PMID: 39119886 PMCID: PMC11481339 DOI: 10.1002/advs.202405848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Dual-mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6-Ru/Pt NPs is constructed for dual-mode platforms by integrating double-layered ECL luminophores and the nanozyme using Zr-MOF (UiO-66-NH2) as the carrier, which not only generates enhanced ECL and colorimetric signals but also provide greater stability than that of commonly used nanotags. Dual-mode platforms are used within 15 min from the "sample in" to the "result out" steps, without nucleic acid amplification. The colorimetric mode allows the screening of MPXV with the visual limit of detection (vLOD) of 0.1 pM (6 × 108 copies µL-1) and the ECL mode supports quantitative detection of MPXV with an LOD as low as 10 aM (6 copies·µL-1), resulting in a broad sensing range of 60 to 3 × 1011 copies·µL-1 (10 orders of magnitude). Validation is conducted using 50 clinical samples, which is 100% concordant to those of quantitative polymerase chain reaction (qPCR), indicating that Ru@U6-Ru/Pt NPs-based dual-mode sensing platforms showed great promise as rapid, sensitive, and accurate tools for diagnosis of the nucleic acid of MPXV and other infectious pathogens.
Collapse
Affiliation(s)
- Huiyi Yang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510000China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510000China
| | - Wei Wang
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Jingyan Lin
- National Clinical Research Center for Infectious DiseaseThe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen Third People's HospitalShenzhen518000China
| | - Jingru Wang
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Lunjing Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Wenjie Wu
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Chengli Zhang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510000China
| | - Mingxia Zhang
- National Clinical Research Center for Infectious DiseaseThe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen Third People's HospitalShenzhen518000China
| | - Yu Fu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Bin Yang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510000China
| | - Yuhui Liao
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
7
|
Lu Y, Zhao X, Yan D, Mi Y, Sun P, Yan X, Liu X, Lu G. Upconversion-based chiral nanoprobe for highly selective dual-mode sensing and bioimaging of hydrogen sulfide in vitro and in vivo. LIGHT, SCIENCE & APPLICATIONS 2024; 13:180. [PMID: 39090112 PMCID: PMC11294450 DOI: 10.1038/s41377-024-01539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Chiral assemblies have become one of the most active research areas due to their versatility, playing an increasingly important role in bio-detection, imaging and therapy. In this work, chiral UCNPs/CuxOS@ZIF nanoprobes are prepared by encapsulating upconversion nanoparticles (UCNPs) and CuxOS nanoparticles (NPs) into zeolitic imidazolate framework-8 (ZIF-8). The novel excited-state energy distribution-modulated upconversion nanostructure (NaYbF4@NaYF4: Yb, Er) is selected as the fluorescence source and energy donor for highly efficient fluorescence resonance energy transfer (FRET). CuxOS NP is employed as chiral source and energy acceptor to quench upconversion luminescence (UCL) and provide circular dichroism (CD) signal. Utilizing the natural adsorption and sorting advantages of ZIF-8, the designed nanoprobe can isolate the influence of other common disruptors, thus achieve ultra-sensitive and highly selective UCL/CD dual-mode quantification of H2S in aqueous solution and in living cells. Notably, the nanoprobe is also capable of in vivo intra-tumoral H2S tracking. Our work highlights the multifunctional properties of chiral nanocomposites in sensing and opens a new vision and idea for the preparation and application of chiral nanomaterials in biomedical and biological analysis.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Xu Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Yingqian Mi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| |
Collapse
|
8
|
Han Q, Na N, Ouyang J. DNA conformational change embrace ultraviolet photolysis: A dual-mode sensing platform for electrochemical and fluorescent signaling. Anal Chim Acta 2024; 1292:342222. [PMID: 38309844 DOI: 10.1016/j.aca.2024.342222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
We developed a dual-mode biosensor that utilizes DNA conformational changes and ultraviolet photolysis for electrochemical (EC) and fluorescence (FL) detection. In this study, a stem-loop-structured carcinoembryonic antigen (CEA) aptamer was modified on an Au electrode, and this aptamer contained a redox-labeled methylene blue (MB), short-chain DNA with a 6-carboxylic fluorescein (FAM) and a PC linker that can be cleaved by ultraviolet light. Subsequently, CEA and CEA antibody-modified upconversion nanoparticle bioconjugates (CEA-Ab@UCNPs) were added. In the presence of CEA, Ab@UCNPs can bind CEA and push the MB which was originally close to the electrode surface, away from the electrode surface, resulting in a reduced redox current. Under irradiation with a 980 nm laser, the UCNPs emit ultraviolet light, leading to photocleavage of the PC linker and the release of FAM for FL sensing. Under optimal conditions, the EC and FL modes showed good responses to CEA within 0.01-50 ng/mL and 0.1-80 ng/mL, respectively.
Collapse
Affiliation(s)
- Qingzhi Han
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China; Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Yan S, Song H, Huang Z, Su Y, Lv Y. Multisignals Sensing Platform for Highly Sensitive, Accurate, and Rapid Detection of p-Aminophenol Based on Adsorption and Oxidation Effects Induced by Defective NH 2-Ag-nMOFs. Anal Chem 2024. [PMID: 38330440 DOI: 10.1021/acs.analchem.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Labile toxic pollutants detection remains a challenge due to the problem that a single method is prone to producing false-negative/-positive signals. The construction of a multisignal sensing platform with the advantages of different strategies is an effective way to solve this problem. Herein, a novel resonant light scattering (RLS), fluorescent and rapid visual multisignals sensing strategy for p-aminophenol (p-AP) detection was designed based on the adsorption and oxidation effects of defective amino-functionalized Ag-based nano metal-organic frameworks (NH2-Ag-nMOFs). In this reaction process, NH2-Ag-nMOFs with incomplete coordination oxidize H2O2 to produce singlet oxygen (1O2) which rapidly oxidizes p-AP, leading to the reduction of Ag+ to Ag0, thereby disrupting the structure of NH2-Ag-nMOFs and resulting in fluorescence quenching of NH2-Ag-nMOFs. Synchronously, owing to Ag0 aggregation and p-AP oxidation, the color of the system changed from colorless to purplish-red and pale brown within 20 s. The assay has realized the rapid naked-eye detection of 5 μM p-AP rapidly. Additionally, thanks to the intermolecular hydrogen bonding, NH2-Ag-nMOFs-p-AP aggregates formed, which enhanced the RLS signal. With the RLS signal, the designed multisignals sensing platform can analyze p-AP at a concentration as low as 11 nM and yield a wider dynamic response range than any single signal strategy reported before, which can quickly meet the measurement requirement of different actual samples. Overall, the proposed strategy without assembling various signal indicators presented an accurate, rapid, cost-effective, and sensitive multisignals sensing platform for p-AP analysis and has great prospects in labile toxic pollutants monitoring.
Collapse
Affiliation(s)
- Shuguang Yan
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zili Huang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
10
|
Khan GA, Lu Y, Wang P. Plasmon-Enhanced Refractive Index Sensing of Biomolecules Based on Metal-Dielectric-Metal Metasurface in the Infrared Regime. ACS OMEGA 2024; 9:1416-1423. [PMID: 38222543 PMCID: PMC10785300 DOI: 10.1021/acsomega.3c07809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Infrared plasmonic sensors offer enhanced biomolecule detection potential over visible sensors due to unique spectral fingerprints, enhanced sensitivity, lower interference, and label-free, nondestructive analysis capabilities. Moreover, multimode plasmonic sensors are highly advantageous for their ability to outperform single-mode counterparts through long-wavelength tuning, enhanced information retrieval, and reduced false results through multimode data cross-referencing. In this study, to achieve a high quality factor and enhanced sensitivity simultaneously, we employed silver square block arrays (SSBs) in a metal-dielectric-metal configuration. The proposed design supports three modes resulting from gap plasmons and propagating surface plasmon resonances, enabling the detection of a broad spectrum of biomolecules. Designed sensors demonstrate notable sensitivities in different modes: Mode I achieves 525 nm/RIU, Mode II reaches 1287 nm/RIU, and Mode III records 812 nm/RIU, while maintaining the quality factor of Mode I-17, Mode II-356, and Mode III-107. The figure of merit for Mode I is 7 RIU-1, for Mode II it is 375 RIU-1, and for Mode III it is 98 RIU-1. Different concentrations of glucose and hemoglobin are efficiently detected with the proposed sensor, showing great potential for its biosensing application and real-time monitoring of biomolecule dynamics. Taken together, the proposed sensor exhibits the capability to identify diverse types of biomolecules and holds the potential to serve as a preliminary screening tool for various biomolecules.
Collapse
Affiliation(s)
- Ghulam Abbas Khan
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yonghua Lu
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Zheng Z, Ma L, Li B, Zhang X. Dual-Modal Biosensor for Staphylococcus aureus Detection Based on a Porphyrin-Based Porous Organic Polymer FePor-TPA with Excellent Peroxidase-like, Catalase-like, and Photoelectrochemical Properties. Anal Chem 2023; 95:13855-13863. [PMID: 37672712 DOI: 10.1021/acs.analchem.3c01950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Bacterial infections seriously harm human health and cause many severe diseases, which triggered urgent demands to exploit specific and sensitive biosensor strategies for Staphylococcus aureus detection. Here, a colorimetric and photoelectrochemical dual-mode biosensor for S. aureus assay based on FePor-TPA was constructed. 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were synthesized by in situ growth on ITO and a solvothermal condition, respectively, both of which exhibited excellent peroxidase-like and catalase-like activity, originating from their metalloporphyrin linkers. Benefiting from the in situ growth on ITO electrodes, the 2D FePor-TPA thin film also possessed a more ordered stacking mode and in turn exhibited good electrical conductivity, stable initial photocurrent, and high sensitivity to O2. As for bulk FePor-TPA, its porous structure and high specific surface area make it a possible scaffold to load an amount of AuNPs, the rabbit anti-Staphylococcus aureus Rosenbach tropina antibody (Ab2), and GOx for constructing the signal probe (GOx/Ab2@Au@FePor-TPA) and realizing catalytic amplification. With these satisfactory features in mind, the 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were utilized to construct a dual and signal-on bioplatform for sensitively and selectively detecting S. aureus, which, as far as we know, has not been reported.
Collapse
Affiliation(s)
- Zekun Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Long Ma
- Test center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Baoyu Li
- Test center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
12
|
Xu H, Pan R, Huang W, Zhu X. Label-free dual-mode sensing platform based on target-regulated CRISPR-Cas12a activity for ochratoxin A in Morinda officinalis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4518-4523. [PMID: 37622284 DOI: 10.1039/d3ay01025b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Many traditional Chinese herbs are susceptible to ochratoxin A (OTA), a potent mycotoxin, which causes serious effects on the quality of the herb and on people's health. The development of methods to detect OTA is extremely important. Most methods for detecting OTA are based on a single-signal output mode, which might be easily influenced by complex environmental conditions. In this research, by taking advantage of the cleavage of DNA by target-induced CRISPR-Cas12a activity and the difference in electrostatic force of DNA to different charge electrochemiluminescent (ECL) and electrochemical (EC) probes, a biosensor is developed for the detection of OTA. First, the CRISPR-Cas12a system consists of a well-designed crRNA, its complementary strand (also as an aptamer for OTA), and Cas12a. Without the target, this CRISPR-Cas12a system is in the "activated stage", which digests hairpin DNA on the electrode, resulting in a weak ECL signal and strong current response. With the introduction of OTA bound with the aptamer, CRISPR-Cas12a activity is inhibited ("locked stage"). Thus, hairpin DNA remained intact on the electrode, resulting in recovery of the ECL signal and attenuation of the current intensity. As a result, this label-free dual-mode sensing platform realizes an assay for OTA in Morinda officinalis. This target-regulated CRISPR-Cas12a activity-sensing platform with dual-mode output not only provides high sensitivity (due to the CRISPR-Cas12a system), but also has good anti-interference ability against complex substrates (due to dual-mode output), and exhibits a broad range of prospects for application.
Collapse
Affiliation(s)
- Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Rui Pan
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Weihua Huang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
13
|
Wei Z, Knaus T, Liu Y, Zhai Z, Gargano AFG, Rothenberg G, Yan N, Mutti FG. A high-performance electrochemical biosensor using an engineered urate oxidase. Chem Commun (Camb) 2023. [PMID: 37285304 DOI: 10.1039/d3cc01869e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We constructed a high-performance biosensor for detecting uric acid by immobilizing an engineered urate oxidase on gold nanoparticles deposited on a carbon-glass electrode. This biosensor showed a low limit-of-detection (9.16 nM), a high sensitivity (14 μA/μM), a wide range of linearity (50 nM-1 mM), and more than 28 days lifetime.
Collapse
Affiliation(s)
- Zheng Wei
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tanja Knaus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Yuxin Liu
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Ziran Zhai
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Andrea F G Gargano
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Gadi Rothenberg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Ning Yan
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Francesco G Mutti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Liu Y, Zhu X, Wei Z, Wu K, Zhang J, Mutti FG, Zhang H, Loeffler FF, Zhou J. Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angew Chem Int Ed Engl 2023:e202303570. [PMID: 37186020 DOI: 10.1002/anie.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects.
Collapse
Affiliation(s)
- Yuxin Liu
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Xingjun Zhu
- ShanghaiTech University, School of Physical Science and Technology, CHINA
| | - Zheng Wei
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Kefan Wu
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Junfang Zhang
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Francesco G Mutti
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Hong Zhang
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, Am Mühlenberg 1, 14476, Potsdam, GERMANY
| | - Jing Zhou
- Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, CHINA
| |
Collapse
|
15
|
Fang WK, Xu DD, Liu D, Li YY, Liu MH, Pang DW, Tang HW. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Anal Chem 2023; 95:5443-5453. [PMID: 36930753 DOI: 10.1021/acs.analchem.3c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
16
|
Zhang S, Han X, Chen X, Liu Y, Zhou J. Rational Design of a Triple Tumor Microenvironment-Responsive Nanoplatform for Enhanced Tumor Theranostics. Chemistry 2023; 29:e202202469. [PMID: 36219493 DOI: 10.1002/chem.202202469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
Abstract
The development of responsive nanoplatforms based on the tumor microenvironment (TME) is critical for tumor diagnosis and treatment. Concentrating on a single TME-responsive nanoplatform, however, may result in insufficient diagnostic accuracy and treatment efficacy. Herein, layered double-hydroxides (LDHs) and rare earth nanomaterials (Er@Lu) were combined to create a triple TME-responsive nanoplatform that was then modified with cypate (a fluorescent dye with strong absorbance) by a peptide chain and loaded with epigallocatechin gallate (EGCG), a chemotherapeutic drug. Multiple responses to TME occurred when Er@Lu/LDH-EGCG reached the colorectal tumor region. Based on an acidic TME, the nanoplatform cracked and released Ni2+ and EGCG. NiS, which was produced by the reaction of Ni2+ with abundant H2 S in tumor cells, was used for photothermal therapy and the released EGCG was used for chemotherapy. The MMP-7 enzyme specifically expressed in tumor cells recognized and cut the peptide chain, resulting in cypate release. The fluorescence of the Er@Lu was then restored along with the release of cypate because of the absorption competition disappearance. Compared to a single TME response, Er@Lu/LDH-EGCG with a triple TME response led to a better synergistic therapeutic effect in vitro and in vivo. This work has provided new approaches for developing multiple TME-responsive therapeutic nanoplatforms for synergistic therapy with improved diagnosis and therapeutic efficiency.
Collapse
Affiliation(s)
- Shouqiang Zhang
- Department Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xin Han
- Department Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xinran Chen
- Department Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Jing Zhou
- Department Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
17
|
Xia Y, Liu Y, Hu X, Zhao F, Zeng B. Dual-Mode Electrochemical Competitive Immunosensor Based on Cd 2+/Au/Polydopamine/Ti 3C 2 Composite and Copper-Based Metal-Organic Framework for 17β-Estradiol Detection. ACS Sens 2022; 7:3077-3084. [PMID: 36198618 DOI: 10.1021/acssensors.2c01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, a dual-mode electrochemical competitive immunosensor was constructed for the detection of 17β-estradiol (E2) based on differential pulse voltammetry (DPV) and chronoamperometry (i-t). During the immune recognition process, the E2 antibody (E2-Ab) was immobilized on the Cd2+/Au/polydopamine/Ti3C2 (Cd2+/Au/pDA/Ti3C2) composite-modified electrode; then, the E2-conjugated bovine serum albumin (E2-BSA) was labeled with a copper-based metal-organic framework (Cu-MOF) and competed with E2 in combining the E2-Ab. The Cu-MOF was not only an electroactive species but also possessed good electrocatalytic activity toward H2O2. Thus, E2 could be quantified according to the peak current change of the Cu-MOF in DPV curve or the variation of H2O2 reduction current. For DPV quantification, Cd2+ was introduced as an internal reference in this case, and a highly reproducible ratio readout was obtained. The as-prepared dual-mode E2 electrochemical immunosensor showed good linear relationship in the ranges of 1 pg mL-1-10 ng mL-1 (DPV) and 10 pg mL-1-10 ng mL-1 (i-t), and the detection limits were 0.47 and 5.4 pg mL-1 (S/N = 3), respectively. Furthermore, the dual-mode electrochemical immunosensor exhibited good practicability in real sample analysis.
Collapse
Affiliation(s)
- Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Xiaopeng Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| |
Collapse
|
18
|
Tumor–microenvironment activated programmable synergistic cancer therapy by bioresponsive rare-earth nanocomposite. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wei Z, Cao T, Li L, Zhu X, Zhou J, Liu Y. Dual-channel lanthanide-doped nanoprobe for reliable multi-signal ratiometric detection of H 2S in whole blood. Chem Commun (Camb) 2022; 58:9642-9645. [PMID: 35942652 DOI: 10.1039/d2cc03360g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wavelength-dependent absorbance of blood has impeded the development of fluorescence biodetection in whole blood. Here, by replacing the fluorescence working signal with a temperature signal, reliable H2S detection was performed in samples of whole blood. The developed system was based on a dual-channel lanthanide-doped nanoprobe, which further allowed precise serodiagnosis of acute pancreatitis.
Collapse
Affiliation(s)
- Zheng Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Tianqi Cao
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Luoyuan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| | - Xingjun Zhu
- School of Physical Science and Technology, Shanghai Tech University, 201210 Shanghai, China
| | - Jing Zhou
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Yuxin Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
- Department of Biomolecular System, Max-Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| |
Collapse
|
20
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|
21
|
Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the proof-of-concept of molecularly imprinted polymer (MIP) functionalized Bi2S3/Ti3C2TX MXene nanocomposites for photoelectrochemical (PEC)/electrochemical (EC) dual-mode sensing of chlorogenic acid (CGA). Specifically, the in-situ growth of the Bi2S3/Ti3C2TX MXene served as a transducer substrate for molecularly imprinted polymers such as PEC and EC signal generators, due to its high surface area, suitable bandwidth and abundant active sites. In addition, the chitosan as a binder was encapsulated into MIP by means of phase inversion on a fluorine-doped tin dioxide (FTO) electrode. In the determination of CGA as an analytical model, the dual-mode sensor based on MIP functionalized Bi2S3/Ti3C2TX MXene nanocomposites had good selectivity, excellent stability and acceptable reproducibility, which displayed a linear concentration range from 0.0282 μM to 2824 μM for the PEC signal and 0.1412 μM to 22.59 μM for the EC signal with a low detection limit of 2.4 nM and 43.1 nM, respectively. Importantly, two dual-response mode with different transduction mechanisms could mutually conform to dramatically raise the reliability and accuracy of detection compared to single-mode detection. This work is a breakthrough for the design of dual-mode sensors and will provide a reasonable basis for the construction of dual-mode sensor platforms.
Collapse
|
22
|
Li J, Wang C, Wang W, Zhao L, Han H. Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical Detection of Rabies Virus Glycoprotein Based on Ru(bpy) 32+-Loaded Dendritic Mesoporous Silica Nanoparticles. Anal Chem 2022; 94:7655-7664. [PMID: 35579617 DOI: 10.1021/acs.analchem.2c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rabies is a serious zoonotic disease in almost all warm-blooded animals and causes fatal encephalitis. The detection of rabies virus (RABV) is critical and remains a significant challenge. Herein, an electrochemiluminescence resonance energy transfer (ECL-RET) and electrochemical (EC) dual-mode immunosensor was developed for highly sensitive detection of RABV glycoprotein. Dendritic mesoporous silica nanoparticles (DMSNs) were employed to load Ru(bpy)32+ and to obtain ECL probes (Ru@DMSNs). Ru@DMSNs were decorated on the electrode surface, followed by the modification of the RABV antibody (Ab1). RABV was specifically recognized and captured by Ab1, causing the decline of the ECL signal due to the obstruction of electron transfer. Additionally, manganese oxide nanoparticles (MnOx) modified with Ab2 can further quench the ECL signal of Ru@DMSNs via the RET between Ru@DMSNs and MnOx. Meanwhile, MnOx can catalyze the oxidation of o-phenylenediamine (o-PD), generating a significant differential pulse voltammetry (DPV) signal as a second signal to monitor RABV glycoprotein concentration. Consequently, an immunosensor was developed to achieve dual-signal detection of RABV and improve reliability. Under the optimal conditions, detection ranges of 0.10 pg·mL-1 to 10 ng·mL-1 for ECL (with an 88 fg·mL-1 detection limit) and 1 pg·mL-1 to 2 ng·mL-1 for EC (with a 0.1 pg·mL-1 detection limit) were obtained for RABV detection. The reliability of this immunoassay was validated by eight brain tissue samples. The results were found to be compatible with the results of the real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, indicating the potential applicability of this method for RABV diagnosis.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS One 2022; 17:e0264891. [PMID: 35298485 PMCID: PMC8929647 DOI: 10.1371/journal.pone.0264891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.
Collapse
Affiliation(s)
- Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wen Yu
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Boyang lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| |
Collapse
|
24
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
25
|
Liu Y, Seeberger PH, Merbouh N, Loeffler FF. Position Matters: Fluorescent Positional Isomers for Reliable Multichannel Encryption Devices. Chemistry 2021; 27:16098-16102. [PMID: 34634174 PMCID: PMC9298033 DOI: 10.1002/chem.202103441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Fluorescence signals have been widely used in information encryption for a few decades, but still suffer from limited reliability. Here, reversible multichannel fluorescent devices with encrypted information were constructed, based on two fluorescent positional isomers of a diphenylquinoxaline derivative. Possessing the same core fluorescent group and acid-/pH-responsive mechanism, the two isomers showed different fluorescence colors in an acidic environment; this allowed us to realize stepwise encryption of information in orthogonal fluorescence channels. Because the protonation was reversible, the revealed information could be re-encrypted simply by heating. This approach highlights the value of positional isomers to build multichannel encryption devices, improving their reliability on the molecular level.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Nabyl Merbouh
- Department of Chemistry, Simon Fraser University, Burnaby, B.C., Canada
| | - Felix F Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
26
|
Liao X, Liu Y, Jia Q, Zhou J. Multi-Channel Optical Device for Solar-Driven Bacterial Inactivation under Real-Time Temperature Feedback. Chemistry 2021; 27:11094-11101. [PMID: 34196050 DOI: 10.1002/chem.202101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/10/2022]
Abstract
Solar-driven photothermal antibacterial devices have attracted a lot of interest due to the fact that solar energy is one of the cleanest sources of energy in the world. However, conventional materials have a narrow absorbance band, resulting in deficient solar harvesting. In addition, lack of knowledge on temperature change in these devices during the photothermal process has also led to a waste of energy. Here, we presented an elegant multi-channel optical device with a multilayer structure to simultaneously address the above-mentioned issues in solar-driven antibacterial devices. In the photothermal channel, semiconductor IrO2 -nanoaggregates exhibited higher solar absorbance and photothermal conversion efficiency compared with nanoparticles. In the luminescence channel, thermal-sensitive Er-doped upconversion nanoparticles were utilized to reflect the microscale temperature in real-time. The bacteria were successfully inactivated during the photothermal effect under solar irradiation with temperature monitoring. This study could provide valuable insight for the development of smart photothermal devices for solar-driven photothermal bacterial inactivation in the future.
Collapse
Affiliation(s)
- Xianquan Liao
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China.,Max-Planck Institute for Colloids and Interfaces, Potsdam, 14476, Germany
| | - Qi Jia
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhou
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
27
|
Liu Y, Zhu X, Wei Z, Feng W, Li L, Ma L, Li F, Zhou J. Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008615. [PMID: 34121241 DOI: 10.1002/adma.202008615] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a potentially advanced strategy for highly precise cancer treatment. Tumor-microenvironment-activatable agents provide useful tools for PTT, but their photothermal conversion capacities vary and cannot be evaluated in vivo; thus, a general PTT prescription does not work with individual activatable agents. Here, glutathione (GSH)-activatable nanocomposites, silicomolybdate-functionalized NaLuF4 :Yb,Er@NaLuF4 @NaLuF4 :Nd are prepared, for customized PTT of subcutaneous orthotopic cancer. By simultaneously determining intratumoral GSH concentration and the amount of accumulated agent using multiple orthogonal luminescent emissions of nanocomposites, near-infrared absorbance of photothermal conversion agents is evaluated in vivo, based on the optimized irradiating prescriptions (irradiating power density and time) established. This allows customized PTT of each individual case with high efficacy and viability. This work also includes a method for investigating individual intratumoral variation, and the development of the next generation of customized nanomedicine for efficacious PTT of subcutaneous orthotopic cancer.
Collapse
Affiliation(s)
- Yuxin Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Xingjun Zhu
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zheng Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wei Feng
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Luoyuan Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Liyi Ma
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fuyou Li
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jing Zhou
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
28
|
Zhang J, Gao Y, Zhang X, Feng Q, Zhan C, Song J, Zhang W, Song W. "Dual Signal-On" Split-Type Aptasensor for TNF-α: Integrating MQDs/ZIF-8@ZnO NR Arrays with MB-Liposome-Mediated Signal Amplification. Anal Chem 2021; 93:7242-7249. [PMID: 33960777 DOI: 10.1021/acs.analchem.1c00415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasensitive and accurate detection of biomarkers in serum is of great importance for disease diagnosis and treatment. So far, the commonly used single-mode signal suffers from certain instinct drawbacks that restrict assay performances. Herein, we report the proof-of-concept fabrication of a split-type photoelectrochemical (PEC) and electrochemical (EC) dual-modal aptasensor for ultrasensitively tracing tumor necrosis factor-α, a noteworthy biological biomarker with essential clinical importance. By smart integrating molybdenum disulfide QDs/zeolitic imidazolate framework-8@ZnO nanorod arrays with a methylene blue-liposome-mediated signal amplification strategy, "dual signal-on" detection is accomplished based on a sandwich reaction of the target with aptamer-anchored carboxyl magnetic beads and an aptamer-confined MB liposome. Linear ranges of 5 fg/mL-5 μg/mL (detection limit 1.46 fg/mL) for PEC and 10 fg/mL-0.5 μg/mL (detection limit 6.14 fg/mL) for EC are obtained, respectively. An independent signal transduction mechanism supports the accuracy improvement, and a separate biological process from a translator enables convenient fabrication, short-time consumption, wider linearity, as well as outstanding reproducibility and stability in practical application. This work presents a universal bioassay route with prospects in biomedical and related areas.
Collapse
Affiliation(s)
- Jinling Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qianshan Feng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunxu Zhan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jialin Song
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenhui Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
29
|
Zhang L, Fu Q, Tan Y, Li X, Deng Y, Zhou ZK, Zhou B, Xia H, Chen H, Qiu CW, Zhou J. Metaoptronic Multiplexed Interface for Probing Bioentity Behaviors. NANO LETTERS 2021; 21:2681-2689. [PMID: 33522816 DOI: 10.1021/acs.nanolett.0c04067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biointerface sensors have brought about remarkable advances in modern biomedicine. To accurately monitor bioentity's behaviors, biointerface sensors need to capture three main types of information, which are the electric, spectroscopic, and morphologic signals. Simultaneously obtaining these three types of information is of critical importance in the development of future biosensor, which is still not possible in the existing biosensors. Herein, by synergizing metamaterials, optical, and electronic sensing designs, we proposed the metaoptronic multiplexed interface (MMI) and built a MMI biosensor which can collectively record electric, spectroscopic, and morphologic information on bioentities. The MMI biosensor enables the real-time triple-monitoring of cellular dynamics and opens up the possibility for powerlessly monitoring ocular dryness. Our findings not only demonstrate an advanced multiplexed biointerface sensor with integrated capacities but also help to identify a uniquely significant arena for the nanomaterials, meta-optics, and nanotechnologies to play their roles in a complementary manner.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Quanying Fu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yayin Tan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnosis, Department of Microbiology and Immunology, Guangdong Medical University, Dongguan 523808, China
| | - Yanhui Deng
- State Key Lab of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhang-Kai Zhou
- State Key Lab of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongqi Xia
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanjun Chen
- Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Zhang G, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. Dual-mode of electrochemical-colorimetric imprinted sensing strategy based on self-sacrifice beacon for diversified determination of cardiac troponin I in serum. Biosens Bioelectron 2020; 167:112502. [DOI: 10.1016/j.bios.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
|
31
|
Jia Q, Ma L, Zhai X, Fu W, Liu Y, Liao X, Zhou J. Orthogonal Near-Infrared-II Imaging Enables Spatially Distinguishing Tissues Based on Lanthanide-Doped Nanoprobes. Anal Chem 2020; 92:14762-14768. [DOI: 10.1021/acs.analchem.0c03383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Liyi Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xuejiao Zhai
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Wenhui Fu
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Xianquan Liao
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| |
Collapse
|
32
|
Sun J, Liu Y, Zhu X, Liao X, Wang L, Yuan J, Zhou J. Endogenous H 2S-Activable Liposomal Nanoplatform for Synergistic Colorectal Tumor Ablation at Mild Apparent Temperature. ACS APPLIED BIO MATERIALS 2020; 3:6680-6687. [PMID: 35019333 DOI: 10.1021/acsabm.0c00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced hyperthermia possesses great potential in photothermal therapy and thermal-responsive chemotherapy of tumors. However, traditional thermal-triggered drug release requires high temperature, which results in unpleasant activation of thermal-induced cellular self-protection. In this work, a Cu-complex modified and drug-loaded liposomal nanoplatform was constructed for endogenous H2S-activated synergistic ablation of colorectal tumors. In response to H2S, the incorporated Cu-complex contributed to the formation of semiconductor CuS on the surface of the as-designed liposomal nanoplatform, which led to local heating under near-infrared (NIR) laser irradiation to achieve simultaneous photothermal therapy and drug release. It is noteworthy that although the drug release occurred at a mild apparent temperature, it was actually triggered by the high eigen temperature on the surface of the liposomal nanoplatform. Therefore, efficient and synergistic photothermal and chemotherapy was achieved under mild apparent temperatures. This work provides insights into achieving selective and bioactivated photothermal therapy and therefore thermal-controlled drug release without using excessive hyperthermia.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianquan Liao
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Lu Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Yuan
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
33
|
Cao C, Hong C, Li Y, Li G, Jiang G. A Long‐term and Stable Surface Modification Method for Lanthanide Doped Upconversion Nanoparticles by Oxidized Alginate. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cong Cao
- College of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
- Institute of Smart Biomedical Materials and Zhejiang‐Mauritius Joint Research Center for Biomaterials and Tissue Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Chang Hong
- College of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Yu Li
- College of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Guangshen Li
- College of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Guohua Jiang
- College of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
- Institute of Smart Biomedical Materials and Zhejiang‐Mauritius Joint Research Center for Biomaterials and Tissue Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| |
Collapse
|
34
|
The role of Fe3+ ions in fluorescence detection of H2S by a bimetallic metal-organic framework. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
André L, Desbois N, Gros CP, Brandès S. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Trans 2020; 49:15161-15170. [DOI: 10.1039/d0dt02511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overview of the use of porous materials for gas sensing to analyze the exhaled breath of patients for disease identification.
Collapse
Affiliation(s)
- Laurie André
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| |
Collapse
|