1
|
Fujiwara N, Ueno T, Yamazaki T, Hirose T. Unraveling architectural RNAs: Structural and functional blueprints of membraneless organelles and strategies for genome-scale identification. Biochim Biophys Acta Gen Subj 2025; 1869:130815. [PMID: 40348038 DOI: 10.1016/j.bbagen.2025.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Architectural RNAs (arcRNAs) are long noncoding RNAs that serve as structural scaffolds for membraneless organelles (MLOs), facilitating cellular organization and dynamic responses to stimuli. Acting as blueprints for MLO assembly, arcRNAs recruit specific proteins and nucleic acids to establish and maintain the internal structure of MLOs while coordinating their spatial relationships with other organelles. This organized framework enables precise spatiotemporal regulation, allowing for targeted control of transcription, RNA processing, and cellular responses to stress. Notably, arcRNAs exhibit the "semi-extractable" feature, a property derived from their stable binding to cellular structures, making them partially resistant to conventional RNA extraction methods. This unique feature serves as a useful criterion for identifying novel arcRNAs, providing an opportunity to accelerate research in long noncoding RNAs and deepen our understanding of their functional roles in cellular processes.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tsuyoshi Ueno
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan.
| |
Collapse
|
2
|
Herbert A. Triplexes Color the Chromaverse by Modulating Nucleosome Phasing and Anchoring Chromatin Condensates. Int J Mol Sci 2025; 26:4032. [PMID: 40362270 PMCID: PMC12071334 DOI: 10.3390/ijms26094032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Genomic sequences that form three-stranded triplexes (TPXs) under physiological conditions (called T-flipons) play an important role in defining DNA nucleosome-free regions (NFRs). Within these NFRs, other flipon types can cycle conformations to actuate gene expression. The transcripts read from the NFR form condensates that engage proteins and small RNAs. The helicases bound then trigger RNA polymerase release by dissociating the 7SK ribonucleoprotein. The TPXs formed usually incorporate RNA as the third strand. TPXs made only from DNA arise mostly during DNA replication. Many small RNA types (sRNAs) and long noncoding (lncRNA) can direct TPX formation. TPXs made with circular RNAs have greater stability and specificity than those formed with linear RNAs. LncRNAs can affect local gene expression through TPX formation and transcriptional interference. The condensates seeded by lncRNAs are updated by feedback loops involving proteins and noncoding RNAs from the genes they regulate. Some lncRNAs also target distant loci in a sequence-specific manner. Overall, lncRNAs can rapidly evolve by adding or subtracting sequence motifs that modify the condensates they nucleate. LncRNAs show less sequence conservation than protein-coding sequences. TPXs formed by lncRNAs and sRNAs help place nucleosomes to restrict endogenous retroelement (ERE) expression. The silencing of EREs starts early in embryogenesis and is essential for bootstrapping development. Once the system is set, EREs play a different role, with a notable enrichment of Short Interspersed Nuclear Repeats (SINEs) in Enhancer-Promoter condensates. The highly programmable TPX-dependent processes create a chromaverse capable of many complexities.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Tani H. Biomolecules Interacting with Long Noncoding RNAs. BIOLOGY 2025; 14:442. [PMID: 40282307 PMCID: PMC12025117 DOI: 10.3390/biology14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis to pathogenesis. They interact with DNA through mechanisms like triplex structure formation, influencing chromatin organization and gene expression. LncRNAs also modulate RNA-mediated processes, including mRNA stability, translational control, and splicing regulation. Their versatility stems from their forming of complex structures that enable interactions with various biomolecules. This review synthesizes current knowledge on lncRNA functions, discusses emerging roles in development and disease, and evaluates potential applications in diagnostics and therapeutics. By examining lncRNA interactions, it provides insights into the intricate regulatory networks governing cellular processes, underscoring the importance of lncRNAs in molecular biology. Unlike the majority of previous reviews that primarily focused on individual aspects of lncRNA biology, this comprehensive review uniquely integrates structural, functional, and mechanistic perspectives on lncRNA interactions across diverse biomolecules. Additionally, this review critically evaluates cutting-edge methodologies for studying lncRNA interactions, bridges fundamental molecular mechanisms with potential clinical applications, and highlights their potential.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
4
|
Khyzha N, Ahmad K, Henikoff S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol Cell 2025; 85:1366-1380.e4. [PMID: 40073862 PMCID: PMC12052203 DOI: 10.1016/j.molcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Nuclear compartments are membrane-less regions enriched in functionally related molecules. RNA is a major component of many nuclear compartments, but the identity and dynamics of transcripts within nuclear compartments are poorly understood. Here, we applied reverse transcribe and tagment (RT&Tag) to human cell lines to identify the transcript populations of Polycomb domains and nuclear speckles. We also developed SLAM-RT&Tag, which combines RNA metabolic labeling with RT&Tag, to quantify transcript dynamics within nuclear compartments. We observed unique transcript populations with differing structures and dynamics within each compartment. Intriguingly, exceptionally long genes are transcribed adjacent to Polycomb domains and are transiently associated with chromatin. By contrast, nuclear speckles act as quality control checkpoints that transiently confine incompletely spliced polyadenylated transcripts and facilitate their post-transcriptional splicing. In summary, we demonstrate that transcripts at Polycomb domains and nuclear speckles undergo distinct RNA processing mechanisms, highlighting the pivotal role of compartmentalization in RNA maturation.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
5
|
Khlebnikov D, Nikolskaya A, Zharikova A, Mironov A. Comprehensive analysis of RNA-chromatin, RNA-, and DNA-protein interactions. NAR Genom Bioinform 2025; 7:lqaf010. [PMID: 40007725 PMCID: PMC11850300 DOI: 10.1093/nargab/lqaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
RNA-chromatin interactome data are considered to be one of the noisiest types of data in biology. This is due to protein-coding RNA contacts and nonspecific interactions between RNA and chromatin caused by protocol specifics. Therefore, finding regulatory interactions between certain transcripts and genome loci requires a wide range of filtering techniques to obtain significant results. Using data on pairwise interactions between these molecules, we propose a concept of triad interaction involving RNA, protein, and a DNA locus. The constructed triads show significantly less noise contacts and are more significant when compared to a background model for generating pairwise interactions. RNA-chromatin contacts data can be used to validate the proposed triad object as positive (Red-ChIP experiment) or negative (RADICL-seq NPM) controls. Our approach also filters RNA-chromatin contacts in chromatin regions associated with protein functions based on ChromHMM annotation.
Collapse
Affiliation(s)
- Daniil A Khlebnikov
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| | - Arina I Nikolskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia A Zharikova
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia
| | - Andrey A Mironov
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
6
|
Herbert A. Flipons enable genomes to learn by intermediating the exchange of energy for information. J R Soc Interface 2025; 22:20250049. [PMID: 40134357 PMCID: PMC11937930 DOI: 10.1098/rsif.2025.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio Inc, Charlestown, MA, USA
| |
Collapse
|
7
|
Ding C, Chen G, Luan S, Gao R, Fan Y, Zhang Y, Wang X, Li G, Foda MF, Yan J, Li X. Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq. Nat Commun 2025; 16:1500. [PMID: 39929795 PMCID: PMC11811046 DOI: 10.1038/s41467-024-53534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/09/2024] [Indexed: 02/13/2025] Open
Abstract
Eukaryotic genomes are extensively transcribed into various types of RNAs, many of which are physically associated with chromatin in cis at their transcription sites or in trans to other genomic loci. Emerging roles have been uncovered for these chromatin-associated RNAs (caRNAs) in gene regulation and genome organization, yet they remain challenging to interrogate. Here, we present TaDRIM-seq, a technique employing Protein G (PG)-Tn5-targeted DNA elements and in situ proximity ligation to concurrently probe caRNAs across diverse genomic regions as well as global RNA-RNA interactions within intact nuclei. Notably, this approach diminishes required cell inputs, minimizes hands-on time compared to established methodologies, and is compatible in both mammalian cells and plants. Using this technique, we identify extensive caRNAs at DNA anchor regions associated with chromatin loops and reveal diurnal variation in RNA-DNA and RNA-RNA connectivity networks within rice.
Collapse
Affiliation(s)
- Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Shiping Luan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Runxin Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yudong Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh13736, Egypt
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
9
|
Zvezdin DS, Tyukaev AA, Zharikova AA, Mironov AA. A Joint Analysis of RNA-DNA and DNA-DNA Interactomes Reveals Their Strong Association. Int J Mol Sci 2025; 26:1137. [PMID: 39940904 PMCID: PMC11817408 DOI: 10.3390/ijms26031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
At the moment, many non-coding RNAs that perform a variety of functions in the regulation of chromatin processes are known. An increasing number of protocols allow researchers to study RNA-DNA interactions and shed light on new aspects of the RNA-chromatin interactome. The Hi-C protocol, which enables the study of chromatin's three-dimensional organization, has already led to numerous discoveries in the field of genome 3D organization. We conducted a comprehensive joint analysis of the RNA-DNA interactome and chromatin structure across different human and mouse cell lines. We show that these two phenomena are closely related in many respects, with the nature of this relationship being both tissue specific and conserved across humans and mice.
Collapse
Affiliation(s)
- Dmitry S. Zvezdin
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Artyom A. Tyukaev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
| | - Anastasia A. Zharikova
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky Per. 10, 101000 Moscow, Russia
| | - Andrey A. Mironov
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| |
Collapse
|
10
|
Nobusada T, Yip C, Agrawal S, Severin J, Abugessaisa I, Hasegawa A, Hon C, Ide S, Koido M, Kondo A, Masuya H, Oki S, Tagami M, Takada T, Terao C, Thalhath N, Walker S, Yasuzawa K, Shin J, de Hoon ML, Carninci P, Kawaji H, Kasukawa T. Update of the FANTOM web resource: enhancement for studying noncoding genomes. Nucleic Acids Res 2025; 53:D419-D424. [PMID: 39592010 PMCID: PMC11701582 DOI: 10.1093/nar/gkae1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The FANTOM web resource (https://fantom.gsc.riken.jp/) has been a unique resource for studying mammalian genomes, which is built on the research activities conducted in the international collaborative project FANTOM (Functional ANnoTation Of the Mammalian genome). In recent updates, we expanded annotations for long non-coding RNAs (lncRNAs) and transcribed cis-regulatory elements (CREs). The former was derived from the large-scale lncRNA perturbations in induced pluripotent stem cells (iPSCs) and integrative analysis of Hi-C data conducted in the sixth iteration of the project (FANTOM6). The resulting annotations of lncRNAs, according to the impact on cellular and molecular phenotypes and the potential RNA-chromatin interactions, are accessible via the interactive ZENBU-Reports framework. The latter involves a new platform, fanta.bio (https://fanta.bio/), which collects transcribed CREs identified via use of an extended dataset of CAGE profiles. The CREs, with their annotations including genetic and epigenetic information, are accessible via a dedicated interface as well as the UCSC Genome Browser Database. These updates offer enhanced opportunities to investigate the functions of non-coding regions within mammalian genomes.
Collapse
Affiliation(s)
- Tomoe Nobusada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Ide
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaru Koido
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-0882, Japan
| | - Atsushi Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Masuya
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shinya Oki
- Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toyoyuki Takada
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Nishad Thalhath
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Scott Walker
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Shu X, Kato M, Takizawa S, Suzuki Y, Carninci P. RADIP technology comprehensively identifies H3K27me3-associated RNA-chromatin interactions. Nucleic Acids Res 2024; 52:e104. [PMID: 39558168 DOI: 10.1093/nar/gkae1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Many RNAs associate with chromatin, either directly or indirectly. Several technologies for mapping regions where RNAs interact across the genome have been developed to investigate the function of these RNAs. Obtaining information on the proteins involved in these RNA-chromatin interactions is critical for further analysis. Here, we developed RADIP [RNA and DNA interacting complexes ligated and sequenced (RADICL-seq) with immunoprecipitation], a novel technology that combines RADICL-seq technology with chromatin immunoprecipitation to characterize RNA-chromatin interactions mediated by individual proteins. Building upon the foundational principles of RADICL-seq, RADIP extends its advantages by increasing genomic coverage and unique mapping rate efficiency compared to existing methods. To demonstrate its effectiveness, we applied an anti-H3K27me3 antibody to the RADIP technology and generated libraries from mouse embryonic stem cells (mESCs). We identified a multitude of RNAs, including RNAs from protein-coding genes and non-coding RNAs, that are associated with chromatin via H3K27me3 and that likely facilitate the spread of Polycomb repressive complexes over broad regions of the mammalian genome, thereby affecting gene expression, chromatin structures and pluripotency of mESCs. Our study demonstrates the applicability of RADIP to investigations of the functions of chromatin-associated RNAs.
Collapse
Affiliation(s)
- Xufeng Shu
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takizawa
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Technopole, Milan 20157, Italy
| |
Collapse
|
12
|
Stocks J, Gilbert N. Nuclear RNA: a transcription-dependent regulator of chromatin structure. Biochem Soc Trans 2024; 52:1605-1615. [PMID: 39082979 PMCID: PMC11668306 DOI: 10.1042/bst20230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.
Collapse
Affiliation(s)
- Jon Stocks
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
13
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
14
|
Habib AM, Cox JJ, Okorokov AL. Out of the dark: the emerging roles of lncRNAs in pain. Trends Genet 2024; 40:694-705. [PMID: 38926010 DOI: 10.1016/j.tig.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.
Collapse
Affiliation(s)
- Abdella M Habib
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - James J Cox
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
16
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
17
|
Xie X, Sinha S. Quantitative estimates of the regulatory influence of long non-coding RNAs on global gene expression variation using TCGA breast cancer transcriptomic data. PLoS Comput Biol 2024; 20:e1012103. [PMID: 38838009 PMCID: PMC11198904 DOI: 10.1371/journal.pcbi.1012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received attention in recent years for their regulatory roles in diverse biological contexts including cancer, yet large gaps remain in our understanding of their mechanisms and global maps of their targets. In this work, we investigated a basic unanswered question of lncRNA systems biology: to what extent can gene expression variation across individuals be attributed to lncRNA-driven regulation? To answer this, we analyzed RNA-seq data from a cohort of breast cancer patients, explaining each gene's expression variation using a small set of automatically selected lncRNA regulators. A key aspect of this analysis is that it accounts for confounding effects of transcription factors (TFs) as common regulators of a lncRNA-mRNA pair, to enrich the explained gene expression for lncRNA-mediated regulation. We found that for 16% of analyzed genes, lncRNAs can explain more than 20% of expression variation. We observed 25-50% of the putative regulator lncRNAs to be in 'cis' to, i.e., overlapping or located proximally to the target gene. This led us to quantify the global regulatory impact of such cis-located lncRNAs, which was found to be substantially greater than that of trans-located lncRNAs. Additionally, by including statistical interaction terms involving lncRNA-protein pairs as predictors in our regression models, we identified cases where a lncRNA's regulatory effect depends on the presence of a TF or RNA-binding protein. Finally, we created a high-confidence lncRNA-gene regulatory network whose edges are supported by co-expression as well as a plausible mechanism such as cis-action, protein scaffolding or competing endogenous RNAs. Our work is a first attempt to quantify the extent of gene expression control exerted globally by lncRNAs, especially those located proximally to their regulatory targets, in a specific biological (breast cancer) context. It also marks a first step towards systematic reconstruction of lncRNA regulatory networks, going beyond the current paradigm of co-expression networks, and motivates future analyses assessing the generalizability of our findings to additional biological contexts.
Collapse
Affiliation(s)
- Xiaoman Xie
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Leisegang MS, Warwick T, Stötzel J, Brandes RP. RNA-DNA triplexes: molecular mechanisms and functional relevance. Trends Biochem Sci 2024; 49:532-544. [PMID: 38582689 DOI: 10.1016/j.tibs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making. Although triplex formation initially was considered solely an in vitro event, recent progress in computational, biochemical, and biophysical methods support in vivo functionality with relevance for gene expression control. Here, we review the central methodology and biology of triplexes, outline paradigms required for triplex function, and provide examples of physiologically important triplex-forming long non-coding RNAs.
Collapse
Affiliation(s)
- Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Julia Stötzel
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
19
|
Aslanzadeh M, Stanicek L, Tarbier M, Mármol-Sánchez E, Biryukova I, Friedländer M. Malat1 affects transcription and splicing through distinct pathways in mouse embryonic stem cells. NAR Genom Bioinform 2024; 6:lqae045. [PMID: 38711862 PMCID: PMC11071118 DOI: 10.1093/nargab/lqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Malat1 is a long-noncoding RNA with critical roles in gene regulation and cancer metastasis, however its functional role in stem cells is largely unexplored. We here perform a nuclear knockdown of Malat1 in mouse embryonic stem cells, causing the de-regulation of 320 genes and aberrant splicing of 90 transcripts, some of which potentially affecting the translated protein sequence. We find evidence that Malat1 directly interacts with gene bodies and aberrantly spliced transcripts, and that it locates upstream of down-regulated genes at their putative enhancer regions, in agreement with functional genomics data. Consistent with this, we find these genes affected at both exon and intron levels, suggesting that they are transcriptionally regulated by Malat1. Besides, the down-regulated genes are regulated by specific transcription factors and bear both activating and repressive chromatin marks, suggesting that some of them might be regulated by bivalent promoters. We propose a model in which Malat1 facilitates the transcription of genes involved in chromatid dynamics and mitosis in one pathway, and affects the splicing of transcripts that are themselves involved in RNA processing in a distinct pathway. Lastly, we compare our findings with Malat1 perturbation studies performed in other cell systems and in vivo.
Collapse
Affiliation(s)
- Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory and Center for Palaeogenetics. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
20
|
Mylarshchikov D, Nikolskaya A, Bogomaz O, Zharikova A, Mironov A. BaRDIC: robust peak calling for RNA-DNA interaction data. NAR Genom Bioinform 2024; 6:lqae054. [PMID: 38774512 PMCID: PMC11106031 DOI: 10.1093/nargab/lqae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
Chromatin-associated non-coding RNAs play important roles in various cellular processes by targeting genomic loci. Two types of genome-wide NGS experiments exist to detect such targets: 'one-to-al', which focuses on targets of a single RNA, and 'all-to-al', which captures targets of all RNAs in a sample. As with many NGS experiments, they are prone to biases and noise, so it becomes essential to detect 'peaks'-specific interactions of an RNA with genomic targets. Here, we present BaRDIC-Binomial RNA-DNA Interaction Caller-a tailored method to detect peaks in both types of RNA-DNA interaction data. BaRDIC is the first tool to simultaneously take into account the two most prominent biases in the data: chromatin heterogeneity and distance-dependent decay of interaction frequency. Since RNAs differ in their interaction preferences, BaRDIC adapts peak sizes according to the abundances and contact patterns of individual RNAs. These features enable BaRDIC to make more robust predictions than currently applied peak-calling algorithms and better handle the characteristic sparsity of all-to-all data. The BaRDIC package is freely available at https://github.com/dmitrymyl/BaRDIC.
Collapse
Affiliation(s)
- Dmitry E Mylarshchikov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Arina I Nikolskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Olesja D Bogomaz
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - Andrey A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
21
|
Agrawal S, Buyan A, Severin J, Koido M, Alam T, Abugessaisa I, Chang HY, Dostie J, Itoh M, Kere J, Kondo N, Li Y, Makeev VJ, Mendez M, Okazaki Y, Ramilowski JA, Sigorskikh AI, Strug LJ, Yagi K, Yasuzawa K, Yip CW, Hon CC, Hoffman MM, Terao C, Kulakovskiy IV, Kasukawa T, Shin JW, Carninci P, de Hoon MJL. Annotation of nuclear lncRNAs based on chromatin interactions. PLoS One 2024; 19:e0295971. [PMID: 38709794 PMCID: PMC11073715 DOI: 10.1371/journal.pone.0295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/02/2023] [Indexed: 05/08/2024] Open
Abstract
The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.
Collapse
Affiliation(s)
- Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Andrey Buyan
- Autosome.org, Russia
- FANTOM Consortium, Dolgoprudny, Russia
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Howard Y. Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, California, United States of America
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Naoto Kondo
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Yunjing Li
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Mickaël Mendez
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jordan A. Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | | | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Ontario, Canada
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michael M. Hoffman
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | | |
Collapse
|
22
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
23
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Dhaka B, Zimmerli M, Hanhart D, Moser M, Guillen-Ramirez H, Mishra S, Esposito R, Polidori T, Widmer M, García-Pérez R, Julio MKD, Pervouchine D, Melé M, Chouvardas P, Johnson R. Functional identification of cis-regulatory long noncoding RNAs at controlled false discovery rates. Nucleic Acids Res 2024; 52:2821-2835. [PMID: 38348970 PMCID: PMC11014264 DOI: 10.1093/nar/gkae075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
A key attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. However, such 'cis-lncRNAs' are presently defined using ad hoc criteria that, we show, are prone to false-positive predictions. The resulting lack of cis-lncRNA catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining and identifying cis-lncRNAs based on enrichment of targets amongst proximal genes. TransCistor's simple and conservative statistical models are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation experiments for 268 human and 134 mouse lncRNAs, we provide the first large-scale survey of cis-lncRNAs. Known cis-lncRNAs are correctly identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent experiments. We detect cis-activity in a minority of lncRNAs, primarily involving activators over repressors. Cis-lncRNAs are detected by both RNA interference and antisense oligonucleotide perturbations. Mechanistically, cis-lncRNA transcripts are observed to physically associate with their target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitative foundation for cis-lncRNAs, opening a path to elucidating their molecular mechanisms and biological significance.
Collapse
Affiliation(s)
- Bhavya Dhaka
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Marc Zimmerli
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Daniel Hanhart
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Mario B Moser
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Hugo Guillen-Ramirez
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sanat Mishra
- Indian Institute of Science Education and Research, Mohali, India
| | - Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Maro Widmer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Centre, Barcelona 08034, Spain
| | - Marianna Kruithof-de Julio
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Dmitri Pervouchine
- Center for Cellular and Molecular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Centre, Barcelona 08034, Spain
| | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- FutureNeuro SFI Research Centre, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
25
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Charles Richard JL, Zhong S. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 2024; 628:648-656. [PMID: 38538789 PMCID: PMC11023937 DOI: 10.1038/s41586-024-07239-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Schmidt MR, Barcons-Simon A, Rabuffo C, Siegel T. Smoother: on-the-fly processing of interactome data using prefix sums. Nucleic Acids Res 2024; 52:e23. [PMID: 38281191 PMCID: PMC10954447 DOI: 10.1093/nar/gkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Nucleic acid interactome data, such as chromosome conformation capture data and RNA-DNA interactome data, are currently analyzed via pipelines that must be rerun for each new parameter set. A more dynamic approach is desirable since the optimal parameter set is commonly unknown ahead of time and rerunning pipelines is a time-consuming process. We have developed an approach fast enough to process interactome data on-the-fly using a sparse prefix sum index. With this index, we created Smoother, a flexible, multifeatured visualization and analysis tool that allows interactive filtering, e.g. by mapping quality, almost instant comparisons between different normalization approaches, e.g. iterative correction, and ploidy correction. Further, Smoother can overlay other sequencing data or genomic annotations, compare different samples, and perform virtual 4C analysis. Smoother permits a novel way to interact with and explore interactome data, fostering comprehensive, high-quality data analysis. Smoother is available at https://github.com/Siegel-Lab/BioSmoother under the MIT license.
Collapse
Affiliation(s)
- Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
27
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Richard JLC, Zhong S. Single-cell multiplex chromatin and RNA interactions in aging human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546457. [PMID: 37425846 PMCID: PMC10326989 DOI: 10.1101/2023.06.28.546457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA (caRNA) 1-3. Chromatin complex compositions change during cellular differentiation and aging, and are expected to be highly heterogeneous among terminally differentiated single cells 4-7. Here we introduce the Multi-Nucleic Acid Interaction Mapping in Single Cell (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression, and RNA-chromatin associations within individual nuclei. Applied to 14 human frontal cortex samples from elderly donors, MUSIC delineates diverse cortical cell types and states. We observed the nuclei exhibiting fewer short-range chromatin interactions are correlated with an "older" transcriptomic signature and with Alzheimer's pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci (cis eQTLs) and a promoter tends to be the cell type where these cis eQTLs specifically affect their target gene's expression. Additionally, the female cortical cells exhibit highly heterogeneous interactions between the XIST non-coding RNA and Chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploring chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tri C. Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Zhou F, Tan P, Liu S, Chang L, Yang J, Sun M, Guo Y, Si Y, Wang D, Yu J, Ma Y. Subcellular RNA distribution and its change during human embryonic stem cell differentiation. Stem Cell Reports 2024; 19:126-140. [PMID: 38134924 PMCID: PMC10828685 DOI: 10.1016/j.stemcr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The spatial localization of RNA within cells is closely related to its function and also involved in cell fate determination. However, the atlas of RNA distribution within cells and dynamic changes during the developmental process are largely unknown. In this study, five subcellular components, including cytoplasmic extract, membrane extract, soluble nuclear extract, chromatin-bound nuclear extract, and cytoskeletal extract, were isolated and the rules of subcellular RNA distribution in human embryonic stem cells (hESCs) and its change during hESC differentiation are summarized for the first time. The overall distribution patterns of coding and non-coding RNAs are revealed. Interestingly, some developmental genes are found to be transcribed but confined to the chromatin in undifferentiated hESC. Unexpectedly, alternative splicing and polyadenylation endow spatial heterogeneity among different isoforms of the same gene. Finally, the dynamic pattern of RNA distribution during hESC differentiation is characterized, which provides new clues for a comprehensive understanding hESC pluripotency and differentiation.
Collapse
Affiliation(s)
- Fanqi Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiabin Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuehong Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Nylund P, Garrido-Zabala B, Kalushkova A, Wiklund HJ. The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma. Front Oncol 2023; 13:1303677. [PMID: 38148842 PMCID: PMC10750364 DOI: 10.3389/fonc.2023.1303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
31
|
Calandrelli R, Wen X, Charles Richard JL, Luo Z, Nguyen TC, Chen CJ, Qi Z, Xue S, Chen W, Yan Z, Wu W, Zaleta-Rivera K, Hu R, Yu M, Wang Y, Li W, Ma J, Ren B, Zhong S. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat Commun 2023; 14:6519. [PMID: 37845234 PMCID: PMC10579264 DOI: 10.1038/s41467-023-42274-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
The interphase genome is dynamically organized in the nucleus and decorated with chromatin-associated RNA (caRNA). It remains unclear whether the genome architecture modulates the spatial distribution of caRNA and vice versa. Here, we generate a resource of genome-wide RNA-DNA and DNA-DNA contact maps in human cells. These maps reveal the chromosomal domains demarcated by locally transcribed RNA, hereafter termed RNA-defined chromosomal domains. Further, the spreading of caRNA is constrained by the boundaries of topologically associating domains (TADs), demonstrating the role of the 3D genome structure in modulating the spatial distribution of RNA. Conversely, stopping transcription or acute depletion of RNA induces thousands of chromatin loops genome-wide. Activation or suppression of the transcription of specific genes suppresses or creates chromatin loops straddling these genes. Deletion of a specific caRNA-producing genomic sequence promotes chromatin loops that straddle the interchromosomal target sequences of this caRNA. These data suggest a feedback loop where the 3D genome modulates the spatial distribution of RNA, which in turn affects the dynamic 3D genome organization.
Collapse
Affiliation(s)
- Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xingzhao Wen
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | | | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Chien-Ju Chen
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhijie Qi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shuanghong Xue
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Weizhong Chen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhangming Yan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Weixin Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kathia Zaleta-Rivera
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Limouse C, Smith OK, Jukam D, Fryer KA, Greenleaf WJ, Straight AF. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat Commun 2023; 14:6073. [PMID: 37770513 PMCID: PMC10539311 DOI: 10.1038/s41467-023-41848-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.
Collapse
Affiliation(s)
- Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Owen K Smith
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - David Jukam
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, California, USA.
| |
Collapse
|
33
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Zeng C, Chujo T, Hirose T, Hamada M. Landscape of semi-extractable RNAs across five human cell lines. Nucleic Acids Res 2023; 51:7820-7831. [PMID: 37463833 PMCID: PMC10450185 DOI: 10.1093/nar/gkad567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Phase-separated membraneless organelles often contain RNAs that exhibit unusual semi-extractability using the conventional RNA extraction method, and can be efficiently retrieved by needle shearing or heating during RNA extraction. Semi-extractable RNAs are promising resources for understanding RNA-centric phase separation. However, limited assessments have been performed to systematically identify and characterize semi-extractable RNAs. In this study, 1074 semi-extractable RNAs, including ASAP1, DANT2, EXT1, FTX, IGF1R, LIMS1, NEAT1, PHF21A, PVT1, SCMH1, STRG.3024.1, TBL1X, TCF7L2, TVP23C-CDRT4, UBE2E2, ZCCHC7, ZFAND3 and ZSWIM6, which exhibited consistent semi-extractability were identified across five human cell lines. By integrating publicly available datasets, we found that semi-extractable RNAs tend to be distributed in the nuclear compartments but are dissociated from the chromatin. Long and repeat-containing semi-extractable RNAs act as hubs to provide global RNA-RNA interactions. Semi-extractable RNAs were divided into four groups based on their k-mer content. The NEAT1 group preferred to interact with paraspeckle proteins, such as FUS and NONO, implying that RNAs in this group are potential candidates of architectural RNAs that constitute nuclear bodies.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Takeshi Chujo
- Faculty of Life Sciences, Kumamoto University, Kumamoto 8608556, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 5650871, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo 1698555, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| |
Collapse
|
35
|
Tenorio M, Serwatowska J, Fernandez-Valverde SL, Oktaba K, Cortez D. Genome-wide analysis of RNA-chromatin interactions in lizards as a mean for functional lncRNA identification. BMC Genomics 2023; 24:444. [PMID: 37550606 PMCID: PMC10405410 DOI: 10.1186/s12864-023-09545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are defined as transcribed molecules longer than 200 nucleotides with little to no protein-coding potential. LncRNAs can regulate gene expression of nearby genes (cis-acting) or genes located on other chromosomes (trans-acting). Several methodologies have been developed to capture lncRNAs associated with chromatin at a genome-wide level. Analysis of RNA-DNA contacts can be combined with epigenetic and RNA-seq data to define potential lncRNAs involved in the regulation of gene expression. RESULTS We performed Chromatin Associated RNA sequencing (ChAR-seq) in Anolis carolinensis to obtain the genome-wide map of the associations that RNA molecules have with chromatin. We analyzed the frequency of DNA contacts for different classes of RNAs and were able to define cis- and trans-acting lncRNAs. We integrated the ChAR-seq map of RNA-DNA contacts with epigenetic data for the acetylation of lysine 16 on histone H4 (H4K16ac), a mark connected to actively transcribed chromatin in lizards. We successfully identified three trans-acting lncRNAs significantly associated with the H4K16ac signal, which are likely involved in the regulation of gene expression in A. carolinensis. CONCLUSIONS We show that the ChAR-seq method is a powerful tool to explore the RNA-DNA map of interactions. Moreover, in combination with epigenetic data, ChAR-seq can be applied in non-model species to establish potential roles for predicted lncRNAs that lack functional annotations.
Collapse
Affiliation(s)
- Mariela Tenorio
- Center for Genome Sciences, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - Selene L Fernandez-Valverde
- Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico
- School of Biotechnology and Biomolecular Sciences and the RNA Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katarzyna Oktaba
- Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico
| | - Diego Cortez
- Center for Genome Sciences, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
36
|
Tabe-Bordbar S, Sinha S. Integrative modeling of lncRNA-chromatin interaction maps reveals diverse mechanisms of nuclear retention. BMC Genomics 2023; 24:395. [PMID: 37442953 DOI: 10.1186/s12864-023-09498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Many long non-coding RNAs, known to be involved in transcriptional regulation, are enriched in the nucleus and interact with chromatin. However, their mechanisms of chromatin interaction and the served cellular functions are poorly understood. We sought to characterize the mechanisms of lncRNA nuclear retention by systematically mapping the sequence and chromatin features that distinguish lncRNA-interacting genomic segments. RESULTS We found DNA 5-mer frequencies to be predictive of chromatin interactions for all lncRNAs, suggesting sequence-specificity as a global theme in the interactome. Sequence features representing protein-DNA and protein-RNA binding motifs revealed potential mechanisms for specific lncRNAs. Complementary to these global themes, transcription-related features and DNA-RNA triplex formation potential were noted to be highly predictive for two mutually exclusive sets of lncRNAs. DNA methylation was also noted to be a significant predictor, but only when combined with other epigenomic features. CONCLUSIONS Taken together, our statistical findings suggest that a group of lncRNAs interacts with transcriptionally inactive chromatin through triplex formation, whereas another group interacts with transcriptionally active regions and is involved in DNA Damage Response (DDR) through formation of R-loops. Curiously, we observed a strong pattern of enrichment of 5-mers in four potentially interacting entities: lncRNA-bound DNA tiles, lncRNAs, miRNA seed sequences, and repeat elements. This finding points to a broad sequence-based network of interactions that may underlie regulation of fundamental cellular functions. Overall, this study reveals diverse sequence and chromatin features related to lncRNA-chromatin interactions, suggesting potential mechanisms of nuclear retention and regulatory function.
Collapse
Affiliation(s)
- Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, UAW 3108, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
37
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
38
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 932] [Impact Index Per Article: 466.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Lin TC, Liu YL, Liu YT, Liu WH, Liu ZY, Chang KL, Chang CY, Ni HC, Huang JH, Tsai HK. TRIPBASE: a database for identifying the human genomic DNA and lncRNA triplexes. NAR Genom Bioinform 2023; 5:lqad043. [PMID: 37223317 PMCID: PMC10202427 DOI: 10.1093/nargab/lqad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/04/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Long-non-coding RNAs (lncRNAs) are defined as RNA sequences which are >200 nt with no coding capacity. These lncRNAs participate in various biological mechanisms, and are widely abundant in a diversity of species. There is well-documented evidence that lncRNAs can interact with genomic DNAs by forming triple helices (triplexes). Previously, several computational methods have been designed based on the Hoogsteen base-pair rule to find theoretical RNA-DNA:DNA triplexes. While powerful, these methods suffer from a high false-positive rate between the predicted triplexes and the biological experiments. To address this issue, we first collected the experimental data of genomic RNA-DNA triplexes from antisense oligonucleotide (ASO)-mediated capture assays and used Triplexator, the most widely used tool for lncRNA-DNA interaction, to reveal the intrinsic information on true triplex binding potential. Based on the analysis, we proposed six computational attributes as filters to improve the in-silico triplex prediction by removing most false positives. Further, we have built a new database, TRIPBASE, as the first comprehensive collection of genome-wide triplex predictions of human lncRNAs. In TRIPBASE, the user interface allows scientists to apply customized filtering criteria to access the potential triplexes of human lncRNAs in the cis-regulatory regions of the human genome. TRIPBASE can be accessed at https://tripbase.iis.sinica.edu.tw/.
Collapse
Affiliation(s)
| | | | | | - Wan-Hsin Liu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Zong-Yan Liu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Li Chang
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chin-Yao Chang
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung Chih Ni
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Hsin Huang
- Correspondence may also be addressed to Jia-Hsin Huang. Tel: +886 2 2788 3799 (Ext 1475); Fax: +886 2 2651 9574;
| | - Huai-Kuang Tsai
- To whom correspondence should be addressed. Tel: +886 2 2788 3799 (Ext 1718); Fax: +886 2 2782 4814;
| |
Collapse
|
40
|
Cicconetti C, Lauria A, Proserpio V, Masera M, Tamburrini A, Maldotti M, Oliviero S, Molineris I. 3plex enables deep computational investigation of triplex forming lncRNAs. Comput Struct Biotechnol J 2023; 21:3091-3102. [PMID: 37273849 PMCID: PMC10236371 DOI: 10.1016/j.csbj.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression through different molecular mechanisms, including DNA binding via the formation of RNA:DNA:DNA triple helices (TPXs). Despite the increasing amount of experimental evidence, TPXs investigation remains challenging. Here we present 3plex, a software able to predict TPX interactions in silico. Given an RNA sequence and a set of DNA sequences, 3plex integrates 1) Hoogsteen pairing rules that describe the biochemical interactions between RNA and DNA nucleotides, 2) RNA secondary structure prediction and 3) determination of the TPX thermal stability derived from a collection of TPX experimental evidences. We systematically collected and uniformly re-analysed published experimental lncRNA binding sites on human and mouse genomes. We used these data to evaluate 3plex performance and showed that its specific features allow a reliable identification of TPX interactions. We compared 3plex with the other available software and obtained comparable or even better accuracy at a fraction of the computation time. Interestingly, by inspecting collected data with 3plex we found that TPXs tend to be shorter and more degenerated than previously expected and that the majority of analysed lncRNAs can directly bind to the genome by TPX formation. Those results suggest that an important fraction of lncRNAs can exert its biological function through this mechanism. The software is available at https://github.com/molinerisLab/3plex.
Collapse
Affiliation(s)
- Chiara Cicconetti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Andrea Lauria
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Valentina Proserpio
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Marco Masera
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Annalaura Tamburrini
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Mara Maldotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Ivan Molineris
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| |
Collapse
|
41
|
Gavrilov AA, Evko GS, Galitsyna AA, Ulianov SV, Kochetkova TV, Merkel AY, Tyakht AV, Razin SV. RNA-DNA interactomes of three prokaryotes uncovered by proximity ligation. Commun Biol 2023; 6:473. [PMID: 37120653 PMCID: PMC10148824 DOI: 10.1038/s42003-023-04853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
Proximity ligation approaches, which are widely used to study the spatial organization of the genome, also make it possible to reveal patterns of RNA-DNA interactions. Here, we use RedC, an RNA-DNA proximity ligation approach, to assess the distribution of major RNA types along the genomes of E. coli, B. subtilis, and thermophilic archaeon T. adornatum. We find that (i) messenger RNAs preferentially interact with their cognate genes and the genes located downstream in the same operon, which is consistent with polycistronic transcription; (ii) ribosomal RNAs preferentially interact with active protein-coding genes in both bacteria and archaea, indicating co-transcriptional translation; and (iii) 6S noncoding RNA, a negative regulator of bacterial transcription, is depleted from active genes in E. coli and B. subtilis. We conclude that the RedC data provide a rich resource for studying both transcription dynamics and the function of noncoding RNAs in microbial organisms.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Grigory S Evko
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Tatiana V Kochetkova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 117312, Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 117312, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
42
|
Ryabykh GK, Kuznetsov SV, Korostelev YD, Sigorskikh AI, Zharikova AA, Mironov AA. RNA-Chrom: a manually curated analytical database of RNA-chromatin interactome. Database (Oxford) 2023; 2023:baad025. [PMID: 37221043 PMCID: PMC10205464 DOI: 10.1093/database/baad025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023]
Abstract
Every year there is more and more evidence that non-coding RNAs play an important role in biological processes affecting various levels of organization of living systems: from the cellular (regulation of gene expression, remodeling and maintenance of chromatin structure, co-transcriptional suppression of transposons, splicing, post-transcriptional RNA modifications, etc.) to cell populations and even organismal ones (development, aging, cancer, cardiovascular and many other diseases). The development and creation of mutually complementary databases that will aggregate, unify and structure different types of data can help to reach the system level of studying non-coding RNAs. Here we present the RNA-Chrom manually curated analytical database, which contains the coordinates of billions of contacts of thousands of human and mouse RNAs with chromatin. Through the user-friendly web interface (https://rnachrom2.bioinf.fbb.msu.ru/), two approaches to the analysis of the RNA-chromatin interactome were implemented. Firstly, to find out whether the RNA of interest to a user contacts with chromatin, and if so, with which genes or DNA loci? Secondly, to find out which RNAs are in contact with the DNA locus of interest to a user (and probably participate in its regulation), and if there are such, what is the nature of their interaction? For a more detailed study of contact maps and their comparison with other data, the web interface allows a user to view them in the UCSC Genome Browser. Database URL https://genome.ucsc.edu/.
Collapse
Affiliation(s)
- G K Ryabykh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - S V Kuznetsov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Y D Korostelev
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - A I Sigorskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - A A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., Moscow, 101000, Russia
| | - A A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
43
|
Li M, Liu Q, Xie S, Fu C, Li J, Tian C, Li X, Li C. LncRNA TCONS_00323213 Promotes Myogenic Differentiation by Interacting with PKNOX2 to Upregulate MyoG in Porcine Satellite Cells. Int J Mol Sci 2023; 24:ijms24076773. [PMID: 37047747 PMCID: PMC10094759 DOI: 10.3390/ijms24076773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Myogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA TCONS_00323213, which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis. We found that TCONS_00323213 affected the proliferation and differentiation of PSC in vitro. We performed quantitative polymerase chain reaction (qPCR), 5-ethynyl-20-deoxyuridine (EdU), western blotting, immunofluorescence staining, pull-down assays, and cleavage under targets and tagmentation (CUT and Tag) assays to clarify the effects and action mechanisms of TCONS_00323213. LncRNA TCONS_00323213 inhibited myoblast proliferation based on analyses of cell survival rates during PSC proliferation. Functional analyses revealed that TCONS_00323213 promotes cell differentiation and enhances myogenin (MyoG), myosin heavy chain (MyHC), and myocyte enhancer factor 2 (MEF2C) during myoblast differentiation. As determined by pull-down and RNA immunoprecipitation (RIP) assays, the lncRNA TCONS_00323213 interacted with PBX/Knotted Homeobox 2 (PKNOX2). CUT and Tag assays showed that PKNOX2 was significantly enriched on the MyoG promoter after lncRNA TCONS_00323213 knockdown. Our findings demonstrate that the interaction between lncRNA TCONS_00323213 and PKNOX2 relieves the inhibitory effect of PKNOX2 on the MyoG promoter, increases its expression, and promotes PSC differentiation. This novel role of lncRNA TCONS_00323213 sheds light on the molecular mechanisms by which lncRNAs regulate porcine myogenesis.
Collapse
Affiliation(s)
- Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
45
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
47
|
Tang J, Wang X, Xiao D, Liu S, Tao Y. The chromatin-associated RNAs in gene regulation and cancer. Mol Cancer 2023; 22:27. [PMID: 36750826 PMCID: PMC9903551 DOI: 10.1186/s12943-023-01724-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Eukaryotic genomes are prevalently transcribed into many types of RNAs that translate into proteins or execute gene regulatory functions. Many RNAs associate with chromatin directly or indirectly and are called chromatin-associated RNAs (caRNAs). To date, caRNAs have been found to be involved in gene and transcriptional regulation through multiple mechanisms and have important roles in different types of cancers. In this review, we first present different categories of caRNAs and the modes of interaction between caRNAs and chromatin. We then detail the mechanisms of chromatin-associated nascent RNAs, chromatin-associated noncoding RNAs and emerging m6A on caRNAs in transcription and gene regulation. Finally, we discuss the roles of caRNAs in cancer as well as epigenetic and epitranscriptomic mechanisms contributing to cancer, which could provide insights into the relationship between different caRNAs and cancer, as well as tumor treatment and intervention.
Collapse
Affiliation(s)
- Jun Tang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078 Hunan China
| | - Xiang Wang
- grid.216417.70000 0001 0379 7164Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
48
|
Roy AL, Conroy RS, Taylor VG, Mietz J, Fingerman IM, Pazin MJ, Smith P, Hutter CM, Singer DS, Wilder EL. Elucidating the structure and function of the nucleus-The NIH Common Fund 4D Nucleome program. Mol Cell 2023; 83:335-342. [PMID: 36640770 PMCID: PMC9898192 DOI: 10.1016/j.molcel.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Genomic architecture appears to play crucial roles in health and a variety of diseases. How nuclear structures reorganize over different timescales is elusive, partly because the tools needed to probe and perturb them are not as advanced as needed by the field. To fill this gap, the National Institutes of Health Common Fund started a program in 2015, called the 4D Nucleome (4DN), with the goal of developing and ultimately applying technologies to interrogate the structure and function of nuclear organization in space and time.
Collapse
Affiliation(s)
- Ananda L Roy
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA; Division of Program Coordination, Planning, and Strategic Initiative, National Institutes of Health, Bethesda, MD 20892, USA; Office of the National Institutes of Health Director, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Richard S Conroy
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA; Division of Program Coordination, Planning, and Strategic Initiative, National Institutes of Health, Bethesda, MD 20892, USA; Office of the National Institutes of Health Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica G Taylor
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA; Division of Program Coordination, Planning, and Strategic Initiative, National Institutes of Health, Bethesda, MD 20892, USA; Office of the National Institutes of Health Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judy Mietz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian M Fingerman
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Pazin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Carolyn M Hutter
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dinah S Singer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth L Wilder
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA; Division of Program Coordination, Planning, and Strategic Initiative, National Institutes of Health, Bethesda, MD 20892, USA; Office of the National Institutes of Health Director, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Warwick T, Brandes RP, Leisegang MS. Computational Methods to Study DNA:DNA:RNA Triplex Formation by lncRNAs. Noncoding RNA 2023; 9:ncrna9010010. [PMID: 36827543 PMCID: PMC9965544 DOI: 10.3390/ncrna9010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there exist several computational methods designed to predict these sequences. This review summarises the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally. Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make important contributions to gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-6996; Fax: +49-69-6301-7668
| |
Collapse
|
50
|
Méteignier LV, Nützmann HW, Papon N, Osbourn A, Courdavault V. Emerging mechanistic insights into the regulation of specialized metabolism in plants. NATURE PLANTS 2023; 9:22-30. [PMID: 36564633 DOI: 10.1038/s41477-022-01288-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.
Collapse
Affiliation(s)
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Nicolas Papon
- IRF, SFR ICAT, Université Angers and Université de Bretagne-Occidentale, Angers, France
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK.
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
| |
Collapse
|