1
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Mousavinejad SN, Hosseini SA, Mohammadpour M, Ferdosi F, Dadgostar E, Abdolghaderi S, Khatami SH. Long non-coding RNAs in schizophrenia. Clin Chim Acta 2025; 574:120340. [PMID: 40311728 DOI: 10.1016/j.cca.2025.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of the pathogenesis of schizophrenia, a complex neuropsychiatric disorder influenced by genetic and environmental factors. These transcripts modulate gene expression through diverse mechanisms, including chromatin remodeling, transcriptional regulation, and posttranscriptional modifications. Recent studies have demonstrated significant alterations in lncRNA expression profiles in both the peripheral blood and brain tissues of schizophrenia patients, highlighting their potential as biomarkers and therapeutic targets. Dysregulated lncRNAs such as Gomafu, DISC-2, BDNF-AS, MEG3, and TUG1 have been linked to neurodevelopmental processes, inflammatory responses, and key synaptic plasticity pathways implicated in schizophrenia. Furthermore, antipsychotic treatments have been shown to influence lncRNA expression, which is correlated with symptom improvement. Sex-specific and age-related differences in lncRNA regulation further underscore their complexity and relevance to schizophrenia pathophysiology. This review consolidates current knowledge on the role of lncRNAs in schizophrenia, emphasizing their diagnostic potential.
Collapse
Affiliation(s)
- Seyyed Navid Mousavinejad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Mohammadpour
- Department of Physical Medicine and Rehabilitation, Iran University of Medical sciences, Tehran, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Abdolghaderi
- Department of Physical Medicine and Rehabilitation, Iran University of Medical sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Kim S, Woo Y, Um D, Chun I, Noh SJ, Ji HA, Jung N, Goo BS, Yoo JY, Mun DJ, Nghi TD, Nhung TTM, Han SH, Lee SB, Lee W, Yun J, So KH, Kim DK, Jang H, Suh Y, Rah JC, Baek ST, Yoon KJ, Kim MS, Kim TK, Park SK. Perturbed cell fate decision by schizophrenia-associated AS3MT d2d3 isoform during corticogenesis. SCIENCE ADVANCES 2025; 11:eadp8271. [PMID: 40153497 PMCID: PMC11952104 DOI: 10.1126/sciadv.adp8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The neurodevelopmental theory of schizophrenia emphasizes early brain development in its etiology. Genome-wide association studies have linked schizophrenia to genetic variations of AS3MT (arsenite methyltransferase) gene, particularly the increased expression of AS3MTd2d3 isoform. To investigate the biological basis of this association with schizophrenia pathophysiology, we established a transgenic mouse model (AS3MTd2d3-Tg) ectopically expressing AS3MTd2d3 at the cortical neural stem cells. AS3MTd2d3-Tg mice exhibited enlarged ventricles and deficits in sensorimotor gating and sociability. Single-cell and single-nucleus RNA sequencing analyses of AS3MTd2d3-Tg brains revealed cell fate imbalances and altered excitatory neuron composition. AS3MTd2d3 localized to centrosome, disrupting mitotic spindle orientation and differentiation in developing neocortex and organoids, in part through NPM1 (Nucleophosmin 1). The structural analysis identified that hydrophobic residues exposed in AS3MTd2d3 are critical for its pathogenic function. Therefore, our findings may help to explain the early pathological features of schizophrenia.
Collapse
Affiliation(s)
- Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeon Ah Ji
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Yeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Hyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Wonhyeok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghyeok Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dae-Kyum Kim
- Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1A4, Canada
- Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
5
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
6
|
Tizabi Y, Antonelli MC, Tizabi D, Aschner M. Role of Glial Cells and Receptors in Schizophrenia Pathogenesis. Neurochem Res 2025; 50:85. [PMID: 39869278 DOI: 10.1007/s11064-025-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr. Arne Schousboe's passion) and two of their most implicated receptors, toll-like receptors (TLRs), and nicotinic cholinergic receptors, in SCZ pathology with suggestions as potential targets in this devastating neuropsychiatric condition.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| | - Marta C Antonelli
- Facultad de Medicina, UBA, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Buenos Aires, Argentina
| | - Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Wang S, Tang H, Himeno R, Solé-Casals J, Caiafa CF, Han S, Aoki S, Sun Z. Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108419. [PMID: 39293231 DOI: 10.1016/j.cmpb.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND OBJECTIVE The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions. METHODS This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model's predictions are both accurate and comprehensible. RESULTS The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively. CONCLUSION Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
Collapse
Affiliation(s)
- Shurun Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China; School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| | - Hao Tang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Industrial Automation Engineering Technology Research Center of Anhui Province, Hefei, 230009, China
| | - Ryutaro Himeno
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Department of Psychiatry, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Cesar F Caiafa
- Instituto Argentino de Radioastronomía-CONICET CCT La Plata/CIC-PBA/UNLP, V. Elisa, 1894, Argentina
| | - Shuning Han
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN, Wako-Shi, Saitama, 351-0198, Japan
| | - Shigeki Aoki
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Zhe Sun
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| |
Collapse
|
9
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
12
|
Li X, Lin Z, Liu C, Bai R, Wu D, Yang J. Glymphatic Imaging in Pediatrics. J Magn Reson Imaging 2024; 59:1523-1541. [PMID: 37819198 DOI: 10.1002/jmri.29040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The glymphatic system, which facilitates cerebrospinal fluid (CSF) flow through the brain parenchyma, is important for brain development and waste clearance. Advances in imaging techniques, particularly magnetic resonance imaging, have make it possible to evaluate glymphatic structures and functions in vivo. Recently, several studies have focused on the development and alterations of the glymphatic system in pediatric disorders. This review discusses the development of the glymphatic system, advances of imaging techniques and their applications in pediatric disorders. First, the results of the reviewed studies indicate that the development of the glymphatic system is a long-lasting process that continues into adulthood. Second, there is a need for improved glymphatic imaging techniques that are non-invasive and fast to improve suitability for pediatric applications, as some of existing methods use contrast injection and are susceptible to motion artifacts from long scanning times. Several novel techniques are potentially feasible for pediatric patients and may be used in the future. Third, the glymphatic dysfunction is associated with a large number of pediatric disorders, although only a few have recently been investigated. In conclusion, research on the pediatric glymphatic system remains an emerging field. The preliminary applications of glymphatic imaging techniques have provided unique insight into the pathological mechanism of pediatric diseases, but mainly limited in visualization of enlarged perivascular spaces and morphological measurements on CSF volumes. More in-depth studies on glymphatic functions are required to improve our understanding of the mechanisms underlying brain development and pediatric diseases. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Soutschek M, Schratt G. Non-coding RNA in the wiring and remodeling of neural circuits. Neuron 2023:S0896-6273(23)00341-0. [PMID: 37230080 DOI: 10.1016/j.neuron.2023.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
The brain constantly adapts to changes in the environment, a capability that underlies memory and behavior. Long-term adaptations require the remodeling of neural circuits that are mediated by activity-dependent alterations in gene expression. Over the last two decades, it has been shown that the expression of protein-coding genes is significantly regulated by a complex layer of non-coding RNA (ncRNA) interactions. The aim of this review is to summarize recent discoveries regarding the functional involvement of ncRNAs during different stages of neural circuit development, activity-dependent circuit remodeling, and circuit maladapations underlying neurological and neuropsychiatric disorders. In addition to the intensively studied microRNA (miRNA) family, we focus on more recently added ncRNA classes, such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), and discuss the complex regulatory interactions between these different RNAs. We conclude by discussing the potential relevance of ncRNAs for cell-type and -state-specific regulation in the context of memory formation, the evolution of human cognitive abilities, and the development of new diagnostic and therapeutic tools in brain disorders.
Collapse
Affiliation(s)
- Michael Soutschek
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
16
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
17
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Li XJ, Yu JH, Wu X, Zhu XM, Lv P, Du Z, Lu Y, Wu X, Yao J. Ketamine enhances dopamine D1 receptor expression by modulating microRNAs in a ketamine-induced schizophrenia-like mouse model. Neurotoxicol Teratol 2022; 91:107079. [PMID: 35202796 DOI: 10.1016/j.ntt.2022.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
The abnormal expression of the dopamine D1 receptor (DRD1) may be associated with schizophrenia. MicroRNAs (miRNAs) can post-transcriptionally regulate DRD1 expression. Here, we established a ketamine-induced schizophrenia-like behavior mouse model and investigated the changes in miR-15a-3p, miR-15b-3p, miR-16-1-3p, and DRD1 in response to ketamine. Administration of high-dose ketamine for seven consecutive days to mice simulated the main symptoms of schizophrenia. The mice exhibited increasing excitability and autonomous activity and reduced learning and memory, including spatial memory. Moreover, ketamine decreased miR-15a-3p, miR-15b-3p, and miR-16-1-3p expression levels in the prefrontal cortex (PFC) and miR-16-1-3p expression in the hippocampus, whereas DRD1 expression increased in these brain regions. In HT22 mouse hippocampal neuronal cells, ketamine induced a dose-dependent increase of endogenous DRD1, which was partially attenuated by a combination of miR-15b-3p and miR-16-1-3p mimics. Indeed, the miR-15b-3p and miR-16-1-3p mimics could significantly inhibit endogenous DRD1expression. We identified +72 to +78 bp (TGCTGCT) of the DRD1 3'UTR as the core regulatory region recognized by the target miRNAs. In summary, we developed a ketamine-induced schizophrenia-like behavior mouse model and found that ketamine inhibited the levels of miR-15a-3p, miR-15b-3p, miR-16-1-3p and increased DRD1 expression in mice.
Collapse
Affiliation(s)
- Xiao-Jin Li
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Juan-Han Yu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, the Affiliated Sheng Jing Hospital of China Medical University, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| |
Collapse
|
19
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Zhang S, Xing M, Chen G, Tong L, Zhang H, Du D. Upregulation of miR‐335 and miR‐674‐3p in the rostral ventrolateral medulla contributes to stress‐induced hypertension. J Neurochem 2022; 161:387-404. [DOI: 10.1111/jnc.15589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences Zhejiang Chinese Medical University Hangzhou Zhejiang China
| | - Mengyu Xing
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Gaojun Chen
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Lei Tong
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Haili Zhang
- School of Life Sciences Heze University Heze Shandong China
| | - Dongshu Du
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
- Shaoxing institute of technology Zhejiang China
- School of Life Sciences Heze University Heze Shandong China
| |
Collapse
|
21
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
23
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
N-methyl-D-aspartate receptor antibody and the choroid plexus in schizophrenia patients with tardive dyskinesia. J Psychiatr Res 2021; 142:290-298. [PMID: 34411812 DOI: 10.1016/j.jpsychires.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Immune disturbance has been postulated to be one of the mechanisms underlying the pathogenesis of tardive dyskinesia (TD). Recently, the role of autoimmune abnormality in TD has been increasingly recognized. Autoantibodies against neuronal N-methyl-D-aspartate receptor (NMDAR) may be cross-reactive in the brain in neuropsychiatric disorders, and the choroid plexus (CP) is a crucial immune barrier in the central nervous system (CNS). We supposed that NMDAR antibodies might underlie the pathophysiological process of TD through the mediation of CP. METHODS Serum NMDAR antibody levels were assessed by enzyme-linked immunosorbent assay, CP and ventricle volumes were assessed by magnetic resonance imaging in schizophrenia patients with TD (n = 61), without TD (NTD, n = 61), and in healthy controls (n = 74). Psychopathology and TD severity were assessed by the Positive and Negative Syndrome Scale and Abnormal Involuntary Movement Scale (AIMS). RESULTS NMDAR antibody levels were significantly higher, CP volumes were larger in the TD group than in the NTD group (p = 0.022; p = 0.019, respectively). In the TD group, higher NMDAR antibody level was correlated with larger CP volume (β = 0.406, p = 0.002). An elevated NMDAR antibody level and enlarged CP volume were correlated with orofacial AIMS score (β = 0.331, p = 0.011; β = 0.459, p = 3.34 × 10-4, respectively). In a mediation model, the effect of NMDAR antibody level on the orofacial AIMS score was mediated by the CP volume (indirect effect: β = 0.08, 95% confidence interval = 0.002-0.225; direct effect: β = 0.14, p = 0.154). CONCLUSIONS Our findings highlight a potential NMDAR antibody-associated mechanism in orofacial TD, which may be mediated by increased CP volume.
Collapse
|
25
|
Smaller subcortical volumes and enlarged lateral ventricles are associated with higher global functioning in young adults with 22q11.2 deletion syndrome with prodromal symptoms of schizophrenia. Psychiatry Res 2021; 301:113979. [PMID: 33993037 DOI: 10.1016/j.psychres.2021.113979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS) is a developmental genetic syndrome associated with a 30% risk for developing schizophrenia. Lateral ventricles and subcortical structures are abnormal in this syndrome as well as in schizophrenia. Here, we investigated whether these structures are related in young adults with 22q11DS with and without prodromal symptoms (PS) for schizophrenia and whether abnormalities in volumes are associated with global functioning. MR images were acquired on a 3T scanner from 51 individuals with 22q11DS and 30 healthy controls (mean age: 21±2 years). Correlations were performed to evaluate the relationship between ventricular and subcortical volumes, with Global Assessment of Functioning (GAF) and Premorbid Adjustment Scale (PAS) in each group. Lateral ventricular volumes correlated negatively with subcortical volumes in individuals with 22q11DS. In individuals with 22q11DS with PS only, GAF correlated positively with volumes of the lateral ventricles and negatively with subcortical volumes. PAS correlated negatively with lateral ventricle volumes, and positively with volumes of subcortical structures. The results suggest a common neurodevelopmental mechanism related to the growth of these brain structures. Further, the ratio between the volumes and clinical measures could potentially be used to characterize individuals with 22q11DS and those from the general population for the risk of the development of schizophrenia.
Collapse
|
26
|
Forsyth JK, Mennigen E, Lin A, Sun D, Vajdi A, Kushan-Wells L, Ching CRK, Villalon-Reina JE, Thompson PM, Bearden CE. Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. Cereb Cortex 2021; 31:3285-3298. [PMID: 33638978 PMCID: PMC8196250 DOI: 10.1093/cercor/bhab008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
22q11.2 deletion syndrome (22q11DS) results from a hemizygous deletion that typically spans 46 protein-coding genes and is associated with widespread alterations in brain morphology. The specific genetic mechanisms underlying these alterations remain unclear. In the 22q11.2 ENIGMA Working Group, we characterized cortical alterations in individuals with 22q11DS (n = 232) versus healthy individuals (n = 290) and conducted spatial convergence analyses using gene expression data from the Allen Human Brain Atlas to prioritize individual genes that may contribute to altered surface area (SA) and cortical thickness (CT) in 22q11DS. Total SA was reduced in 22q11DS (Z-score deviance = -1.04), with prominent reductions in midline posterior and lateral association regions. Mean CT was thicker in 22q11DS (Z-score deviance = +0.64), with focal thinning in a subset of regions. Regional expression of DGCR8 was robustly associated with regional severity of SA deviance in 22q11DS; AIFM3 was also associated with SA deviance. Conversely, P2RX6 was associated with CT deviance. Exploratory analysis of gene targets of microRNAs previously identified as down-regulated due to DGCR8 deficiency suggested that DGCR8 haploinsufficiency may contribute to altered corticogenesis in 22q11DS by disrupting cell cycle modulation. These findings demonstrate the utility of combining neuroanatomic and transcriptomic datasets to derive molecular insights into complex, multigene copy number variants.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Interdepartmental Neuroscience Program, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis 2021; 36:849-858. [PMID: 33608830 DOI: 10.1007/s11011-021-00692-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
Schizophrenia is one of the most agonizing neurodegenerative diseases of the brain. Research undertaken to understand the molecular mechanism of this disease has undergone a transition and currently more emphasis is put on long noncoding RNA (lncRNA). High expression level of lncRNA in the brain contributes to several molecular pathways essential for the proper functioning of neurons, neurotransmitters, and synapses, that are often found dysfunctional in Schizophrenia. Recently, the association of lncRNA with various molecular factors in the brain has been explored to a considerably large extent. This review comprehends the significance of lncRNA in causing profound regulatory effect in the brain and how any alterations to the association of lncRNA with regulatory proteins, enzymes and other noncoding RNA could contribute to the aetiology of Schizophrenia.
Collapse
Affiliation(s)
- Parinita Mishra
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
28
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
29
|
Fiksinski AM, Schneider M, Zinkstok J, Baribeau D, Chawner SJRA, Vorstman JAS. Neurodevelopmental Trajectories and Psychiatric Morbidity: Lessons Learned From the 22q11.2 Deletion Syndrome. Curr Psychiatry Rep 2021; 23:13. [PMID: 33625600 PMCID: PMC7904715 DOI: 10.1007/s11920-021-01225-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The 22q11.2 deletion syndrome (22q11DS) is associated with a broad spectrum of neurodevelopmental phenotypes and is the strongest known single genetic risk factor for schizophrenia. Compared to other rare structural pathogenic genetic variants, 22q11DS is relatively common and one of the most extensively studied. This review provides a state-of-the-art overview of current insights regarding associated neurodevelopmental phenotypes and potential implications for 22q11DS and beyond. RECENT FINDINGS We will first discuss recent findings with respect to neurodevelopmental phenotypic expression associated with 22q11DS, including psychotic disorders, intellectual functioning, autism spectrum disorders, as well as their interactions. Second, we will address considerations that are important in interpreting these data and propose potential implications for both the clinical care for and the empirical study of individuals with 22q11DS. Third, we will highlight variable penetrance and pleiotropy with respect to neurodevelopmental phenotypes in 22q11DS. We will discuss how these phenomena are consistently observed in the context of virtually all rare pathogenic variants and that they pose substantial challenges from both a clinical and a research perspective. We outline how 22q11DS could be viewed as a genetic model for studying neurodevelopmental phenotypes. In addition, we propose that 22q11DS research can help elucidate mechanisms underlying variable expression and pleiotropy of neurodevelopmental phenotypes, insights that are likely relevant for 22q11DS and beyond, including for individuals with other rare pathogenic genetic variants and for individuals with idiopathic neurodevelopmental conditions.
Collapse
Affiliation(s)
- Ania M. Fiksinski
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Maude Schneider
- Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Department of Neurosciences, Center for Contextual Psychiatry, KU Leuven, Leuven, Belgium
| | - Janneke Zinkstok
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Danielle Baribeau
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Samuel J. R. A. Chawner
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jacob A. S. Vorstman
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
30
|
Boscher E, Hernandez-Rapp J, Petry S, Keraudren R, Rainone S, Loiselle A, Goupil C, Turgeon A, St-Amour I, Planel E, Hébert SS. Advances and Challenges in Understanding MicroRNA Function in Tauopathies: A Case Study of miR-132/212. Front Neurol 2020; 11:578720. [PMID: 33117266 PMCID: PMC7553085 DOI: 10.3389/fneur.2020.578720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
In the past decade, several groups have reported that microRNAs (miRNAs) can participate in the regulation of tau protein at different levels, including its expression, alternative splicing, phosphorylation, and aggregation. These observations are significant, since the abnormal regulation and deposition of tau is associated with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry in tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology could therefore provide important insights into disease risk, diagnostics, and perhaps therapeutics. In this Perspective article, we discuss recent advances in miRNA research related to tau. While proof-of-principle studies hold promise, physiological validation remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated in human tauopathies and shown to regulate tau in vitro and in vivo. No significant differences in survival, motor deficits or body weight were observed in PS19 mice lacking miR-132/212. Age-specific effects were seen on tau expression and phosphorylation but not aggregation. Moreover, various miR-132/212 targets previously implicated in tau modulation were unaffected (GSK-3β, Foxo3a, Mapk1, p300) or, unexpectedly, reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These observations highlight the challenges of miRNA research in living models, and current limitations of transgenic tau mouse models lacking functional miRNA binding sites. Based on these findings, we finally recommend different strategies to better understand the role of miRNAs in tau physiology and pathology.
Collapse
Affiliation(s)
- Emmanuelle Boscher
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Serena Petry
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sara Rainone
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Turgeon
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M. Noncoding RNAs and Midbrain DA Neurons: Novel Molecular Mechanisms and Therapeutic Targets in Health and Disease. Biomolecules 2020; 10:E1269. [PMID: 32899172 PMCID: PMC7563414 DOI: 10.3390/biom10091269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Edward Faustine Ngalya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|