1
|
Xia M, Wen X, Bian X, Zhan L, Liu X. Prenatal diagnosis and genetic counseling of a paternally inherited chromosome 8q24.22q24.23 microdeletion in a Chinese family. Eur J Obstet Gynecol Reprod Biol 2025; 307:211-213. [PMID: 39954449 DOI: 10.1016/j.ejogrb.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Copy number variants (CNVs) are an important source of normal and pathogenic genome variations. Especially CNVs identified in prenatal cases need careful considerations and correct interpretation if those are harmless or harmful variants from the norm. The literature on 8q24.22q24.23 microdeletion is rare, which is a challenge for genetic counselling. CASE PRESENTATION We have performed prenatal diagnosis and genetic counseling of a paternally inherited 8q24.22q24.23 microdeletion. In this family, father with normal phenotype and fetus with abnormal phenotype have the same microdeletion. CONCLUSION Chromosomal microdeletions and microduplications are difficult to detect by conventional cytogenetics, combination of prenatal ultrasound, karyotype analysis, copy number variation sequencing (CNV-seq), whole-exome sequencing (WES) and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.
Collapse
Affiliation(s)
- Min Xia
- Reproductive Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Xin Wen
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Xuna Bian
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lin Zhan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, PR China
| | - Xu Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Dupont WD, Jones AL, Smith JR. Coding Variants of the Genitourinary Development Gene WNT9B Carry High Risk for Prostate Cancer. JCO Precis Oncol 2025; 9:e2400569. [PMID: 39874495 PMCID: PMC11980042 DOI: 10.1200/po-24-00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Considerable genetic heterogeneity is currently thought to underlie hereditary prostate cancer (HPC). Most families meeting criteria for HPC cannot be attributed to currently known pathogenic variants. METHODS To discover pathogenic variants predisposing to prostate cancer, we conducted a familial case-control association study using both genome-wide single-allele and identity-by-descent analytic approaches. Sequence of high-risk haplotype carriers was used for variant detection. Candidate pathogenic variants were tested for association with prostate cancer across independent biobanks for replication of observations. RESULTS Pathogenic variants within WNT9B were associated with familial prostate cancer and observations replicated within four of four independent biobanks. WNT9B E152K carried 2.5-fold risk and reached genome-wide significance under meta-analysis, collectively encompassing a half million patients. WNT9B Q47R was also associated with prostate cancer with genome-wide significance among Finns, for which identity-by-descent analyses confirmed a founder effect. WNT9B shares an unexpected commonality with the previously established prostate cancer risk genes HOXB13 and HNF1B: they are each required for embryonic prostate development. With this recognition, we further evaluated two additional genes known to cause Mendelian genitourinary developmental defects, KMT2D and DHCR7. These too were nominally associated with prostate cancer under meta-analyses. CONCLUSION WNT9B and additional genes that are required for early genitourinary development are also involved in the later development of prostate cancer.
Collapse
Affiliation(s)
- William D. Dupont
- Medical Research Service, Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Angela L. Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jeffrey R. Smith
- Medical Research Service, Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Ren X, Zhang L, Wang K, Li F. Causal association of peripheral immune cell counts with risk of prostate cancer: insights from bidirectional Mendelian randomization. Front Oncol 2024; 14:1374927. [PMID: 39678517 PMCID: PMC11638012 DOI: 10.3389/fonc.2024.1374927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/15/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives This study aimed to examine the causal relationships between peripheral immune cell counts and prostate cancer, adhering to Mendelian Randomization reporting guidelines for transparency and reproducibility. Methods In this study, bidirectional Mendelian randomization (MR) analysis, which includes MR-Egger, weighted median, weighted mode, and inverse variance weighted (IVW) approaches, was utilized to evaluate the bidirectional causal relationship between peripheral immune cell counts and the risk of PCa. Results The primary analysis using the IVW method suggests a potential causal association between basophil counts and the risk of prostate cancer (PCa), with an odds ratio (OR) of 1.111 and a 95% confidence interval (CI) of 1.011-1.222 (P = 0.028). Conversely, non-causal associations have been observed between other peripheral immune cell types, such as white blood cells, neutrophils, lymphocytes, eosinophils, or monocytes, and the incidence of PCa (P values > 0.05). Furthermore, although reverse analysis indicated a causal link between PCa and the counts of leukocytes and neutrophils (OR = 1.013; 95% CI = 1.002-1.225; P = 0.018 and OR = 1.013; 95% CI = 1.002-1.025; P = 0.019), no causal association was detected between PCa and basophil count (P value > 0.050). Conclusion This study suggests a potential bidirectional link between peripheral immune cells and prostate cancer, but inconsistencies in Mendelian Randomization methods mean these findings are preliminary and require further investigation.
Collapse
Affiliation(s)
- Xiaolu Ren
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Li Zhang
- Department of Urology, People’s Hospital of Wuzhong, Wuzhong, China
| | - Kehua Wang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Manirakiza AV, Baichoo S, Uwineza A, Dukundane D, Uwinkindi F, Ngendahayo E, Rubagumya F, Muhawenimana E, Nsabimana N, Nzeyimana I, Maniragaba T, Ntirenganya F, Rurangwa E, Mugenzi P, Mutamuliza J, Runanira D, Niyibizi BA, Rugengamanzi E, Besada J, Nielsen SM, Bucknor B, Nussbaum RL, Koeller D, Andrews C, Mutesa L, Fadelu T, Rebbeck TR. Germline sequence variation in cancer genes in Rwandan breast and prostate cancer cases. NPJ Genom Med 2024; 9:61. [PMID: 39582020 PMCID: PMC11586404 DOI: 10.1038/s41525-024-00446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer genetic data from Sub-Saharan African (SSA) are limited. Patients with female breast (fBC), male breast (mBC), and prostate cancer (PC) in Rwanda underwent germline genetic testing and counseling. Demographic and disease-specific information was collected. A multi-cancer gene panel was used to identify germline Pathogenic Variants (PV) and Variants of Uncertain Significance (VUS). 400 patients (201 with BC and 199 with PC) were consented and recruited to the study. Data was available for 342 patients: 180 with BC (175 women and 5 men) and 162 men with PC. PV were observed in 18.3% fBC, 4.3% PC, and 20% mBC. BRCA2 was the most common PV. Among non-PV carriers, 65% had ≥1 VUS: 31.8% in PC and 33.6% in BC (female and male). Our findings highlight the need for germline genetic testing and counseling in cancer management in SSA.
Collapse
Affiliation(s)
- Achille Vc Manirakiza
- Oncology Unit, Department of Medicine, King Faisal Hospital, Kigali, Rwanda.
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Shakuntala Baichoo
- Department of Digital Technologies, University of Mauritius, Réduit, Mauritius
| | - Annette Uwineza
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Kigali University Teaching Hospital, Kigali, Rwanda
| | - Damas Dukundane
- Oncology Unit, Department of Medicine, King Faisal Hospital, Kigali, Rwanda
| | | | - Edouard Ngendahayo
- Urology Unit, Department of Surgery, King Faisal Hospital, Kigali, Rwanda
| | - Fidel Rubagumya
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Rwanda Cancer Center, Rwanda Military Hospital, Kigali, Rwanda
| | | | | | | | | | - Faustin Ntirenganya
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Kigali University Teaching Hospital, Kigali, Rwanda
| | - Ephrem Rurangwa
- Rwanda Military Referral and Teaching Hospital, Kigali, Rwanda
| | | | | | | | | | | | | | | | | | - Robert L Nussbaum
- Invitae, Inc, San Francisco, CA, USA
- Department of Pediatrics, Division of Medical Genetics, University of California in San Francisco, San Francisco, CA, USA
| | | | | | - Leon Mutesa
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Temidayo Fadelu
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy R Rebbeck
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Gomez F, Danos AM, Del Fiol G, Madabhushi A, Tiwari P, McMichael JF, Bakas S, Bian J, Davatzikos C, Fertig EJ, Kalpathy-Cramer J, Kenney J, Savova GK, Yetisgen M, Van Allen EM, Warner JL, Prior F, Griffith M, Griffith OL. A New Era of Data-Driven Cancer Research and Care: Opportunities and Challenges. Cancer Discov 2024; 14:1774-1778. [PMID: 39363742 PMCID: PMC11463721 DOI: 10.1158/2159-8290.cd-24-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
People diagnosed with cancer and their formal and informal caregivers are increasingly faced with a deluge of complex information, thanks to rapid advancements in the type and volume of diagnostic, prognostic, and treatment data. This commentary discusses the opportunities and challenges that the society faces as we integrate large volumes of data into regular cancer care.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Arpad M. Danos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah.
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia.
- Atlanta Veterans Affairs (VA) Medical Center, Decatur, Georgia.
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, Madison, Wisconsin.
| | - Joshua F. McMichael
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Spyridon Bakas
- Departments of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
- Departments of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.
- Departments of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana.
- Departments of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana.
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, Florida.
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.
| | - Elana J. Fertig
- Department of Oncology and Applied Mathematics & Statistics, Johns Hopkins Medicine, Baltimore, Massachusetts.
| | | | - Johanna Kenney
- Technology Research Advocacy Partnership, National Cancer Institute, Bethesda, Maryland.
| | - Guergana K. Savova
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
- Boston Children’s Hospital, Boston, Massachusetts.
| | - Meliha Yetisgen
- Department of Biomedical and Health Informatics, University of Washington, Seattle, Western Australia.
| | - Eliezer M. Van Allen
- Department of Medicine, Dana-Farber Cancer Institute, Harvard School of Medicine, Boston, Massachusetts.
- Broad Institute, Cambridge, Massachusetts.
- Parker Institute for Cancer Immunotherapy, San Francisco, California.
| | - Jeremy L. Warner
- Departments of Medicine and Biostatistics, Brown University, Providence, Rhode Island.
- Lifespan Cancer Institute, Rhode Island Hospital, Providence, Rhode Island.
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
6
|
Shao M, Tian M, Chen K, Jiang H, Zhang S, Li Z, Shen Y, Chen F, Shen B, Cao C, Gu N. Leveraging Random Effects in Cistrome-Wide Association Studies for Decoding the Genetic Determinants of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400815. [PMID: 39099406 PMCID: PMC11423091 DOI: 10.1002/advs.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Cistrome-wide association studies (CWAS) are pivotal for identifying genetic determinants of diseases by correlating genetically regulated cistrome states with phenotypes. Traditional CWAS typically develops a model based on cistrome and genotype data to associate predicted cistrome states with phenotypes. The random effect cistrome-wide association study (RECWAS), reevaluates the necessity of cistrome state prediction in CWAS. RECWAS utilizes either a linear model or marginal effect for initial feature selection, followed by kernel-based feature aggregation for association testing is introduced. Through simulations and analysis of prostate cancer data, a thorough evaluation of CWAS and RECWAS is conducted. The results suggest that RECWAS offers improved power compared to traditional CWAS, identifying additional genomic regions associated with prostate cancer. CWAS identified 102 significant regions, while RECWAS found 50 additional significant regions compared to CWAS, many of which are validated. Validation encompassed a range of biological evidence, including risk signals from the GWAS catalog, susceptibility genes from the DisGeNET database, and enhancer-domain scores. RECWAS consistently demonstrated improved performance over traditional CWAS in identifying genomic regions associated with prostate cancer. These findings demonstrate the benefits of incorporating kernel methods into CWAS and provide new insights for genetic discovery in complex diseases.
Collapse
Affiliation(s)
- Mengting Shao
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Min Tian
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Kaiyang Chen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Hangjin Jiang
- Center for Data ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Shuting Zhang
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Zhenghui Li
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Yan Shen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Feng Chen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Baixin Shen
- Department of UrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011P. R. China
| | - Chen Cao
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
- Department of UrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011P. R. China
| | - Ning Gu
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering MedicineInstitute of Clinical MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
7
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Cussenot O, Renard-Penna R, Montagne S, Ondet V, Pilon A, Guechot J, Comperat E, Hamdy F, Lamb A, Cancel-Tassin G. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk. BJU Int 2023; 131:745-754. [PMID: 36648168 DOI: 10.1111/bju.15968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To evaluate different scenarios for the management of early diagnosis of cancer (PCa) in men at high genetic risk, using recently developed blood and urinary molecular biomarkers in combination with clinical information alongside multiparametric magnetic resonance imaging (mpMRI). PATIENTS AND METHODS A total of 322 patients with a high genetic risk (familial or personal history of cancers or a predisposing germline variant) were included in this study. The primary outcome was the detection rates of PCa (positive biopsy) or clinically significant PCa (biopsy with International Society of Urological Pathology [ISUP] grade >1). Clinical parameters included age, body mass index, ancestry, and germline mutational status, mpMRI, prostate-specific antigen density (PSAD), Prostate Health Index and urinary markers (Prostate Cancer Associated 3, SelectMdx™ and T2:ERG score) were assessed. Sensitivity (Se) and specificity (Sp) for each marker at their recommended cut-off for clinical practice were calculated. Comparison between diagnoses accuracy of each procedure and scenario was computed using mutual information based and direct effect contribution using a supervised Bayesian network approach. RESULTS A mpMRI Prostate Imaging-Reporting and Data System (PI-RADS) score ≥3 showed higher Se than mpMRI PI-RADS score ≥4 for detection of PCa (82% vs 61%) and for the detection of ISUP grade >1 lesions (96% vs 80%). mpMRI PI-RADS score ≥3 performed better than a PSA level of ≥3 ng/mL (Se 96%, Sp 53% vs Se 91%, Sp 8%) for detection of clinically significant PCa. In case of negative mpMRI results, the supervised Bayesian network approach showed that urinary markers (with the same accuracy for all) and PSAD of ≥0.10 ng/mL/mL were the most useful indicators of decision to biopsy. CONCLUSIONS We found that screening men at high genetic risk of PCa must be based on mpMRI without pre-screening based on a PSA level of >3 ng/mL, to avoid missing too many ISUP grade >1 tumours and to significantly reduce the number of unnecessary biopsies. However, urinary markers or a PSAD of ≥0.10 ng/mL/mL when mpMRI was negative increased the detection of ISUP grade >1 cancers. We suggest that a baseline mpMRI be discussed for men at high genetic risk from the age of 40 years.
Collapse
Affiliation(s)
- Olivier Cussenot
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raphaele Renard-Penna
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Sarah Montagne
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Valerie Ondet
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Antoine Pilon
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Jerome Guechot
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Eva Comperat
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| |
Collapse
|
9
|
Dauda B, Molina SJ, Allen DS, Fuentes A, Ghosh N, Mauro M, Neale BM, Panofsky A, Sohail M, Zhang SR, Lewis ACF. Ancestry: How researchers use it and what they mean by it. Front Genet 2023; 14:1044555. [PMID: 36755575 PMCID: PMC9900027 DOI: 10.3389/fgene.2023.1044555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Ancestry is often viewed as a more objective and less objectionable population descriptor than race or ethnicity. Perhaps reflecting this, usage of the term "ancestry" is rapidly growing in genetics research, with ancestry groups referenced in many situations. The appropriate usage of population descriptors in genetics research is an ongoing source of debate. Sound normative guidance should rest on an empirical understanding of current usage; in the case of ancestry, questions about how researchers use the concept, and what they mean by it, remain unanswered. Methods: Systematic literature analysis of 205 articles at least tangentially related to human health from diverse disciplines that use the concept of ancestry, and semi-structured interviews with 44 lead authors of some of those articles. Results: Ancestry is relied on to structure research questions and key methodological approaches. Yet researchers struggle to define it, and/or offer diverse definitions. For some ancestry is a genetic concept, but for many-including geneticists-ancestry is only tangentially related to genetics. For some interviewees, ancestry is explicitly equated to ethnicity; for others it is explicitly distanced from it. Ancestry is operationalized using multiple data types (including genetic variation and self-reported identities), though for a large fraction of articles (26%) it is impossible to tell which data types were used. Across the literature and interviews there is no consistent understanding of how ancestry relates to genetic concepts (including genetic ancestry and population structure), nor how these genetic concepts relate to each other. Beyond this conceptual confusion, practices related to summarizing patterns of genetic variation often rest on uninterrogated conventions. Continental labels are by far the most common type of label applied to ancestry groups. We observed many instances of slippage between reference to ancestry groups and racial groups. Conclusion: Ancestry is in practice a highly ambiguous concept, and far from an objective counterpart to race or ethnicity. It is not uniquely a "biological" construct, and it does not represent a "safe haven" for researchers seeking to avoid evoking race or ethnicity in their work. Distinguishing genetic ancestry from ancestry more broadly will be a necessary part of providing conceptual clarity.
Collapse
Affiliation(s)
- Bege Dauda
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, United States
| | - Santiago J. Molina
- Department of Sociology, Northwestern University, Evanston, IL, United States
| | - Danielle S. Allen
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, Princeton, NJ, United States
| | - Nayanika Ghosh
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Madelyn Mauro
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Benjamin M. Neale
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Aaron Panofsky
- Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Public Policy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Sociology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mashaal Sohail
- Centro de Ciencias Genomicas (CCG), Universidad Nacional Autonoma de Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Sarah R. Zhang
- University of California, Berkeley, Berkeley, CA, United States
| | - Anna C. F. Lewis
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Ren D, Zhuang X, Lv Y, Zhang Y, Xu J, Gao F, Chen D, Wang Y. FAM84B promotes the proliferation of glioma cells through the cell cycle pathways. World J Surg Oncol 2022; 20:368. [PMID: 36419094 PMCID: PMC9686022 DOI: 10.1186/s12957-022-02831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed to investigate FAM84B expression in glioma tissues and explore the role of FAM84B in promoting the proliferation of glioma cells and the mechanism of regulating the cell cycle pathways. Methods The TCGA database was adopted to analyze FAM84B expression in glioma tissues. The FAM84B expression was detected by qRT-PCR in patients with glioma, especially that in glioma cells, U251, LN-229, U98, and U87. Two glioma cell lines U87 and T98 were selected for siRNA transfection, which were divided into si-NC si-FAM84B-1 and si-FAM84B-2 groups. The effect of FAM84B on the proliferation of glioma cells was detected with the MTT experiment and that on the glioma cell cycle was detected with the flow cytometry. The signaling pathways potentially regulated by FAM84B in glioma were analyzed through the bioinformatics analysis. The expression of proteins, Cyclin D1, CDK4, Cdk6, and p21, in the cell cycle-related pathways in cells of each group was detected by the Western blot. Results TCGA database results showed a significantly higher FAM84B expression in glioma tissues than that in paracancerous tissues. According to the detection of qRT-PCR, FAM84B expressed the highest in the glioma cell line U87 (P < 0.05). Compared with the serum of healthy controls, FAM84B mRNA expression significantly increased in patients with gliomas. And compared with the si-NC group, the proliferation ability of U87 and T98 cells decreased and the cell cycle was blocked in the G0/G1 phase in both si-FAM84B transfection groups (P < 0.05). According to the bioinformatics analysis, FAM84B regulated the cell cycle pathways in glioma. FAM84B siRNA inhibited the expression of key proteins, Cyclin D1, CDK2, CDK4, and Cdk6, of the cell cycle pathways in glioma cells and promoted the expression of P53 and P21 proteins. Conclusions In conclusion, FAM84B may inhibit the proliferation of glioma cells by regulating the cell cycle pathways. 1. FAM84B expressed highly in glioma tissues and cells. 2. Knockdown of FAM84B expression significantly inhibited the proliferation of glioma cells. 3. Knockdown of FAM84B inhibited the proliferation of glioma cells by regulating the cell cycle signaling pathways.
Collapse
|
11
|
Katano A, Minamitani M, Nakagawa K, Yamashita H. The Spontaneous Remission of Recurrent Lymph Node Metastatic Prostate Cancer With Lowering Serum Prostate-Specific Antigen Level. Cureus 2022; 14:e25333. [PMID: 35774690 PMCID: PMC9236640 DOI: 10.7759/cureus.25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
The incidence rate of spontaneous remission of malignant cancer is very low. Reports on spontaneous remission in advanced prostate cancer are extremely limited. Our patient was treated with androgen deprivation therapy, local radiotherapy, and surgical castration at the initial diagnosis. Approximately nine years after treatment, he experienced a rise in serum prostate-specific antigen level and relapse of obturator lymph node adenopathy. Initially, androgen deprivation therapy was reinitiated, which resulted in castration-resistant prostate cancer. Although androgen deprivation therapy was discontinued, spontaneous remission of recurrent lymph node and spontaneous reduction in serum prostate-specific antigen level was seen. There was no sign of radiological recurrence for over eight years without prostate cancer treatment.
Collapse
|
12
|
Wang X, Zhu Y, Xie Q. The promising role and prognostic value of miR-198 in human diseases. Am J Transl Res 2022; 14:2749-2766. [PMID: 35559396 PMCID: PMC9091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The importance of microRNAs (miRNAs or miRs) has attracted more and more attention. MiRNA is an approximately 22-nucleotide, single-stranded, non-coding RNA molecule that affects the expression of downstream target genes. MiRNAs regulate the occurrence and development of human diseases. The objective of this article is to explore the abnormal expression of miR-198 in a variety of human diseases. The relationships between abnormally expressed miR-198 and clinicopathological characteristics are also summarized. Its roles in various diseases and potential molecular mechanisms include involvement in many biological processes, such as cell cycle regulation, proliferation, invasion, migration, apoptosis, and drug resistance. The potential value of miR-198 for disease diagnosis, treatment, and especially, prognosis, are discussed. More in-depth research on miRNA will support the conversion from basic research to clinical applications of this molecule.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| | - Yanxia Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| | - Qiuli Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| |
Collapse
|
13
|
Song SH, Kim E, Woo E, Kwon E, Yoon S, Kim JK, Lee H, Oh JJ, Lee S, Hong SK, Byun SS. Prediction of clinically significant prostate cancer using polygenic risk models in Asians. Investig Clin Urol 2022; 63:42-52. [PMID: 34983122 PMCID: PMC8756152 DOI: 10.4111/icu.20210305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose To develop and evaluate the performance of a polygenic risk score (PRS) constructed in a Korean male population to predict clinically significant prostate cancer (csPCa). Materials and Methods Total 2,702 PCa samples and 7,485 controls were used to discover csPCa susceptible single nucleotide polymorphisms (SNPs). Males with biopsy-proven or post-radical prostatectomy Gleason score 7 or higher were included for analysis. After genotype imputation for quality control, logistic regression models were applied to test association and calculate effect size. Extracted candidate SNPs were further tested to compare predictive performance according to number of SNPs included in the PRS. The best-fit model was validated in an independent cohort of 311 cases and 822 controls. Results Of the 83 candidate SNPs with significant PCa association reported in previous literature, rs72725879 located in PRNCR1 showed the highest significance for PCa risk (odds ratio, 0.597; 95% confidence interval [CI], 0.555–0.641; p=4.3×10-45). Thirty-two SNPs within 26 distinct loci were further selected for PRS construction. Best performance was found with the top 29 SNPs, with AUC found to be 0.700 (95% CI, 0.667–0.734). Males with very-high PRS (above the 95th percentile) had a 4.92-fold increased risk for csPCa. Conclusions Ethnic-specific PRS was developed and validated in Korean males to predict csPCa susceptibility using the largest csPCa sample size in Asia. PRS can be a potential biomarker to predict individual risk. Future multi-ethnic trials are required to further validate our results.
Collapse
Affiliation(s)
- Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Eunkyung Kwon
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Procagen, Seongnam, Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Jin Oh
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.,Procagen, Seongnam, Korea.,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Abstract
The G84E germline mutation of HOXB13 predisposes to prostate cancer and is clinically tested for familial cancer care. We investigated the HOXB locus to define a potentially broader contribution to prostate cancer heritability. We sought HOXB locus germline variants altering prostate cancer risk in three European-ancestry case-control study populations (combined 7812 cases and 5047 controls): the International Consortium for Prostate Cancer Genetics Study; the Nashville Familial Prostate Cancer Study; and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Multiple rare genetic variants had concordant and strong risk effects in these study populations and exceeded genome-wide significance. Independent risk signals were best detected by sentinel variants rs559612720 within SKAP1 (OR = 8.1, P = 2E-9) and rs138213197 (G84E) within HOXB13 (OR = 5.6, P = 2E-11), separated by 567 kb. Half of carriers inherited both risk alleles, while others inherited either alone. Under mutual adjustment, the variants separately carried 3.6- and 3.1-fold risk, respectively, while joint inheritance carried 11.3-fold risk. These risks were further accentuated among men meeting criteria for hereditary prostate cancer, and further still for those with early-onset or aggressive disease. Among hereditary prostate cancer cases diagnosed under age 60 and with aggressive disease, joint inheritance carried a risk of OR = 27.7 relative to controls, P = 2E-8. The HOXB sentinel variant pair more fully captured genetic risk for prostate cancer within the study populations than either variant alone.
Collapse
|
15
|
[Familial prostate cancer and genetic predisposition]. Urologe A 2021; 60:567-575. [PMID: 33721089 DOI: 10.1007/s00120-021-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Twenty percent of all prostate cancer patients have a positive family history (at least 1 first-degree relative with prostate cancer) and a part of these patients have a genetic predisposition. OBJECTIVES A literature search and analysis of studies investigating incidence, diagnosis, and clinical course of familial compared to sporadic prostate cancer as well as genetic predisposition was performed using PubMed and Embase. RESULTS Risk of prostate cancer depends on number, degree of relationship, and age of onset of affected men in the family. The incidence of familial prostate cancer is higher and the age of diagnosis lower compared to sporadic cases. The clinical course of the disease is comparable, but in individuals with a germline mutation, more intensive therapy is needed due to a more aggressive disease. CONCLUSIONS Crucial for risk assessment is a detailed family history, including creation of a pedigree with cancer family history if necessary. In high-risk families, genetic counselling and annual prostate-specific antigen (PSA) screening beginning at the age of 40 should be performed. Verification of a germline mutation requires more intensive therapy due to more aggressive disease.
Collapse
|
16
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|