1
|
Gong Z, Wei GY, Fakhraee M, Alcott LJ, Jiang L, Zhao M, Planavsky NJ. Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion. GEOBIOLOGY 2023; 21:407-420. [PMID: 36755479 DOI: 10.1111/gbi.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574-567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ13 C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ238 U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ238 U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ13 C and δ238 U trends during the SE. We suggest that global seawater δ238 U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Guang-Yi Wei
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Mojtaba Fakhraee
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Lewis J Alcott
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Lei Jiang
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingyu Zhao
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Sahoo SK, Gilleaudeau GJ, Wilson K, Hart B, Barnes BD, Faison T, Bowman AR, Larson TE, Kaufman AJ. Basin-scale reconstruction of euxinia and Late Devonian mass extinctions. Nature 2023; 615:640-645. [PMID: 36890233 DOI: 10.1038/s41586-023-05716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/09/2023] [Indexed: 03/10/2023]
Abstract
The Devonian-Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean-atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.
Collapse
Affiliation(s)
| | | | | | - Bruce Hart
- Equinor US, Houston, TX, USA
- University of Western Ontario, London, Ontario, Canada
| | - Ben D Barnes
- Pennsylvania State University, University Park, PA, USA
| | | | | | - Toti E Larson
- Bureau of Economic Geology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
3
|
Kozik NP, Young SA, Newby SM, Liu M, Chen D, Hammarlund EU, Bond DPG, Them TR, Owens JD. Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction. SCIENCE ADVANCES 2022; 8:eabn8345. [PMID: 36399571 PMCID: PMC9674285 DOI: 10.1126/sciadv.abn8345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The timing and connections between global cooling, marine redox conditions, and biotic turnover are underconstrained for the Late Ordovician. The second most severe mass extinction occurred at the end of the Ordovician period, resulting in ~85% loss of marine species between two extinction pulses. As the only "Big 5" extinction that occurred during icehouse conditions, this interval is an important modern analog to constrain environmental feedbacks. We present a previously unexplored thallium isotope records from two paleobasins that record global marine redox conditions and document two distinct and rapid excursions suggesting vacillating (de)oxygenation. The strong temporal link between these perturbations and extinctions highlights the possibility that dynamic marine oxygen fluctuations, rather than persistent, stable global anoxia, played a major role in driving the extinction. This evidence for rapid oxygen changes leading to mass extinction has important implications for modern deoxygenation and biodiversity declines.
Collapse
Affiliation(s)
- Nevin P. Kozik
- Department of Earth, Ocean and Atmospheric Science – National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Seth A. Young
- Department of Earth, Ocean and Atmospheric Science – National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Sean M. Newby
- Department of Earth, Ocean and Atmospheric Science – National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Mu Liu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daizhao Chen
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Emma U. Hammarlund
- Tissue Development and Evolution (TiDE) Division, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David P. G. Bond
- Department of Geography, Geology and Environment, University of Hull, Hull HU6 7RX, UK
| | - Theodore R. Them
- Department of Geology and Environmental Geosciences, College of Charleston, Charleston, SC 29424, USA
| | - Jeremy D. Owens
- Department of Earth, Ocean and Atmospheric Science – National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
5
|
Organic Petrological Characteristics of Graptolite and Its Contribution to Buried Organic Carbon of Longmaxi Formation Shales, Middle Yangtze Region. ENERGIES 2022. [DOI: 10.3390/en15072520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The shale gas exploration of the Longmaxi Formation in the Yangtze Region of China has made a significant breakthrough. As an important hydrocarbon generation organism, graptolite is widely distributed in the Longmaxi Formation shales, but its hydrocarbon potential is still unclear. Taking the Longmaxi Formation shales in the Middle Yangtze Region as an example, this paper discusses the organic petrological characteristics of graptolite and its contribution to buried organic carbon. The Longmaxi shales in the study area can be divided into organic-rich shales (TOC > 2.0%) and organic-bearing shales (TOC < 2.0%). The organic-rich shales have high quartz content and low clay mineral content, which is opposite in the organic-bearing shales. Organic maceral results show that graptolite is widely distributed in nearly all the samples, while solid bitumen is relatively developed in organic-rich shale. The equivalent vitrinite reflectance obtained from the conversion of graptolite reflectance ranges from 2.46% to 2.76%, indicating that the organic matter maturity of the Longmaxi Formation shale is overmature. Combining an optical microscope and a field emission scanning electron microscope, the proportion of graptolite area to organic matter area can be obtained, the average of which is 32.71%. Solid bitumen mainly contributes to buried organic carbon of the organic-rich shales in the Longmaxi Formation, while graptolites contribute little to organic carbon burial. However, solid bitumen in the organic-bearing shales is relatively undeveloped, and graptolite is an important hydrocarbon generation organism, which is the main contributor to buried organic carbon.
Collapse
|
6
|
Emmings JF, Poulton SW, Walsh J, Leeming KA, Ross I, Peters SE. Pyrite mega-analysis reveals modes of anoxia through geological time. SCIENCE ADVANCES 2022; 8:eabj5687. [PMID: 35294245 PMCID: PMC8926349 DOI: 10.1126/sciadv.abj5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The redox structure of the water column in anoxic basins through geological time remains poorly resolved despite its importance to biological evolution/extinction and biogeochemical cycling. Here, we provide a temporal record of bottom and pore water redox conditions by analyzing the temporal distribution and chemistry of sedimentary pyrite. We combine machine-reading techniques, applied over a large library of published literature, with statistical analysis of element concentrations in databases of sedimentary pyrite and bulk sedimentary rocks to generate a scaled analysis spanning the majority of Earth's history. This analysis delineates the prevalent anoxic basin states from the Archaean to present day, which are associated with diagnostic combinations of five types of syngenetic pyrite. The underlying driver(s) for the pyrite types are unresolved but plausibly includes the ambient seawater inventory, precipitation kinetics, and the (co)location of organic matter degradation coupled to sulfate reduction, iron (oxyhydr)oxide dissolution, and pyrite precipitation.
Collapse
Affiliation(s)
- Joseph F. Emmings
- British Geological Survey, Keyworth, Nottingham NG12
5GG, UK
- School of Geography, Geology and the Environment,
University of Leicester, Leicester LE1 7RH, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds,
Leeds LS2 9JT, UK
| | - Joanna Walsh
- Lyell Centre, British Geological Survey, Riccarton,
Edinburgh EH14 4AS, UK
- Ordnance Survey, Explorer House, Adanac Drive,
Southampton SO16 0AS, UK
| | | | - Ian Ross
- Department of Computer Sciences, University of
Wisconsin–Madison, Madison, WI 53706, USA
| | - Shanan E. Peters
- Department of Geoscience, University of
Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Zhang J, Li C, Zhang Y. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Sperling EA, Melchin MJ, Fraser T, Stockey RG, Farrell UC, Bhajan L, Brunoir TN, Cole DB, Gill BC, Lenz A, Loydell DK, Malinowski J, Miller AJ, Plaza-Torres S, Bock B, Rooney AD, Tecklenburg SA, Vogel JM, Planavsky NJ, Strauss JV. A long-term record of early to mid-Paleozoic marine redox change. SCIENCE ADVANCES 2021; 7:7/28/eabf4382. [PMID: 34233874 PMCID: PMC8262801 DOI: 10.1126/sciadv.abf4382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/25/2021] [Indexed: 05/03/2023]
Abstract
The extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time. Both in Yukon and globally, Ordovician through Early Devonian anoxic waters were broadly ferruginous (nonsulfidic), with a transition toward more euxinic (sulfidic) conditions in the mid-Early Devonian (Pragian), coincident with the early diversification of vascular plants and disappearance of graptolites. This ~80-million-year interval of the Paleozoic characterized by widespread ferruginous bottom waters represents a persistence of Neoproterozoic-like marine redox conditions well into the Phanerozoic.
Collapse
Affiliation(s)
- Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, CA, USA.
| | - Michael J Melchin
- Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | | | - Richard G Stockey
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Una C Farrell
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
- Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - Liam Bhajan
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Tessa N Brunoir
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Devon B Cole
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin C Gill
- Department of Geosciences, Virginia Polytechnic University and State University, Blacksburg, VA, USA
| | - Alfred Lenz
- Department of Earth Sciences, Western University Canada, London, ON, Canada
| | - David K Loydell
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK
| | | | - Austin J Miller
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | | | - Beatrice Bock
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA
| | - Alan D Rooney
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | | | - Jacqueline M Vogel
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | - Justin V Strauss
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
9
|
Huang W, Chen X, Zong K, Liu Y, Li M, Shen Y. Anoxia may delay biotic recovery from the Late Ordovician mass extinction. Sci Bull (Beijing) 2021; 66:414-416. [PMID: 36654176 DOI: 10.1016/j.scib.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Huang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyan Chen
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Keqing Zong
- State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yongsheng Liu
- State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Menghan Li
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yan'an Shen
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Fuchsman CA, Stüeken EE. Using modern low-oxygen marine ecosystems to understand the nitrogen cycle of the Paleo- and Mesoproterozoic oceans. Environ Microbiol 2020; 23:2801-2822. [PMID: 32869502 DOI: 10.1111/1462-2920.15220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
During the productive Paleoproterozoic (2.4-1.8 Ga) and less productive Mesoproterozoic (1.8-1.0 Ga), the ocean was suboxic to anoxic and multicellular organisms had not yet evolved. Here, we link geologic information about the Proterozoic ocean to microbial processes in modern low-oxygen systems. High iron concentrations and rates of Fe cycling in the Proterozoic are the largest differences from modern oxygen-deficient zones. In anoxic waters, which composed most of the Paleoproterozoic and ~40% of the Mesoproterozoic ocean, nitrogen cycling dominated. Rates of N2 production by denitrification and anammox were likely linked to sinking organic matter fluxes and in situ primary productivity under anoxic conditions. Additionally autotrophic denitrifiers could have used reduced iron or methane. 50% of the Mesoproterozoic ocean may have been suboxic, promoting nitrification and metal oxidation in the suboxic water and N2 O and N2 production by partial and complete denitrification in anoxic zones in organic aggregates. Sulfidic conditions may have composed ~10% of the Mesoproterozoic ocean focused along continental margins. Due to low nitrate concentrations in offshore regions, anammox bacteria likely dominated N2 production immediately above sulfidic zones, but in coastal regions, higher nitrate concentrations probably promoted complete S-oxidizing autotrophic denitrification at the sulfide interface.
Collapse
Affiliation(s)
- Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, Scotland, UK
| |
Collapse
|