1
|
Kiniklioglu M, Boyaci H. hMT+ activity predicts the effect of spatial attention on surround suppression. J Vis 2025; 25:12. [PMID: 40266600 PMCID: PMC12025337 DOI: 10.1167/jov.25.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/13/2025] [Indexed: 04/24/2025] Open
Abstract
Surround suppression refers to the decrease in behavioral sensitivity and neural response to a central stimulus due to the presence of surrounding stimuli. Several aspects of surround suppression in human motion perception have been studied in detail, including its atypicality in some clinical populations. However, how the extent of spatial attention affects the strength of surround suppression has not been systematically studied before. To address this question, we presented human participants with "center" and "surround" drifting gratings and sought to find whether attending only to the center ("narrow attention") versus both to the center and surround ("wide attention") modulates the suppression strength in motion processing. Using psychophysics and functional magnetic resonance imaging (fMRI), we measured motion direction discrimination thresholds and cortical activity in the primary visual cortex (V1) and middle temporal complex (hMT+). We found increased perceptual thresholds and, thus, stronger surround suppression under the wide-attention condition. We also found that the pattern of hMT+ activity was consistent with the behavioral results. Furthermore, a mathematical model that combines spatial attention and divisive normalization was able to explain the pattern in the behavioral and fMRI results. These findings provide a deeper understanding of how attention affects center-surround interactions and suggest possible neural mechanisms with relevance to both basic and clinical vision science.
Collapse
Affiliation(s)
- Merve Kiniklioglu
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
- Present address: Mathematical Institute, Justus-Liebig-University Gießen, Gießen, Germany
| | - Huseyin Boyaci
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
- Department of Psychology, Bilkent University, Ankara, Türkiye
- Department of Psychology, Justus-Liebig University Gießen, Gießen, Germany
| |
Collapse
|
2
|
Swanson LR, Jungers S, Varghese R, Cullen KR, Evans MD, Nielson JL, Schallmo MP. Enhanced visual contrast suppression during peak psilocybin effects: Psychophysical results from a pilot randomized controlled trial. J Vis 2024; 24:5. [PMID: 39499526 PMCID: PMC11540033 DOI: 10.1167/jov.24.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
In visual perception, an effect known as surround suppression occurs wherein the apparent contrast of a center stimulus is reduced when it is presented within a higher-contrast surrounding stimulus. Many key aspects of visual perception involve surround suppression, yet the neuromodulatory processes involved remain unclear. Psilocybin is a serotonergic psychedelic compound known for its robust effects on visual perception, particularly texture, color, object, and motion perception. We asked whether surround suppression is altered under peak effects of psilocybin. Using a contrast-matching task with different center-surround stimulus configurations, we measured surround suppression after 25 mg of psilocybin compared with placebo (100 mg niacin). Data on harms were collected, and no serious adverse events were reported. After taking psilocybin, participants (n = 6) reported stronger surround suppression of perceived contrast compared to placebo. Furthermore, we found that the intensity of subjective psychedelic visuals induced by psilocybin correlated positively with the magnitude of surround suppression. We note the potential relevance of our findings for the field of psychiatry, given that studies have demonstrated weakened visual surround suppression in both major depressive disorder and schizophrenia. Our findings are thus relevant to understanding the visual effects of psilocybin, and the potential mechanisms of visual disruption in mental health disorders.
Collapse
Affiliation(s)
- Link Ray Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Jungers
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ranji Varghese
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jessica L Nielson
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Murray SO, Kolodny T, Webb SJ. Linking cortical surface area to computational properties in human visual perception. iScience 2024; 27:110490. [PMID: 39148711 PMCID: PMC11325354 DOI: 10.1016/j.isci.2024.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Cortical structure and function are closely linked, shaping the neural basis of human behavior. This study explores how cortical surface area (SA), a structural feature, influences computational properties in human visual perception. Using a combination of psychophysical, neuroimaging, and computational modeling approaches, we find that variations in SA across the parietal and frontal cortices are linked to distinct behavioral patterns in a motion perception task. These differences in behavior correspond to specific parameters within a divisive normalization model, indicating a unique contribution of SA to the spatial organization of cortical circuitry. This work highlights the importance of cortical architecture in modifying computational processes that underlie perception, enhancing our understanding of how structural differences can influence neural function and behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Tamar Kolodny
- Department of Psychology and the School of Brain Sciences and Cognition, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 1920 Terry Avenue, Building Cure-03, Seattle, WA 98101, USA
| |
Collapse
|
4
|
Pereira AC, Leonard A, Velthuis H, Wong NML, Ponteduro FM, Dimitrov M, Ellis CL, Kowalewski L, Lythgoe DJ, Rotaru DG, Edden RAE, Ivin G, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. Frontal and occipital brain glutathione levels are unchanged in autistic adults. PLoS One 2024; 19:e0308792. [PMID: 39146282 PMCID: PMC11326623 DOI: 10.1371/journal.pone.0308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.
Collapse
Affiliation(s)
- Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal, Coimbra, Portugal
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana-Georgina Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, United Kingdom
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
6
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
7
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
8
|
Baker DH, Marinova D, Aveyard R, Hargreaves LJ, Renton A, Castellani R, Hall P, Harmens M, Holroyd G, Nicholson B, Williams EL, Hobson HM, Wade AR. Temporal dynamics of normalization reweighting. J Vis 2023; 23:6. [PMID: 37862008 PMCID: PMC10615141 DOI: 10.1167/jov.23.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
For decades, neural suppression in early visual cortex has been thought to be fixed. But recent work has challenged this assumption by showing that suppression can be reweighted based on recent history; when pairs of stimuli are repeatedly presented together, suppression between them strengthens. Here we investigate the temporal dynamics of this process using a steady-state visual evoked potential (SSVEP) paradigm that provides a time-resolved, direct index of suppression between pairs of stimuli flickering at different frequencies (5 and 7 Hz). Our initial analysis of an existing electroencephalography (EEG) dataset (N = 100) indicated that suppression increases substantially during the first 2-5 seconds of stimulus presentation (with some variation across stimulation frequency). We then collected new EEG data (N = 100) replicating this finding for both monocular and dichoptic mask arrangements in a preregistered study designed to measure reweighting. A third experiment (N = 20) used source-localized magnetoencephalography and found that these effects are apparent in primary visual cortex (V1), consistent with results from neurophysiological work. Because long-standing theories propose inhibition/excitation differences in autism, we also compared reweighting between individuals with high versus low autistic traits, and with and without an autism diagnosis, across our three datasets (total N = 220). We find no compelling differences in reweighting that are associated with autism. Our results support the normalization reweighting model and indicate that for prolonged stimulation, increases in suppression occur on the order of 2-5 seconds after stimulus onset.
Collapse
Affiliation(s)
- Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| | | | | | | | - Alice Renton
- Department of Psychology, University of York, York, UK
| | | | - Phoebe Hall
- Department of Psychology, University of York, York, UK
| | | | | | | | | | - Hannah M Hobson
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| | - Alex R Wade
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
9
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
11
|
Pokorny VJ, Schallmo MP, Sponheim SR, Olman CA. Weakened untuned gain control is associated with schizophrenia while atypical orientation-tuned suppression depends on visual acuity. J Vis 2023; 23:2. [PMID: 36723929 PMCID: PMC9904333 DOI: 10.1167/jov.23.2.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Perceptual distortions are core features of psychosis. Weakened contrast surround suppression has been proposed as a neural mechanism underlying atypical perceptual experiences. Although previous work has measured suppression by asking participants to report the perceived contrast of a low-contrast target surrounded by a high-contrast surround, it is possible to modulate perceived contrast solely by manipulating the orientation of a matched-contrast center and surround. Removing the bottom-up segmentation cue of contrast difference and isolating orientation-dependent suppression may clarify the neural processes responsible for atypical surround suppression in psychosis. We examined surround suppression across a spectrum of psychotic psychopathology including people with schizophrenia (PSZ; N = 31) and people with bipolar disorder (PBD; N = 29), first-degree biological relatives of these patient groups (PBDrel, PSZrel; N = 28, N = 21, respectively), and healthy controls (N = 29). PSZ exhibited reduced surround suppression across orientations; although group differences were minimal at the condition that produced the strongest suppression. PBD and PSZrel exhibited intermediate suppression, whereas PBDrel performed most similarly to controls. Intriguingly, group differences in orientation-dependent surround suppression magnitude were moderated by visual acuity. A simulation in which visual acuity and/or focal attention interact with untuned gain control reproduces the observed pattern of results, including the lack of group differences when orientation of center and surround are the same. Our findings further elucidate perceptual mechanisms of impaired center-surround processing in psychosis and provide insights into the effects of visual acuity on orientation-dependent suppression in PSZ.
Collapse
Affiliation(s)
- Victor J Pokorny
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| |
Collapse
|
12
|
Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Sci Rep 2022; 12:22230. [PMID: 36564435 PMCID: PMC9789112 DOI: 10.1038/s41598-022-26402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose hallmarks are social deficits, language impairment, repetitive behaviors, and sensory alterations. It has been reported that patients with ASD show differential activity in cortical regions, for instance, increased neuronal activity in visual processing brain areas and atypical visual perception compared with healthy subjects. The causes of these alterations remain unclear, although many studies demonstrate that ASD has a strong genetic correlation. An example is Phelan-McDermid syndrome, caused by a deletion of the Shank3 gene in one allele of chromosome 22. However, the neuronal consequences relating to the haploinsufficiency of Shank3 in the brain remain unknown. Given that sensory abnormalities are often present along with the core symptoms of ASD, our goal was to study the tuning properties of the primary visual cortex to orientation and direction in awake, head-fixed Shank3+/- mice. We recorded neural activity in vivo in response to visual gratings in the primary visual cortex from a mouse model of ASD (Shank3+/- mice) using the genetically encoded calcium indicator GCaMP6f, imaged with a two-photon microscope through a cranial window. We found that Shank3+/- mice showed a higher proportion of neurons responsive to drifting gratings stimuli than wild-type mice. Shank3+/- mice also show increased responses to some specific stimuli. Furthermore, analyzing the distributions of neurons for the tuning width, we found that Shank3+/- mice have narrower tuning widths, which was corroborated by analyzing the orientation selectivity. Regarding this, Shank3+/- mice have a higher proportion of selective neurons, specifically neurons showing increased selectivity to orientation but not direction. Thus, the haploinsufficiency of Shank3 modified the neuronal response of the primary visual cortex.
Collapse
|
13
|
Haartsen R, Mason L, Garces P, Gui A, Charman T, Tillmann J, Johnson MH, Buitelaar JK, Loth E, Murphy D, Jones EJH. Qualitative differences in the spatiotemporal brain states supporting configural face processing emerge in adolescence in autism. Cortex 2022; 155:13-29. [PMID: 35961249 DOI: 10.1016/j.cortex.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/17/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Studying the neural processing of faces can illuminate the mechanisms of compromised social expertise in autism. To resolve a longstanding debate, we examined whether differences in configural face processing in autism are underpinned by quantitative differences in the activation of typical face processing pathways, or the recruitment of non-typical neural systems. METHODS We investigated spatial and temporal characteristics of event-related EEG responses to upright and inverted faces in a large sample of children, adolescents, and adults with and without autism. We examined topographic analyses of variance and global field power to identify group differences in the spatial and temporal response to face inversion. We then examined how quasi-stable spatiotemporal profiles - microstates - are modulated by face orientation and diagnostic group. RESULTS Upright and inverted faces produced distinct profiles of topography and strength in the topographical analyses. These topographical profiles differed between diagnostic groups in adolescents, but not in children or adults. In the microstate analysis, the autistic group showed differences in the activation strength of normative microstates during early-stage processing at all ages, suggesting consistent quantitative differences in the operation of typical processing pathways; qualitative differences in microstate topographies during late-stage processing became prominent in adults, suggesting the increasing involvement of non-typical neural systems with processing time and over development. CONCLUSIONS These findings suggest that early difficulties with configural face processing may trigger later compensatory processes in autism that emerge in later development.
Collapse
Affiliation(s)
- Rianne Haartsen
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom.
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom
| | - Pilar Garces
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anna Gui
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, United Kingdom
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jan K Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Science, King's College London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, King's College London, United Kingdom
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom
| |
Collapse
|
14
|
Abstract
Autism is a neurodevelopmental disorder of unknown etiology. Recently, there has been a growing interest in sensory processing in autism as a core phenotype. However, basic questions remain unanswered. Here, we review the major findings and models of perception in autism and point to methodological issues that have led to conflicting results. We show that popular models of perception in autism, such as the reduced prior hypothesis, cannot explain the many and varied findings. To resolve these issues, we point to the benefits of using rigorous psychophysical methods to study perception in autism. We advocate for perceptual models that provide a detailed explanation of behavior while also taking into account factors such as context, learning, and attention. Furthermore, we demonstrate the importance of tracking changes over the course of development to reveal the causal pathways and compensatory mechanisms. Finally, we propose a developmental perceptual narrowing account of the condition. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bat-Sheva Hadad
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel; ,
| | - Amit Yashar
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel; ,
| |
Collapse
|
15
|
Kınıklıoğlu M, Boyaci H. Increasing the spatial extent of attention strengthens surround suppression. Vision Res 2022; 199:108074. [PMID: 35717748 DOI: 10.1016/j.visres.2022.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Here we investigate how the extent of spatial attention affects center-surround interaction in visual motion processing. To do so, we measured motion direction discrimination thresholds in humans using drifting gratings and two attention conditions. Participants were instructed to limit their attention to the central part of the stimulus under the narrow attention condition, and to both central and surround parts under the wide attention condition. We found stronger surround suppression under the wide attention condition. The magnitude of the attention effect increased with the size of the surround when the stimulus had low contrast, but did not change when it had high contrast. Results also showed that attention had a weaker effect when the center and surround gratings drifted in opposite directions. Next, to establish a link between the behavioral results and the neuronal response characteristics, we performed computer simulations using the divisive normalization model. Our simulations showed that using smaller versus larger multiplicative attentional gain and parameters derived from the medial temporal (MT) area of the cortex, the model can successfully predict the observed behavioral results. These findings reveal the critical role of spatial attention on surround suppression and establish a link between neuronal activity and behavior. Further, these results also suggest that the reduced surround suppression found in certain clinical disorders (e.g., schizophrenia and autism spectrum disorder) may be caused by abnormal attention mechanisms.
Collapse
Affiliation(s)
- Merve Kınıklıoğlu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
| | - Huseyin Boyaci
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Psychology, Bilkent University, Ankara 06800, Turkey; Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Park S, Zikopoulos B, Yazdanbakhsh A. Visual illusion susceptibility in autism: A neural model. Eur J Neurosci 2022; 56:4246-4265. [PMID: 35701859 PMCID: PMC9541695 DOI: 10.1111/ejn.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top‐down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sangwook Park
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Arash Yazdanbakhsh
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI). Neuroimage Clin 2022; 32:102821. [PMID: 34628303 PMCID: PMC8501506 DOI: 10.1016/j.nicl.2021.102821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
Cerebral visual impairment (CVI) is associated with impaired global motion processing. Mean motion coherence thresholds was higher in individuals with CVI. fMRI responses in area hMT+ showed an aberrant response profile in CVI. White matter tract reconstruction revealed cortico-cortical dysmyelination in CVI.
Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.
Collapse
|
18
|
Huang Q, Pereira AC, Velthuis H, Wong NML, Ellis CL, Ponteduro FM, Dimitrov M, Kowalewski L, Lythgoe DJ, Rotaru D, Edden RAE, Leonard A, Ivin G, Ahmad J, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. GABA B receptor modulation of visual sensory processing in adults with and without autism spectrum disorder. Sci Transl Med 2022; 14:eabg7859. [PMID: 34985973 DOI: 10.1126/scitranslmed.abg7859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra 3000-548, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra 3000-548, Portugal
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Diana Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London SE5 8AZ, UK
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London SE10 9LS, UK
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
19
|
Awareness-Dependent Normalization Framework of Visual Bottom-up Attention. J Neurosci 2021; 41:9593-9607. [PMID: 34611027 DOI: 10.1523/jneurosci.1110-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Although bottom-up attention can improve visual performance with and without awareness to the exogenous cue, whether they are governed by a common neural computation remains unclear. Using a modified Posner paradigm with backward masking, we found that the cueing effect displayed a monotonic gradient profile (Gaussian-like), both with and without awareness, whose scope, however, was significantly wider with than without awareness. This awareness-dependent scope offered us a unique opportunity to change the relative size of the attention field to the stimulus, differentially modulating the gain of attentional selection, as proposed by the normalization model of attention. Therefore, for each human subject (male and female), the stimulus size was manipulated as their respective mean attention fields with and without awareness while stimulus contrast was varied in a spatial cueing task. By measuring the gain pattern of contrast-response functions on the spatial cueing effect derived by visible or invisible cues, we observed changes in the cueing effect consonant with changes in contrast gain for visible cues and response gain for invisible cues. Importantly, a complementary analysis confirmed that subjects' awareness-dependent attention fields can be simulated by using the normalization model of attention. Together, our findings indicate an awareness-dependent normalization framework of visual bottom-up attention, placing a necessary constraint, namely, awareness, on our understanding of the neural computations underlying visual attention.SIGNIFICANCE STATEMENT Bottom-up attention is known to improve visual performance with and without awareness. We discovered that manipulating subjects' awareness can modulate their attention fields of visual bottom-up attention, which offers a unique opportunity to regulate its normalization processes. On the one hand, by measuring the gain pattern of contrast-response functions on the spatial cueing effect derived by visible or invisible cues, we observed changes in the cueing effect consonant with changes in contrast gain for visible cues and response gain for invisible cues. On the other hand, by using the normalization model of attention, subjects' awareness-dependent attention fields can be simulated successfully. Our study supports important predictions of the normalization model of visual bottom-up attention and further reveals its dependence on awareness.
Collapse
|
20
|
Divisive normalization unifies disparate response signatures throughout the human visual hierarchy. Proc Natl Acad Sci U S A 2021; 118:2108713118. [PMID: 34772812 PMCID: PMC8609633 DOI: 10.1073/pnas.2108713118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
A canonical neural computation is a mathematical operation applied by the brain in a wide variety of contexts and capable of explaining and unifying seemingly unrelated neural and perceptual phenomena. Here, we use a combination of state-of-the-art experiments (ultra-high-field functional MRI) and mathematical methods (population receptive field [pRF] modeling) to uniquely demonstrate the role of divisive normalization (DN) as the canonical neural computation underlying visuospatial responses throughout the human visual hierarchy. The DN pRF model provides a tool to investigate and interpret the computational processes underlying neural responses in human and animal recordings, but also in clinical and cognitive dimensions. Neural processing is hypothesized to apply the same mathematical operations in a variety of contexts, implementing so-called canonical neural computations. Divisive normalization (DN) is considered a prime candidate for a canonical computation. Here, we propose a population receptive field (pRF) model based on DN and evaluate it using ultra-high-field functional MRI (fMRI). The DN model parsimoniously captures seemingly disparate response signatures with a single computation, superseding existing pRF models in both performance and biological plausibility. We observe systematic variations in specific DN model parameters across the visual hierarchy and show how they relate to differences in response modulation and visuospatial information integration. The DN model delivers a unifying framework for visuospatial responses throughout the human visual hierarchy and provides insights into its underlying information-encoding computations. These findings extend the role of DN as a canonical computation to neuronal populations throughout the human visual hierarchy.
Collapse
|
21
|
Schach S, Surges R, Helmstaedter C. Visual surround suppression in people with epilepsy correlates with attentional-executive functioning, but not with epilepsy or seizure types. Epilepsy Behav 2021; 121:108080. [PMID: 34062447 DOI: 10.1016/j.yebeh.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Following reports that an index of visual surround suppression (SI) may serve as a biomarker for an imbalance of cortical excitation and inhibition in different psychiatric and neurological disorders including epilepsy, we evaluated whether SI is associated with seizure susceptibility, seizure spread, and inhibitory effects of antiseizure medication (ASM). METHODS In this prospective controlled study, we examined SI with a motion discrimination task in people with genetic generalized epilepsy (GGE) and focal epilepsy with and without focal to bilateral tonic-clonic seizures. Cofactors such as GABAergic ASM, attentional-executive functioning, and depression were taken into account. RESULTS Data of 45 patients were included in the final analysis. Suppression index was not related to epilepsy or seizure type, GABAergic ASM treatment or mood. However, SI correlated with attentional-executive functioning (r = 0.32), which in turn was associated with ASM load (r = -0.38). Repeated task administration (N = 7) proved a high stability over a one-week interval (rtt = 0.89). CONCLUSIONS Our results do not support the hypothesis that SI is a reliable biomarker for mechanisms related to inhibition of seizure spread or seizure frequency, i.e., it does not seem to reflect inhibitory capacities in epilepsy. Likewise, SI did not differentiate GGE from focal epilepsy, nor was it influenced by ASM load or mode of action. Thus, in epilepsy, no added value of including SI to routine diagnostics can be concluded.
Collapse
Affiliation(s)
- Sophia Schach
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
22
|
Ip IB, Bridge H. Investigating the neurochemistry of the human visual system using magnetic resonance spectroscopy. Brain Struct Funct 2021; 227:1491-1505. [PMID: 33900453 PMCID: PMC9046312 DOI: 10.1007/s00429-021-02273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Biochemical processes underpin the structure and function of the visual cortex, yet our understanding of the fundamental neurochemistry of the visual brain is incomplete. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive brain imaging tool that allows chemical quantification of living tissue by detecting minute differences in the resonant frequency of molecules. Application of MRS in the human brain in vivo has advanced our understanding of how the visual brain consumes energy to support neural function, how its neural substrates change as a result of disease or dysfunction, and how neural populations signal during perception and plasticity. The aim of this review is to provide an entry point to researchers interested in investigating the neurochemistry of the visual system using in vivo measurements. We provide a basic overview of MRS principles, and then discuss recent findings in four topics of vision science: (i) visual perception, plasticity in the (ii) healthy and (iii) dysfunctional visual system, and (iv) during visual stimulation. Taken together, evidence suggests that the neurochemistry of the visual system provides important novel insights into how we perceive the world.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
Cannon J, O’Brien AM, Bungert L, Sinha P. Prediction in Autism Spectrum Disorder: A Systematic Review of Empirical Evidence. Autism Res 2021; 14:604-630. [PMID: 33570249 PMCID: PMC8043993 DOI: 10.1002/aur.2482] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
According to a recent influential proposal, several phenotypic features of autism spectrum disorder (ASD) may be accounted for by differences in predictive skills between individuals with ASD and neurotypical individuals. In this systematic review, we describe results from 47 studies that have empirically tested this hypothesis. We assess the results based on two observable aspects of prediction: learning a pairing between an antecedent and a consequence and responding to an antecedent in a predictive manner. Taken together, these studies suggest distinct differences in both predictive learning and predictive response. Studies documenting differences in learning predictive pairings indicate challenges in detecting such relationships especially when predictive features of an antecedent have low salience or consistency, and studies showing differences in habituation and perceptual adaptation suggest low-level predictive processing differences in ASD. These challenges may account for the observed differences in the influence of predictive priors, in spontaneous predictive movement or gaze, and in social prediction. An important goal for future research will be to better define and constrain the broad domain-general hypothesis by testing multiple types of prediction within the same individuals. Additional promising avenues include studying prediction within naturalistic contexts and assessing the effect of prediction-based intervention on supporting functional outcomes for individuals with ASD. LAY SUMMARY: Researchers have suggested that many features of autism spectrum disorder (ASD) may be explained by differences in the prediction skills of people with ASD. We review results from 47 studies. These studies suggest that ASD may be associated with differences in the learning of predictive pairings (e.g., learning cause and effect) and in low-level predictive processing in the brain (e.g., processing repeated sounds). These findings lay the groundwork for research that can improve our understanding of ASD and inform interventions. Autism Res 2021, 14: 604-630. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Amanda M. O’Brien
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- Program in Speech and Hearing Bioscience and Technology, Harvard University
| | - Lindsay Bungert
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| |
Collapse
|
24
|
Pierce S, Kadlaskar G, Edmondson DA, McNally Keehn R, Dydak U, Keehn B. Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: an EEG-MRS study. J Neurodev Disord 2021; 13:5. [PMID: 33407072 PMCID: PMC7788714 DOI: 10.1186/s11689-020-09351-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. Methods Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. Results Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. Conclusions Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09351-0.
Collapse
Affiliation(s)
- Sarah Pierce
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - David A Edmondson
- Cincinnati Children's Hospital Medical Center, Imaging Research Center, Cincinnati, OH, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brandon Keehn
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA. .,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
Distinct patterns of surround modulation in V1 and hMT. Neuroimage 2020; 220:117084. [PMID: 32629144 DOI: 10.1016/j.neuroimage.2020.117084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Modulation of a neuron's responses by the stimuli presented outside of its classical receptive field is ubiquitous in the visual system. This "surround modulation" mechanism is believed to be critical for efficient processing and leads to many well-known perceptual effects. The details of surround modulation, however, are still not fully understood. One of the open questions is related to the differences in surround modulation mechanisms in different cortical areas, and their interactions. Here we study patterns of surround modulation in primary visual cortex (V1) and middle temporal complex (hMT+) utilizing a well-studied effect in motion perception, where human observers' ability to discriminate the drift direction of a grating improves as its size gets bigger if the grating has a low contrast, and deteriorates if it has a high contrast. We first replicated the findings in the literature with a behavioral experiment using small and large (1.67 and 8.05 degrees of visual angle) drifting gratings with either low (2%) or high (99%) contrast presented at the periphery. Next, using functional MRI, we found that in V1 with increasing size cortical responses increased at both contrast levels. Whereas in hMT+ with increasing size cortical responses remained unchanged or decreased at high contrast, and increased at low contrast, reflecting the perceptual effect. We also show that the divisive normalization model successfully predicts these activity patterns, and establishes a link between the behavioral results and hMT+ activity. We conclude that surround modulation patterns in V1 and hMT+ are different, and that the size-contrast interaction in motion perception is likely to originate in hMT+.
Collapse
|
26
|
Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in Young Adults With Autism Spectrum Disorder. Autism Res 2020; 13:1111-1129. [PMID: 32297709 DOI: 10.1002/aur.2300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Michael-Paul Schallmo
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|