1
|
Lee S, Lee S, Desnick R, Yasuda M, Lai EC. Noncanonical role of ALAS1 as a heme-independent inhibitor of small RNA-mediated silencing. Science 2024; 386:1427-1434. [PMID: 39700288 PMCID: PMC11829814 DOI: 10.1126/science.adp9388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024]
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are 21- to 22-nucleotide RNAs that guide Argonaute-class effectors to targets for repression. In this work, we uncover 5-aminolevulinic acid synthase 1 (ALAS1), the initiating enzyme for heme biosynthesis, as a general repressor of miRNA accumulation. Although heme is known to be a positive cofactor for the nuclear miRNA processing machinery, ALAS1-but not other heme biosynthesis enzymes-limits the assembly and activity of Argonaute complexes under heme-replete conditions. This involves a cytoplasmic role for ALAS1, previously considered inactive outside of mitochondria. Moreover, conditional depletion of ALAS activity from mouse hepatocytes increases miRNAs and enhances siRNA-mediated knockdown. Notably, because ALAS1 is the target of a Food and Drug Administration-approved siRNA drug, agents that suppress ALAS may serve as adjuvants for siRNA therapies.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sangmi Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
2
|
Xu J, Ye S, Guan F. A computational strategy to improve the activity of tyrosine phenol-lyase for the synthesis of L-DOPA. Sci Rep 2024; 14:25329. [PMID: 39455666 PMCID: PMC11512013 DOI: 10.1038/s41598-024-76111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Enzymes with high catalytic activity and stability are essential for industrial production, yet most natural enzymes do not meet these requirements. Therefore, efficient strategies for enzyme engineering are crucial. In this study, we developed a cost-effective computational design strategy to enhance the activity of tyrosine phenol-lyase (TPL) for the production of L-DOPA. By integrating structural analysis with computational design, and guided by our understanding of conformational flexibility of TPL, we identified a region where enhanced stability is most likely to facilitate enzyme activity. We screened stabilizing mutations by Cartesian_ddg in Rosetta. After identifying single stabilizing mutations, we grouped the nearby positions harboring multiple stabilizing mutations and calculated the energy of combinatorial variants. We found two promising groups where most variants exhibited lower calculated energy than the wild-type. Experimental validation showed five variants in these groups exhibit increased activity, with the two best variants showing catalytic activity enhancements of 1.8-fold and 1.6-fold compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Jiayu Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Fenghui Guan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Fatima B, Licatino LK, Abcejo AS. Keeping patients in the dark: perioperative anesthetic considerations for patients receiving 5-aminolevulinic acid for glioma resection. Curr Opin Anaesthesiol 2024; 37:446-452. [PMID: 39011663 DOI: 10.1097/aco.0000000000001406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW 5-Aminolevulinic acid hydrochloride (5-ALA), available under the trade name Gleolan, is an orally administered fluorophore drug used to enhance visual differentiation of cancerous tissue from healthy tissue, primarily during surgical resection of high-grade gliomas. Although given preoperatively, 5-ALA has important implications for anesthetic care throughout the perioperative period. This article reviews pharmacology, safety concerns, and perioperative considerations for patients who receive oral 5-ALA. RECENT FINDINGS Although approved for clinical use by the United States Food and Drug Administration in 2017, studies and case reports published since then have further delineated side effects of this medication and its mechanisms and pharmacokinetics. SUMMARY Mitigating the possible side effects of 5-ALA requires an understanding of its basic mechanism as well as focused perioperative planning and communication. Administration of this medication may result in nausea, vomiting, photosensitivity, increase in serum concentration of liver enzymes, and hypotension. Patients who receive 5-ALA must be protected from prolonged light exposure during the first 48 h after consumption and administration of other photosensitizing agents should be avoided (Supplemental Video File/Video abstract).
Collapse
Affiliation(s)
- Benish Fatima
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
4
|
Ducamp S, Sendamarai AK, Campagna DR, Chin DWL, Fujiwara Y, Schmidt PJ, Fleming MD. Murine models of erythroid 5ALA synthesis disorders and their conditional synthetic lethal dependency on pyridoxine. Blood 2024; 144:1418-1432. [PMID: 38900972 PMCID: PMC11830978 DOI: 10.1182/blood.2023023078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase (ALAS), ALAS2, which encodes the first enzyme in heme biosynthesis. A related congenital sideroblastic anemia (CSA) is due to mutations in SLC25A38 (solute carrier family 25 member A38), which supplies mitochondrial glycine for ALAS2 (SLC25A38-CSA). The lack of viable animal models has limited the studies on pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knockin mouse models that recapitulate the main features of XLSA and XLPP; and using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP/EPP protoporphyrias, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ β-thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis-related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.
Collapse
Affiliation(s)
- Sarah Ducamp
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Anoop K. Sendamarai
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dean R. Campagna
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Yuko Fujiwara
- Division of Hematology/Oncology at Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Paul J. Schmidt
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Cai J, Liu T, Huang Y, Chen H, Yu M, Zhang D, Huang Z. A novel and apparent de novo ALAS2 missense variant associated with congenital sideroblastic anemia. Front Pediatr 2024; 12:1411676. [PMID: 39281190 PMCID: PMC11394181 DOI: 10.3389/fped.2024.1411676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background Congenital sideroblastic anemia (CSA) constitutes a group of inherited erythropoietic disorders. Some affect mainly or exclusively erythroid cells; other syndromic forms occur within multisystem disorders with extensive nonhematopoietic manifestations. In this study, we have performed clinical and molecular investigations on a 10-year-old boy suspected of having CSA. Methods Routine blood examination, peripheral blood and bone marrow smears, and serum iron tests were performed. Gene mutation analysis was conducted using whole-exome sequencing (WES) and the results were confirmed using Sanger sequencing. Furthermore, the functional impact of the identified variant was assessed/predicted with bioinformatics methods. Results The patient presented with severe microcytic anemia (hemoglobin, 50 g/L), iron overload and ring sideroblasts in the bone marrow. Moreover, WES revealed the presence of a hemizygous missense variant in ALAS2 (c.1102C > T), changing an encoded arginine to tryptophan (p. Arg368Trp). This variant was verified via Sanger sequencing, and neither of the parents carried this variant, which was suspected to be a de novo variant. Using in silico analysis with four different software programs, the variant was predicted to be harmful. PyMol and LigPlot software showed that the p. Arg368Trp variant may result in changes in hydrogen bonds. The patient was treated with vitamin B6 combined with deferasirox. After 6 months, the hemoglobin increased to 99 g/L and the serum ferritin decreased significantly. Conclusion We report a novel pathogenic variant in the ALAS2 gene (c.1102C > T:p. Arg368Trp), which caused CSA in a 10-year-old boy. Mutational analysis is important in patients with CSA when family history data are unavailable. Anemia due to the ALAS2 Arg368Trp variant responds to pyridoxine supplements.
Collapse
Affiliation(s)
- Jianling Cai
- Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tianming Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuxuan Huang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongxing Chen
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Meidie Yu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongqing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Taylor J, Ayres-Galhardo PH, Brown BL. Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease. Biochemistry 2024; 63:1636-1646. [PMID: 38888931 PMCID: PMC11223264 DOI: 10.1021/acs.biochem.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.
Collapse
Affiliation(s)
- Jessica
L. Taylor
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Pedro H. Ayres-Galhardo
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Breann L. Brown
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Utgés JS, MacGowan SA, Ives CM, Barton GJ. Classification of likely functional class for ligand binding sites identified from fragment screening. Commun Biol 2024; 7:320. [PMID: 38480979 PMCID: PMC10937669 DOI: 10.1038/s42003-024-05970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Fragment screening is used to identify binding sites and leads in drug discovery, but it is often unclear which binding sites are functionally important. Here, data from 37 experiments, and 1309 protein structures binding to 1601 ligands were analysed. A method to group ligands by binding sites is introduced and sites clustered according to profiles of relative solvent accessibility. This identified 293 unique ligand binding sites, grouped into four clusters (C1-4). C1 includes larger, buried, conserved, and population missense-depleted sites, enriched in known functional sites. C4 comprises smaller, accessible, divergent, missense-enriched sites, depleted in functional sites. A site in C1 is 28 times more likely to be functional than one in C4. Seventeen sites, which to the best of our knowledge are novel, in 13 proteins are identified as likely to be functionally important with examples from human tenascin and 5-aminolevulinate synthase highlighted. A multi-layer perceptron, and K-nearest neighbours model are presented to predict cluster labels for ligand binding sites with an accuracy of 96% and 100%, respectively, so allowing functional classification of sites for proteins not in this set. Our findings will be of interest to those studying protein-ligand interactions and developing new drugs or function modulators.
Collapse
Affiliation(s)
- Javier S Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stuart A MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Callum M Ives
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
8
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
9
|
Tran JU, Brown BL. The yeast ALA synthase C-terminus positively controls enzyme structure and function. Protein Sci 2023; 32:e4600. [PMID: 36807942 PMCID: PMC10031213 DOI: 10.1002/pro.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel β-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Breann L. Brown
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
10
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Hunter GA, Ferreira GC. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Front Mol Biosci 2022; 9:920668. [PMID: 35911972 PMCID: PMC9329541 DOI: 10.3389/fmolb.2022.920668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| |
Collapse
|
12
|
Medlock AE, Dailey HA. New Avenues of Heme Synthesis Regulation. Int J Mol Sci 2022; 23:ijms23137467. [PMID: 35806474 PMCID: PMC9267699 DOI: 10.3390/ijms23137467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
During erythropoiesis, there is an enormous demand for the synthesis of the essential cofactor of hemoglobin, heme. Heme is synthesized de novo via an eight enzyme-catalyzed pathway within each developing erythroid cell. A large body of data exists to explain the transcriptional regulation of the heme biosynthesis enzymes, but until recently much less was known about alternate forms of regulation that would allow the massive production of heme without depleting cellular metabolites. Herein, we review new studies focused on the regulation of heme synthesis via carbon flux for porphyrin synthesis to post-translations modifications (PTMs) that regulate individual enzymes. These PTMs include cofactor regulation, phosphorylation, succinylation, and glutathionylation. Additionally discussed is the role of the immunometabolite itaconate and its connection to heme synthesis and the anemia of chronic disease. These recent studies provide new avenues to regulate heme synthesis for the treatment of diseases including anemias and porphyrias.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| |
Collapse
|
13
|
Yien YY, Perfetto M. Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front Cell Dev Biol 2022; 10:895521. [PMID: 35832791 PMCID: PMC9272004 DOI: 10.3389/fcell.2022.895521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Heme plays a central role in diverse, life-essential processes that range from ubiquitous, housekeeping pathways such as respiration, to highly cell-specific ones such as oxygen transport by hemoglobin. The regulation of heme synthesis and its utilization is highly regulated and cell-specific. In this review, we have attempted to describe how the heme synthesis machinery is regulated by mitochondrial homeostasis as a means of coupling heme synthesis to its utilization and to the metabolic requirements of the cell. We have focused on discussing the regulation of mitochondrial heme synthesis enzymes by housekeeping proteins, transport of heme intermediates, and regulation of heme synthesis by macromolecular complex formation and mitochondrial metabolism. Recently discovered mechanisms are discussed in the context of the model organisms in which they were identified, while more established work is discussed in light of technological advancements.
Collapse
|
14
|
Zhang T, Chen J, Zheng P, Gong W, Sun J, Liu H. Crystal structure of 5-Aminolevulinate synthase HemA from Rhodopseudomonas palustris presents multiple conformations. Biochem Biophys Res Commun 2022; 609:100-104. [DOI: 10.1016/j.bbrc.2022.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
|
15
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
17
|
Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem 2022; 298:101643. [PMID: 35093382 PMCID: PMC8892079 DOI: 10.1016/j.jbc.2022.101643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023] Open
Abstract
Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.
Collapse
Affiliation(s)
- Jessica L Taylor
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Breann L Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
18
|
Nomura K, Kitagawa Y, Aihara M, Ohki Y, Furuyama K, Hirokawa T. Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX. FEBS Lett 2021; 595:3019-3029. [PMID: 34704252 DOI: 10.1002/1873-3468.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner. The substitution of C108 P109 [CP motif 3 (CP3)] with A108 A109 in ALAS1 resulted in a loss of ability to bind ClpX. Computational disorder analyses revealed that CP3 was located in a potential intrinsically disordered protein region (IDPR). Thus, we propose that conditional disorder-to-order transitions in the IDPRs of ALAS1 may represent key mechanisms underlying the heme-dependent recognition of ALAS1 by ClpX.
Collapse
Affiliation(s)
- Kazumi Nomura
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yu Kitagawa
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Marina Aihara
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yusuke Ohki
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | | | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
19
|
The immunometabolite itaconate inhibits heme synthesis and remodels cellular metabolism in erythroid precursors. Blood Adv 2021; 5:4831-4841. [PMID: 34492704 PMCID: PMC9153040 DOI: 10.1182/bloodadvances.2021004750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
The immunometabolite itaconate is taken up by erythroid precursors and converted to itaconyl-CoA by the CoA transferase SUGCT. Itaconyl-CoA is a competitive inhibitor of ALAS2 and inhibits erythropoietic heme synthesis.
As part of the inflammatory response by macrophages, Irg1 is induced, resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron but instead may be acquired from central macrophages within the erythroid island. Previously, we reported that itaconate inhibits hemoglobinization of developing erythroid cells. Herein we show that this action is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools, resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl–coenzyme A (CoA) by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid, and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine, are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.
Collapse
|
20
|
de Gennes C, Lamoril J, Borgel A, Boi C, Yao R, Boileau C, Tchernitchko D. Severe iron overload in a woman with homeostatic iron regulator (HFE) and a novel 5'-aminolevulinate synthase 2 (ALAS2) mutations: interactions of multiple genetic determinants. Br J Haematol 2021; 196:e17-e20. [PMID: 34490613 DOI: 10.1111/bjh.17810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian de Gennes
- Département de Médecine Interne, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jérôme Lamoril
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Adrien Borgel
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Camille Boi
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Raphael Yao
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France.,INSERM U1148, Université de Paris, Paris, France
| | | |
Collapse
|
21
|
Han X, Wen Q, Liu X, Wan K, Yan HJ, Zhang C, Zhang X. [New mutation of congenital sideroblastic anemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:603-605. [PMID: 34455750 PMCID: PMC8408491 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
- X Han
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - Q Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - X Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - K Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - H J Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - C Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| |
Collapse
|
22
|
Kwarteng A, Asiedu E, Sylverken A, Larbi A, Mubarik Y, Apprey C. In silico drug repurposing for filarial infection predicts nilotinib and paritaprevir as potential inhibitors of the Wolbachia 5'-aminolevulinic acid synthase. Sci Rep 2021; 11:8455. [PMID: 33875732 PMCID: PMC8055890 DOI: 10.1038/s41598-021-87976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Filarial infections affect millions of individuals and are responsible for some notorious disabilities. Current treatment options involve repeated mass drug administrations, which have been met with several challenges despite some successes. Administration of doxycycline, an anti-Wolbachia agent, has shown clinical effectiveness but has several limitations, including long treatment durations and contraindications. We describe the use of an in silico drug repurposing approach to screening a library of over 3200 FDA-approved medications against the filarial endosymbiont, Wolbachia. We target the enzyme which catalyzes the first step of heme biosynthesis in the Wolbachia. This presents an opportunity to inhibit heme synthesis, which leads to depriving the filarial worm of heme, resulting in a subsequent macrofilaricidal effect. High throughput virtual screening, molecular docking and molecular simulations with binding energy calculations led to the identification of paritaprevir and nilotinib as potential anti-Wolbachia agents. Having higher binding affinities to the catalytic pocket than the natural substrate, these drugs have the structural potential to bind and engage active site residues of the wolbachia 5'-Aminolevulinic Acid Synthase. We hereby propose paritaprevir and nilotinib for experimental validations as anti-Wolbachia agents.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana. .,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Augustina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Yusif Mubarik
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Charles Apprey
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
23
|
Huang J, Ge M, Shao Y, Wang M, Jin P, Huo J, Li X, Zhang J, Nie N, Zheng Y. A hemizygous p.R204Q mutation in the ALAS2 gene underlies X-linked sideroblastic anemia in an adult Chinese Han man. BMC Med Genomics 2021; 14:107. [PMID: 33858445 PMCID: PMC8048311 DOI: 10.1186/s12920-021-00950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia (CSA), and is associated with the mutations in the 5-aminolevulinate synthase 2 (ALAS2). The genetic basis of more than 40% of CSA cases remains unknown. METHODS A two-generation Chinese family with XLSA was studied by next-generation sequencing to identify the underlying CSA-related mutations. RESULTS In the study, we identified a missense ALAS2 R204Q mutation in a hemizygous Chinese Han man and in his heterozygous daughter. The male proband presented clinical manifestations at 38 years old and had a good response to pyridoxine. CONCLUSIONS XLSA, as a hereditary disease, can present clinical manifestations later in lives, for adult male patients with ringed sideroblasts and hypochromic anemia, it should be evaluated with gene analyses to exclude CSA.
Collapse
Affiliation(s)
- Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| |
Collapse
|
24
|
Huang G, Ren H, Wang A, Wan X, Wu Z, Zhong X. iTRAQ-based proteomic analysis reveals the molecule mechanism of reducing higher alcohols in Chinese rice wine by nitrogen compensation. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01611-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.
Methods
The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.
Results
About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.
Conclusion
Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.
Collapse
|
25
|
Lira Zidanes A, Marchi G, Busti F, Marchetto A, Fermo E, Giorgetti A, Vianello A, Castagna A, Olivieri O, Bianchi P, Girelli D. A Novel ALAS2 Missense Mutation in Two Brothers With Iron Overload and Associated Alterations in Serum Hepcidin/Erythroferrone Levels. Front Physiol 2020; 11:581386. [PMID: 33281618 PMCID: PMC7689258 DOI: 10.3389/fphys.2020.581386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023] Open
Abstract
Iron loading anemias are characterized by ineffective erythropoiesis and iron overload. The prototype is non-transfusion dependent ß-thalassemia (NTDT), with other entities including congenital sideroblastic anemias, congenital dyserythropoietic anemias, some hemolytic anemias, and myelodysplastic syndromes. Differential diagnosis of iron loading anemias may be challenging due to heterogeneous genotype and phenotype. Notwithstanding the recent advances in linking ineffective erythropoiesis to iron overload, many pathophysiologic aspects are still unclear. Moreover, measurement of hepcidin and erythroferrone (ERFE), two key molecules in iron homeostasis and erythropoiesis, is scarcely used in clinical practice and of uncertain utility. Here, we describe a comprehensive diagnostic approach, including next-generation sequencing (NGS), in silico modeling, and measurement of hepcidin and erythroferrone (ERFE), in two brothers eventually diagnosed as X-linked sideroblastic anemia (XLSA). A novel pathogenic ALAS2 missense mutation (c.1382T>A, p.Leu461His) is described. Hyperferritinemia with high hepcidin-25 levels (but decreased hepcidin:ferritin ratio) and mild-to-moderate iron overload were detected in both patients. ERFE levels were markedly elevated in both patients, especially in the proband, who had a more expressed phenotype. Our study illustrates how new technologies, such as NGS, in silico modeling, and measurement of serum hepcidin-25 and ERFE, may help in diagnosing and studying iron loading anemias. Further studies on the hepcidin-25/ERFE axis in additional patients with XLSA and other iron loading anemias may help in establishing its usefulness in differential diagnosis, and it may also aid our understanding of the pathophysiology of these genetically and phenotypically heterogeneous entities.
Collapse
Affiliation(s)
- Acaynne Lira Zidanes
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Giacomo Marchi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Fabiana Busti
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | | | - Elisa Fermo
- Hematology and Pathophysiology of Anemias Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Ca' Granda Foundation, Policlinico Milano, Milan, Italy
| | | | - Alice Vianello
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Annalisa Castagna
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Oliviero Olivieri
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Paola Bianchi
- Hematology and Pathophysiology of Anemias Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Ca' Granda Foundation, Policlinico Milano, Milan, Italy
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| |
Collapse
|