1
|
Samar B, Venet S, Desmedt A, Broseta D. Growth Kinetics and Porous Structure of Surfactant-Promoted Gas Hydrate. ACS OMEGA 2024; 9:31842-31854. [PMID: 39072087 PMCID: PMC11270568 DOI: 10.1021/acsomega.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024]
Abstract
Surfactants present in tiny amounts in the aqueous phase are known to be efficient gas hydrate promoters; yet, the promotion mechanisms are still not fully understood. Understanding and directing those mechanisms is key to the implementation of gas-hydrate-based applications such as gas storage and separation, secondary refrigeration or water treatment, and desalination. In this work, the growth at the water/gas interface and the porous structure of surfactant-promoted methane hydrate are observed by optical microscopy and Raman imaging in glass capillaries used as optical cells. Hollow crystals are continuously generated and expelled from the methane/water meniscus into the water or surfactant solution, where they ultimately form the skeleton of a porous medium filled with the solution. Unprecedented information is gathered over a range of scales from the molecular scale (crystal structure and cage filling) to the mesoscale (crystal morphologies, growth habits and pore sizes) and macroscale (rates and amounts of water and gas converted into hydrate and hydrate porosity). Following an early steady-state growth regime, a sudden order-of-magnitude increase of the conversion rate occurs, which is related to gaseous methane microbubbles being directly incorporated across the meniscus in the aqueous solution and later converted to methane hydrate. An assessment and comparison are made of the mechanisms and performance of two common anionic surfactants known to be efficient gas hydrate promoters, SDS (sodium dodecyl sulfate) and AOT (dioctylsulfosuccinate sodium or AerosolOcTyl). AOT provides a quicker but more limited conversion into hydrate than SDS, suggesting that it is more appropriate for continuous flow processes while SDS is better suited for gas storage applications. Raman spectra reveal that cage filling by methane of structure I methane hydrate is not affected by surfactants.
Collapse
Affiliation(s)
- Belkacem Samar
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LFCR, Pau 64013, France
| | - Saphir Venet
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LFCR, Pau 64013, France
| | - Arnaud Desmedt
- Université
de Bordeaux, ISM UMR5255 CNRS, Talence Cedex 33405, France
- Laboratoire
Léon Brillouin, UMR12 CEA-CNRS, Gif-sur-Yvette 91190, France
| | - Daniel Broseta
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LFCR, Pau 64013, France
| |
Collapse
|
2
|
Shi Q, Lin Z, Qu Y, Wu J, Zhang Z. HTR+: a novel algorithm for identifying type and polycrystal of gas hydrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:365901. [PMID: 38821075 DOI: 10.1088/1361-648x/ad52df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
In this work, the hierarchical topology ring (HTR+) algorithm, an extension of the HTR algorithm, was developed for identifying gas hydrate types, cage structures, and grain boundaries (GBs) within polycrystalline structures. Utilizing molecular dynamics trajectories of polycrystalline hydrates, the accuracy of the HTR+ algorithm is validated in identifying sI, sII and sH hydrate types, hydrate grains, and GBs in multi-hydrate polycrystals, as well as clathrate cages at GBs. Additionally, during the hydrate nucleation and growth processes, clathrate cages, hydrate type, hydrate grains and ice structures are accurately recognized. Significantly, this algorithm demonstrates high efficiency, particularly for large hydrate systems. HTR+ algorithm emerges a powerful tool for identifying micro/mesoscopic structures of gas hydrates, enabling an in-depth understanding of the formation mechanisms and properties of gas hydrates.
Collapse
Affiliation(s)
- Qiao Shi
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ziyan Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yongxiao Qu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
3
|
Lin Y, Zhou Z, Song Z, Shi Q, Hao Y, Fu Y, Li T, Zhang Z, Wu J. Insights into the mechanical stability of tetrahydrofuran hydrates from experimental, machine learning, and molecular dynamics perspectives. NANOSCALE 2024; 16:6296-6308. [PMID: 38463012 DOI: 10.1039/d3nr04940j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Natural gas hydrates (NGHs) hold immense potential as a future energy resource and for sustainable applications such as gas capture and storage. Due to the challenging formation conditions, however, their mechanical properties remain poorly understood. Herein, the mechanical characteristics of tetrahydrofuran (THF) hydrates, a proxy for methane hydrates, were investigated at different ice contents, strain rates, and temperatures using uniaxial compressive experiments. The results unveil a distinct behavior in the peak strength of THF hydrates with a varying ice content, strain rate and temperature, exhibiting an increase as the strain rate and temperature decrease, in contrast to the peak strength-strain rate relationship observed in polycrystalline ice. Based on the experimental data, four machine learning (ML) models including extreme gradient boosting (XGboost), multilayer perceptron (MLP), gradient boosting decision tree (GBDT) and decision tree (DT) were developed to predict the peak strength. The XGboost model demonstrates superior predictive performance, emphasizing the significant influence of ice content and temperature on the peak strength of hydrates. Furthermore, molecular dynamics (MD) simulations were employed to gain insights into the dissociation and formation processes of clathrate cages, as well as phase transitions and amorphization occurring at grain boundaries (GBs) involving diverse unconventional clathrate cages, including 51265, 4151062, 4151064, 425861 and 425862, with 425861 and 425862 cages being predominant. This study enhances our understanding of the mechanical properties and deformation mechanisms of hydrates and provides a ML-based predictive framework for estimating the compressive strength of hydrates under diverse coupling conditions. The findings have significant implications for stability assessments of NGHs and the exploitation of NGH resources.
Collapse
Affiliation(s)
- Yanwen Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Ziyue Zhou
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Zixuan Song
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Qiao Shi
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Yongchao Hao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Yuequn Fu
- PoreLab, the Njord Centre, Department of Physics, University of Oslo, Oslo 0371, Norway
| | - Tong Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
4
|
Zhang J, Yin Z, Khan SA, Li S, Li Q, Liu X, Linga P. Path-dependent morphology of CH 4 hydrates and their dissociation studied with high-pressure microfluidics. LAB ON A CHIP 2024; 24:1602-1615. [PMID: 38323341 DOI: 10.1039/d3lc00950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Methane hydrates (MHs) have been considered a promising future energy source due to their vast resource volume and high energy density. Understanding the behavior of MH formation and dissociation at the pore-scale and the effect of MH distribution on the gas-liquid two phase flow is of critical importance for designing effective production strategies from natural gas hydrate (NGH) reservoirs. In this study, we devised a novel high-pressure microfluidic chip apparatus that is capable of direct observation of MH formation and dissociation behavior at the pore-scale. MH nucleation and growth behavior at 10.0 MPa and dissociation via thermal stimulation with gas bubble generation and evolution were examined. Our experimental results reveal that two different MH formation mechanisms co-exist in pores: (a) porous-type MH with a rough surface formed from CH4 gas bubbles at the gas-liquid interface and (b) crystal-type MH formed from dissolved CH4 gas. The growth and movement of crystal-type MH can trigger the sudden nucleation of porous-type MH. Spatially, MHs preferentially grow along the gas-liquid interface in pores. MH dissociation under thermal stimulation practically generates gas bubbles with diameters of 20.0-200.0 μm. Based on a custom-designed image analysis technique, three distinct stages of gas bubble evolution were identified during MH dissociation via thermal stimulation: (a) single gas bubble growth with an expanding water layer at an initial slow dissociation rate, (b) rapid generation of clusters of gas bubbles at a fast dissociation rate, and (c) gas bubble coalescence with uniform distribution in the pore space. The novel apparatus designed and the image analysis technique developed in this study allow us to directly capture the dynamic evolution of the gas-liquid interface during MH formation and dissociation at the pore-scale. The results provide direct first-hand visual evidence of the growth of MHs in pores and valuable insights into gas-liquid two-phase flow behavior during fluid production from NGHs.
Collapse
Affiliation(s)
- Jidong Zhang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zhenyuan Yin
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117582, Singapore
| | - Shuxia Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingping Li
- State Key Laboratory of Natural Gas Hydrates, Technology Research Department CNOOC Research, Beijing 100192, China
| | - Xiaohui Liu
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Praveen Linga
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117582, Singapore
| |
Collapse
|
5
|
Wang Y, Adhikari S, van der Meer H, Liu J, Orrit M. Thousand-Fold Enhancement of Photothermal Signals in Near-Critical CO 2. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3619-3625. [PMID: 36865992 PMCID: PMC9969513 DOI: 10.1021/acs.jpcc.2c08575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection. In this report, we show that carbon dioxide (CO2), a much cheaper gas than xenon, can enhance PT signals in a similar way. We confine near-critical CO2 in a thin capillary which easily withstands the high near-critical pressure (around 74 bar) and facilitates sample preparation. We also demonstrate enhancement of the magnetic circular dichroism signal of single magnetite nanoparticle clusters in supercritical CO2. We have performed COMSOL simulations to support and explain our experimental findings.
Collapse
Affiliation(s)
- Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Harmen van der Meer
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Junyan Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
|
7
|
Crustal fingering facilitates free-gas methane migration through the hydrate stability zone. Proc Natl Acad Sci U S A 2020; 117:31660-31664. [PMID: 33257583 DOI: 10.1073/pnas.2011064117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Widespread seafloor methane venting has been reported in many regions of the world oceans in the past decade. Identifying and quantifying where and how much methane is being released into the ocean remains a major challenge and a critical gap in assessing the global carbon budget and predicting future climate [C. Ruppel, J. D. Kessler. Rev. Geophys. 55, 126-168 (2017)]. Methane hydrate ([Formula: see text]) is an ice-like solid that forms from methane-water mixture under elevated-pressure and low-temperature conditions typical of the deep marine settings (>600-m depth), often referred to as the hydrate stability zone (HSZ). Wide-ranging field evidence indicates that methane seepage often coexists with hydrate-bearing sediments within the HSZ, suggesting that hydrate formation may play an important role during the gas-migration process. At a depth that is too shallow for hydrate formation, existing theories suggest that gas migration occurs via capillary invasion and/or initiation and propagation of fractures (Fig. 1). Within the HSZ, however, a theoretical mechanism that addresses the way in which hydrate formation participates in the gas-percolation process is missing. Here, we study, experimentally and computationally, the mechanics of gas percolation under hydrate-forming conditions. We uncover a phenomenon-crustal fingering-and demonstrate how it may control methane-gas migration in ocean sediments within the HSZ.
Collapse
|