1
|
Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y. Current Control of Spin Helicity and Nonreciprocal Charge Transport in a Multiferroic Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420614. [PMID: 40190106 PMCID: PMC12087743 DOI: 10.1002/adma.202420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Indexed: 05/20/2025]
Abstract
A multiferroic state with both electronic polarity (P) and magnetization (M) shows the inherently strong P-M coupling when P is induced by cycloidal (Néel-wall like) spin modulation. The sign of P is determined by the clockwise or counterclockwise rotation of spin, termed the spin helicity. Such a multiferroic state is not limited to magnetic insulators but can be broadly observed in conductors. Here, the current control of the multiferroics is reported in a helimagnetic metal YMn6Sn6 and its detection through nonreciprocal resistivity (NRR). The underlying concept is the coupling of the current with the toroidal momentT ∼ P × M ∼ ( q ̂ × χ v ) × M $\bm{T}\sim \bm{P}\ensuremath{\times{}}\bm{M}\sim (\widehat{\bm{q}}\ensuremath{\times{}}{\bm{\chi}}_{v})\ensuremath{\times{}}\bm{M}$ as well as with the magneto-chirality χv · M, whereq ̂ $\hspace*{0.28em}\widehat{\bm{q}}$ and χv are the unit modulation wave vector and the vector spin chirality, respectively. An enhancement of NRR is furthermore observed by the spin-cluster scattering via χv and its fluctuation. These findings may pave the way to an exploration of multiferroic conductors and the application of the spin-helicity degree of freedom as a state variable.
Collapse
Affiliation(s)
- Daiki Yamaguchi
- Department of Applied PhysicsThe University of TokyoTokyo113–8656Japan
- RIKEN Center for Emergent Matter Science (CEMS)Wako351‐0198Japan
| | - Aki Kitaori
- Department of Applied PhysicsThe University of TokyoTokyo113–8656Japan
- Institute of Engineering InnovationThe University of TokyoTokyo113‐0032Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS)Wako351‐0198Japan
- Fundamental Quantum Science ProgramTRIP Headquarters, RIKENWako351‐0198Japan
| | - Yoshinori Tokura
- Department of Applied PhysicsThe University of TokyoTokyo113–8656Japan
- RIKEN Center for Emergent Matter Science (CEMS)Wako351‐0198Japan
- Tokyo CollegeThe University of TokyoTokyo113–8656Japan
| |
Collapse
|
2
|
Bousquet E, Fava M, Romestan Z, Gómez-Ortiz F, McCabe EE, Romero AH. Structural chirality and related properties in periodic inorganic solids: review and perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163004. [PMID: 39951890 DOI: 10.1088/1361-648x/adb674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.
Collapse
Affiliation(s)
- Eric Bousquet
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Mauro Fava
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Zachary Romestan
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| | - Fernando Gómez-Ortiz
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Emma E McCabe
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Aldo H Romero
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| |
Collapse
|
3
|
Watanabe H, Yanase Y. Magnetic parity violation and parity-time-reversal-symmetric magnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:373001. [PMID: 38899401 DOI: 10.1088/1361-648x/ad52dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Parity-time-reversal symmetry (PTsymmetry), a symmetry for the combined operations of space inversion (P) and time reversal (T), is a fundamental concept of physics and characterizes the functionality of materials as well asPandTsymmetries. In particular, thePT-symmetric systems can be found in the centrosymmetric crystals undergoing the parity-violating magnetic order which we call the odd-parity magnetic multipole order. While this spontaneous order leavesPTsymmetry intact, the simultaneous violation ofPandTsymmetries gives rise to various emergent responses that are qualitatively different from those allowed by the nonmagneticP-symmetry breaking or by the ferromagnetic order. In this review, we introduce candidates hosting the intriguing spontaneous order and overview the characteristic physical responses. Various off-diagonal and/or nonreciprocal responses are identified, which are closely related to the unusual electronic structures such as hidden spin-momentum locking and asymmetric band dispersion.
Collapse
Affiliation(s)
- Hikaru Watanabe
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Youichi Yanase
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Inda A, Oiwa R, Hayami S, Yamamoto HM, Kusunose H. Quantification of chirality based on electric toroidal monopole. J Chem Phys 2024; 160:184117. [PMID: 38738609 DOI: 10.1063/5.0204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Chirality ubiquitously appears in nature; however, its quantification remains obscure owing to the lack of microscopic description at the quantum-mechanical level. We propose a way of evaluating chirality in terms of the electric toroidal monopole, a practical entity of time-reversal even pseudoscalar (parity-odd) objects reflecting relevant electronic wave functions. For this purpose, we analyze a twisted methane molecule at the quantum-mechanical level, showing that the electric toroidal monopoles become a quantitative indicator for chirality. In the twisted methane, we clarify that the handedness of chirality corresponds to the sign of the expectation value of the electric toroidal monopole and that the most important ingredient is the modulation of the spin-dependent imaginary hopping between the hydrogen atoms, while the relativistic spin-orbit coupling within the carbon atom is irrelevant for chirality.
Collapse
Affiliation(s)
- A Inda
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - R Oiwa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - S Hayami
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - H M Yamamoto
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - H Kusunose
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- Department of Physics, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
5
|
Kaplan D, Holder T, Yan B. Unification of Nonlinear Anomalous Hall Effect and Nonreciprocal Magnetoresistance in Metals by the Quantum Geometry. PHYSICAL REVIEW LETTERS 2024; 132:026301. [PMID: 38277599 DOI: 10.1103/physrevlett.132.026301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/09/2023] [Accepted: 11/16/2023] [Indexed: 01/28/2024]
Abstract
The quantum geometry has significant consequences in determining transport and optical properties in quantum materials. Here, we use a semiclassical formalism coupled with perturbative corrections unifying the nonlinear anomalous Hall effect and nonreciprocal magnetoresistance (longitudinal resistance) from the quantum geometry. In the dc limit, both transverse and longitudinal nonlinear conductivities include a term due to the normalized quantum metric dipole. The quantum metric contribution is intrinsic and does not scale with the quasiparticle lifetime. We demonstrate the coexistence of a nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in films of the doped antiferromagnetic topological insulator MnBi_{2}Te_{4}. Our work indicates that both longitudinal and transverse nonlinear transport provide a sensitive probe of the quantum geometry in solids.
Collapse
Affiliation(s)
- Daniel Kaplan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias Holder
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Li L, Li H, Zhou K, Xiao X, Chen L, Ma F, Zhang J, Wang L, Zhang L, Liu R. Observation and Characterization of Multiple Resonance Modes in a Chiral Helimagnet CrNb 3S 6. NANO LETTERS 2023; 23:9243-9249. [PMID: 37792552 DOI: 10.1021/acs.nanolett.3c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The chiral helimagnet CrNb3S6 hosts various temperature- and magnetic-field-stabilized chiral soliton lattices (CSLs) and corresponding exotic collective spin resonance modes, which make it an ideal candidate for future magnetic storage/memory and magnon-based information processing. While most studies have focused on characterizing various static spin textures in this chiral helimagnet, its corresponding collective dynamics have rarely been explored. This study systematically investigates the temperature- and magnetic-field-dependent magnetic dynamics of a single crystal of CrNb3S6 using broadband microwave spectroscopy. We observe an optical mode with a temperature-independent mode number in addition to Kittel-like ferromagnetic resonance (FMR) modes in the CSL phase, consistent with the temperature-independent normalized CSL period L(H)/L(0) based on the 1D chiral sine-Gordon model. Furthermore, combining theoretical model fitting and micromagnetic simulation, we provide a detailed phase diagram and temporal-spatial resolution of dynamic modes, which may help to develop high-frequency exchange-coupling-based spintronic devices.
Collapse
Affiliation(s)
- Liyuan Li
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Haotian Li
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaiyuan Zhou
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao Xiao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lina Chen
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fusheng Ma
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lei Zhang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronghua Liu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Wang K, Ren K, Hou Y, Cheng Y, Zhang G. Magnon-phonon coupling: from fundamental physics to applications. Phys Chem Chem Phys 2023; 25:21802-21815. [PMID: 37581291 DOI: 10.1039/d3cp02683c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent decades, there are immense applications for bulk and few-layer magnetic insulators in biomedicine, data storage, and signal transfer. In these applications, the interaction between spin and lattice vibration has significant impacts on the device performance. In this article, we systematically review the fundamental physical aspects of magnon-phonon coupling in magnetic insulators. We first introduce the fundamental physics of magnons and magnon-phonon coupling in magnetic insulators and then discuss the influence of magnon-phonon coupling on the properties of magnons and phonons. Finally, a summary is presented, and we also discuss the possible open problems in this field. This article presents the advanced understanding of magnon-phonon coupling in magnetic insulators, which provides new opportunities for improving various possible applications.
Collapse
Affiliation(s)
- Ke Wang
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
| | - Yinlong Hou
- School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi, 710121, China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China.
- Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|
8
|
Yokouchi T, Ikeda Y, Morimoto T, Shiomi Y. Giant Magnetochiral Anisotropy in Weyl Semimetal WTe_{2} Induced by Diverging Berry Curvature. PHYSICAL REVIEW LETTERS 2023; 130:136301. [PMID: 37067327 DOI: 10.1103/physrevlett.130.136301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The concept of Berry curvature is essential for various transport phenomena. However, an effect of the Berry curvature on magnetochiral anisotropy, i.e., nonreciprocal magnetotransport, is still elusive. Here, we report that the Berry curvature induces the large magnetochiral anisotropy. In Weyl semimetal WTe_{2}, we observe the strong enhancement of the magnetochiral anisotropy when the Fermi level is located near the Weyl points. Notably, the maximal figure of merit γ[over ¯] reaches 1.2×10^{-6} m^{2} T^{-1} A^{-1}, which is the largest ever reported in bulk materials. Our semiclassical calculation shows that the diverging Berry curvature at the Weyl points strongly enhances the magnetochiral anisotropy.
Collapse
Affiliation(s)
- Tomoyuki Yokouchi
- Department of Basic Science, The University of Tokyo, Tokyo 152-8902, Japan
| | - Yuya Ikeda
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takahiro Morimoto
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuki Shiomi
- Department of Basic Science, The University of Tokyo, Tokyo 152-8902, Japan
| |
Collapse
|
9
|
Jeynes C. How "Berry Phase" Analysis of Non-Adiabatic Non-Hermitian Systems Reflects Their Geometry. ENTROPY (BASEL, SWITZERLAND) 2023; 25:390. [PMID: 36832756 PMCID: PMC9955799 DOI: 10.3390/e25020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
There is currently great interest in systems represented by non-Hermitian Hamiltonians, including a wide variety of real systems that may be dissipative and whose behaviour can be represented by a "phase" parameter that characterises the way "exceptional points" (singularities of various sorts) determine the system. These systems are briefly reviewed here with an emphasis on their geometrical thermodynamics properties.
Collapse
Affiliation(s)
- Chris Jeynes
- Ion Beam Centre, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
10
|
Liu Y, Watanabe H, Nagaosa N. Emergent Magnetomultipoles and Nonlinear Responses of a Magnetic Hopfion. PHYSICAL REVIEW LETTERS 2022; 129:267201. [PMID: 36608193 DOI: 10.1103/physrevlett.129.267201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The three-dimensional emergent magnetic field B^{e} of a magnetic hopfion gives rise to emergent magnetomultipoles in a similar manner to the multipoles of classical electromagnetic field. Here, we show that the nonlinear responses of a hopfion are characterized by its emergent magnetic toroidal moment T_{z}^{e}=1/2∫(r×B^{e})_{z}dV and emergent magnetic octupole component Γ^{e}=∫[(x^{2}+y^{2})B_{z}^{e}-xzB_{x}^{e}-yzB_{y}^{e}]dV. The hopfion exhibits nonreciprocal dynamics (nonlinear hopfion Hall effect) under an ac driving current applied along (perpendicular to) the direction of T_{z}^{e}. The sign of nonreciprocity and nonlinear Hall angle is determined by the polarity and chirality of hopfion. The nonlinear electrical transport induced by a magnetic hopfion is also discussed. This Letter reveals the vital roles of emergent magnetomultipoles in nonlinear hopfion dynamics and could stimulate further investigations on the dynamical responses of topological spin textures induced by emergent electromagnetic multipoles.
Collapse
Affiliation(s)
- Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Hikaru Watanabe
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Atzori M, Train C, Hillard EA, Avarvari N, Rikken GLJA. Magneto-chiral anisotropy: From fundamentals to perspectives. Chirality 2021; 33:844-857. [PMID: 34541710 DOI: 10.1002/chir.23361] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/08/2022]
Abstract
The interplay between chirality and magnetic fields gives rise to a cross effect referred to as magneto-chiral anisotropy (MChA), which can manifest itself in different physical properties of chiral magnetized materials. The first experimental demonstration of MChA was by optical means with visible light. Further optical manifestations of MChA have been evidenced across most of the electromagnetic spectrum, from terahertz to X-rays. Moreover, exploiting the versatility of molecular chemistry toward chiral magnetic systems, many efforts have been made to identify the microscopic origins of optical MChA, necessary to advance the effect toward technological applications. In parallel, the replacement of light by electric current has allowed the observation of nonreciprocal electrical charge transport in both molecular and inorganic conductors as a result of electrical MChA (eMChA). MChA in other domains such as sound propagation, photochemistry, and electrochemistry are still in their infancy, with only a few experimental demonstrations, and offer wide perspectives for further studies with potentially large impact, like the understanding of the homochirality of life. After a general introduction to MChA, we give a complete review of all these phenomena, particularly during the last decade.
Collapse
Affiliation(s)
- Matteo Atzori
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Paul Sabatier, EMFL, CNRS, Toulouse, France
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Paul Sabatier, EMFL, CNRS, Toulouse, France
| | - Elizabeth A Hillard
- Institute de Chimie de la Matière Condensée de Bordeaux, CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
| | - Narcis Avarvari
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, Angers, France
| | - Geert L J A Rikken
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Paul Sabatier, EMFL, CNRS, Toulouse, France
| |
Collapse
|
12
|
Abstract
Skyrmion, a concept originally proposed in particle physics half a century ago, can now find the most fertile field for its applicability, that is, the magnetic skyrmion realized in helimagnetic materials. The spin swirling vortex-like texture of the magnetic skyrmion can define the particle nature by topology; that is, all the constituent spin moments within the two-dimensional sheet wrap the sphere just one time. Such a topological nature of the magnetic skyrmion can lead to extraordinary metastability via topological protection and the driven motion with low electric-current excitation, which may promise future application to spintronics. The skyrmions in the magnetic materials frequently show up as the crystal lattice form, e.g., hexagonal lattice, but sometimes as isolated or independent particles. These skyrmions in magnets were initially found in acentric magnets, such as chiral, polar, and bilayered magnets endowed with antisymmetric spin exchange interaction, while the skyrmion host materials have been explored in a broader family of compounds including centrosymmetric magnets. This review describes the materials science and materials chemistry of magnetic skyrmions using the classification scheme of the skyrmion forming microscopic mechanisms. The emergent phenomena and functions mediated by skyrmions are described, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect. The other important magnetic topological defects in two or three dimensions, such as biskyrmions, antiskyrmions, merons, and hedgehogs, are also reviewed in light of their interplay with the skyrmions.
Collapse
Affiliation(s)
- Yoshinori Tokura
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.,Tokyo College, University of Tokyo, Tokyo 113-8656, Japan
| | - Naoya Kanazawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Liu Y, Holder T, Yan B. Chirality-Induced Giant Unidirectional Magnetoresistance in Twisted Bilayer Graphene. Innovation (N Y) 2021; 2:100085. [PMID: 33738460 PMCID: PMC7938422 DOI: 10.1016/j.xinn.2021.100085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
Twisted bilayer graphene (TBG) exhibits fascinating correlation-driven phenomena like the superconductivity and Mott insulating state, with flat bands and a chiral lattice structure. We find by quantum-transport calculations that the chirality leads to a giant unidirectional magnetoresistance (UMR) in TBG, where the unidirectionality refers to the resistance change under the reversal of the direction of current or magnetic field. We point out that flat bands significantly enhance this effect. The UMR increases quickly upon reducing the twist angle, and reaches about 20% for an angle of 1.5° in a 10 T in-plane magnetic field. We propose the band structure topology (asymmetry), which leads to a direction-sensitive mean free path, as a useful way to anticipate the UMR effect. The UMR provides a probe for chirality and band flatness in the twisted bilayers.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Holder
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|