1
|
Davydova S, Yu D, Meccariello A. Genetic engineering for SIT application: a fruit fly-focused review. INSECT SCIENCE 2025. [PMID: 40195546 DOI: 10.1111/1744-7917.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Sterile insect technique (SIT) has become a key component of efficient pest control. Fruit fly pests from the Drosophilidae and Tephritidae families pose a substantial and overwhelmingly increasing threat to the agricultural industry, aggravated by climate change and globalization among other contributors. In this review, we discuss the advances in genetic engineering aimed to improve the SIT-mediated fruit fly pest control. This includes SIT enhancement strategies such as novel genetic sexing strain and female lethality approaches. Self-pervasive X-shredding and X-poisoning sex distorters, alongside gene drive varieties are also reviewed. The self-limiting precision-guided SIT, which aims to tackle female removal and male fertility via CRISPR/Cas9, is additionally introduced. By using examples of existing genetic tools in the fruit fly pests of interest, as well as model species, we illustrate that the population control intensity may be modulated depending on strategy selection.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Danheng Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2025; 43:826-837. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
3
|
Bai F, Cai P, Yao L, Shen Y, Li Y, Zhou YJ. Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness. Trends Biotechnol 2025:S0167-7799(25)00042-3. [PMID: 40074635 DOI: 10.1016/j.tibtech.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.
Collapse
Affiliation(s)
- Fan Bai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
| | - Yiwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China.
| |
Collapse
|
4
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
5
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
6
|
Xia Q, Tariq K, Hahn DA, Handler AM. Sequence and expression analysis of the spermatogenesis-specific gene cognates, wampa and Prosα6T, in Drosophila suzukii. Genetica 2023:10.1007/s10709-023-00189-7. [PMID: 37300797 DOI: 10.1007/s10709-023-00189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The sterile insect technique (SIT) is a highly effective biologically-based method for the population suppression of highly invasive insect pests of medical and agricultural importance. The efficacy of SIT could be significantly enhanced, however, by improved methods of male sterilization that avoid the fitness costs of irradiation. An alternative sterilization method is possible by gene-editing that targets genes essential for sperm maturation and motility, rendering them nonfunctional, similar to the CRISPR-Cas9 targeting of β2-tubulin in the genetic model system, Drosophila melanogaster. However, since genetic strategies for sterility are susceptible to breakdown or resistance in mass-reared populations, alternative targets for sterility are important for redundancy or strain replacement. Here we have identified and characterized the sequence and transcriptional expression of two genes in a Florida strain of Drosophila suzukii, that are cognates of the D. melanogaster spermatocyte-specific genes wampa and Prosalpha6T. Wampa encodes a coiled-coil dynein subunit required for axonemal assembly, and the proteasome subunit gene, Prosalpha6T, is required for spermatid individualization and nuclear maturation. The reading frames of these genes differed from their NCBI database entries derived from a D. suzukii California strain by 44 and 8 nucleotide substitutions/polymorphisms, respectively, though all substitutions were synonymous resulting in identical peptide sequences. Expression of both genes is predominant in the male testis, and they share similar transcriptional profiles in adult males with β2-tubulin. Their amino acid sequences are highly conserved in dipteran species, including pest species subject to SIT control, supporting their potential use in targeted male sterilization strategies.
Collapse
Affiliation(s)
- Qinwen Xia
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611, USA
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, 32608, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611, USA
| | - Alfred M Handler
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, 32608, USA.
| |
Collapse
|
7
|
Yan Y, Hosseini B, Scheld A, Pasham S, Rehling T, Schetelig MF. Effects of antibiotics on the in vitro expression of tetracycline-off constructs and the performance of Drosophila suzukii female-killing strains. Front Bioeng Biotechnol 2023; 11:876492. [PMID: 36865029 PMCID: PMC9971817 DOI: 10.3389/fbioe.2023.876492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic control strategies such as the Release of Insects Carrying a Dominant Lethal (RIDL) gene and Transgenic Embryonic Sexing System (TESS) have been demonstrated in the laboratory and/or deployed in the field. These strategies are based on tetracycline-off (Tet-off) systems which are regulated by antibiotics such as Tet and doxycycline (Dox). Here, we generated several Tet-off constructs carrying a reporter gene cassette mediated by a 2A peptide. Different concentrations (0.1, 10, 100, 500, and 1,000 μg/mL) and types (Tet or Dox) of antibiotics were used to evaluate their effects on the expression of the Tet-off constructs in the Drosophila S2 cells. One or both of the two concentrations, 100 and 250 μg/mL, of Tet or Dox were used to check the influence on the performances of a Drosophila suzukii wild-type strain and female-killing (FK) strains employing TESS. Specifically, the Tet-off construct for these FK strains contains a Drosophila suzukii nullo promoter to regulate the tetracycline transactivator gene and a sex-specifically spliced pro-apoptotic gene hid Ala4 to eliminate females. The results suggested that the in vitro expression of the Tet-off constructs was controlled by antibiotics in a dose-dependent manner. ELISA experiments were carried out identifying Tet at 34.8 ng/g in adult females that fed on food supplemented with Tet at 100 μg/mL. However, such method did not detect Tet in the eggs produced by antibiotic-treated flies. Additionally, feeding Tet to the parents showed negative impact on the fly development but not the survival in the next generation. Importantly, we demonstrated that under certain antibiotic treatments females could survive in the FK strains with different transgene activities. For the strain V229_M4f1 which showed moderate transgene activity, feeding Dox to fathers or mothers suppressed the female lethality in the next generation and feeding Tet or Dox to mothers generated long-lived female survivors. For the strain V229_M8f2 which showed weak transgene activity, feeding Tet to mothers delayed the female lethality for one generation. Therefore, for genetic control strategies employing the Tet-off system, the parental and transgenerational effects of antibiotics on the engineered lethality and insect fitness must be carefully evaluated for a safe and efficient control program.
Collapse
Affiliation(s)
- Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,*Correspondence: Ying Yan,
| | - Bashir Hosseini
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Annemarie Scheld
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Srilakshmi Pasham
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Sychla A, Feltman NR, Hutchison WD, Smanski MJ. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive Drosophila suzukii. FRONTIERS IN INSECT SCIENCE 2022; 2:1063789. [PMID: 38468757 PMCID: PMC10926386 DOI: 10.3389/finsc.2022.1063789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 03/13/2024]
Abstract
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of Drosophila suzukii (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles. We discovered a surprising failure mode wherein field-generated females convert an incompatible male release program into a population replacement gene drive. Local suppression could still be attained in two seasons by tailoring the release strategy to take advantage of this effect, or alternatively in one season by altering the genetic design of release agents. We show in this work that data from modeling can be utilized to recognize unexpected emergent phenomena and a priori inform genetic biocontrol treatment design to increase efficacy.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Nathan R. Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, Saint Paul, MN, United States
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
9
|
Bouchaut B, Hollmann F, Asveld L. Differences in barriers for controlled learning about safety between biotechnology and chemistry. Nat Commun 2022; 13:4103. [PMID: 35835765 PMCID: PMC9283460 DOI: 10.1038/s41467-022-31870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
In contrast to chemical industry, biotechnology is still not competitive for the production of chemicals, materials, and biofuels. Here, the authors discuss the underlying reasons and propose to address the problem through regulatory changes and risk management.
Collapse
Affiliation(s)
- Britte Bouchaut
- Section of Biotechnology and Society, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| | - Frank Hollmann
- Section of Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Lotte Asveld
- Section of Biotechnology and Society, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| |
Collapse
|
10
|
Upadhyay A, Feltman NR, Sychla A, Janzen A, Das SR, Maselko M, Smanski M. Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression. eLife 2022; 11:71230. [PMID: 35108195 PMCID: PMC8860436 DOI: 10.7554/elife.71230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Anna Janzen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | - Siba R Das
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| | | | - Michael Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
| |
Collapse
|
11
|
Webster SH, Scott MJ. The Aedes aegypti (Diptera: Culicidae) hsp83 Gene Promoter Drives Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2533-2537. [PMID: 34302473 DOI: 10.1093/jme/tjab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
Transgenic strains of the mosquito disease vector Aedes aegypti (L.) are being developed for population suppression or modification. Transgenic mosquitoes are identified using fluorescent protein genes. Here we describe DsRed and ZsGreen marker genes driven by the constitutive Ae. aegypti heat shock protein 83 (hsp83) promoter in transgenic mosquitoes. Transgenic larvae and pupae show strong full body expression of the red and green fluorescent proteins. This greatly assists in screening for transgenic individuals while making new or maintaining already established lines. Transient marker gene expression after embryo microinjection was readily visible in developing larvae allowing the separation of individuals that are more likely to produce transgenic offspring. The strongly expressed marker genes developed in this study should facilitate the detection of transgenic Ae. aegypti larvae or pupae in the field.
Collapse
Affiliation(s)
- Sophia H Webster
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Schetelig MF, Schwirz J, Yan Y. A transgenic female killing system for the genetic control of Drosophila suzukii. Sci Rep 2021; 11:12938. [PMID: 34155227 PMCID: PMC8217240 DOI: 10.1038/s41598-021-91938-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
The spotted wing Drosophila (Drosophila suzukii) is an invasive pest of soft-skinned fruit crops. It is rapidly transmitted in Europe and North America, causing widespread agricultural losses. Genetic control strategies such as the sterile insect technique (SIT) have been proposed as environment-friendly and species-restricted approaches for this pest. However, females are inefficient agents in SIT programs. Here we report a conditional female-killing (FK) strategy based on the tetracycline-off system. We assembled sixteen genetic constructs for testing in vitro and in vivo. Twenty-four independent transgenic strains of D. suzukii were generated and tested for female-specific lethality. The strongest FK effect in the absence of tetracycline was achieved by the construct containing D. suzukii nullo promoter for early gene expression, D. suzukii pro-apoptotic gene hidAla4 for lethality, and the transformer gene intron from the Mediterranean fruit fly Ceratitis capitata for female-specific splicing. One strain carrying this construct eliminated 100% of the female offspring during embryogenesis and produced only males. However, homozygous females from these FK strains were not viable on a tetracycline-supplemented diet, possibly due to the basal expression of hidAla4. Potential improvements to the gene constructs and the use of such FK strains in an SIT program are discussed.
Collapse
Affiliation(s)
- Marc F Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Ying Yan
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany.
| |
Collapse
|
13
|
Yan Y, Jaffri SA, Schwirz J, Stein C, Schetelig MF. Identification and characterization of four Drosophila suzukii cellularization genes and their promoters. BMC Genet 2020; 21:146. [PMID: 33339500 PMCID: PMC7747377 DOI: 10.1186/s12863-020-00939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background The spotted-wing Drosophila (Drosophila suzukii) is a widespread invasive pest that causes severe economic damage to fruit crops. The early development of D. suzukii is similar to that of other Drosophilids, but the roles of individual genes must be confirmed experimentally. Cellularization genes coordinate the onset of cell division as soon as the invagination of membranes starts around the nuclei in the syncytial blastoderm. The promoters of these genes have been used in genetic pest-control systems to express transgenes that confer embryonic lethality. Such systems could be helpful in sterile insect technique applications to ensure that sterility (bi-sex embryonic lethality) or sexing (female-specific embryonic lethality) can be achieved during mass rearing. The activity of cellularization gene promoters during embryogenesis controls the timing and dose of the lethal gene product. Results Here, we report the isolation of the D. suzukii cellularization genes nullo, serendipity-α, bottleneck and slow-as-molasses from a laboratory strain. Conserved motifs were identified by comparing the encoded proteins with orthologs from other Drosophilids. Expression profiling confirmed that all four are zygotic genes that are strongly expressed at the early blastoderm stage. The 5′ flanking regions from these cellularization genes were isolated, incorporated into piggyBac vectors and compared in vitro for the promoter activities. The Dsnullo promoter showed the highest activity in the cell culture assays using D. melanogaster S2 cells. Conclusions The similarities in the gene coding and 5′ flanking sequence as well as in the expression pattern of the four cellularization genes between D. melanogaster and D. suzukii, suggest that conserved functions may be involved in both species. The high expression level at the early blastoderm stage of the four cellularization genes were confirmed, thus their promoters can be considered in embryonic lethality systems. While the Dsnullo promoter could be a suitable candidate, all reported promoters here are subject to further in vivo analyses before constructing potential pest control systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00939-y.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany.
| | - Syeda A Jaffri
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany
| | - Carl Stein
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany.
| |
Collapse
|
14
|
Functional characterization of the Drosophila suzukii pro-apoptotic genes reaper, head involution defective and grim. Apoptosis 2020; 25:864-874. [PMID: 33113043 DOI: 10.1007/s10495-020-01640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Apoptosis is a fundamental process for the elimination of damaged or unwanted cells, and is a key aspect of development. It is triggered by pro-apoptotic genes responding to the intrinsic pathway that senses cell stress or the extrinsic pathway that responds to signals from other cells. The disruption of these genes can therefore lead to developmental defects and disease. Pro-apoptotic genes have been studied in detail in the fruit fly Drosophila melanogaster, a widely-used developmental model. However, little is known about the corresponding genes in its relative D. suzukii, a pest of soft fruit crops that originates from Asia but is now an invasive species in many other regions. The characterization of D. suzukii pro-apoptotic genes could lead to the development of transgenic sexing strains for pest management. Here, we describe the isolation and characterization of the pro-apoptotic genes reaper (Dsrpr), head involution defective (Dshid) and grim (Dsgrim) from a laboratory strain of D. suzukii. We determined their expression profiles during development, revealing that all three genes are expressed throughout development but Dsrpr is expressed most strongly, especially at the pupal stage. Functional analysis was carried out by expressing single genes or pairs (linked by a 2A peptide) in S2 cell death assays, indicating that Dsgrim and Dshid are more potent pro-apoptotic genes than Dsrpr, and the lethality can be significantly enhanced by co-expression of two genes. Therefore, the binary or multiple expression of different pro-apoptotic genes can be considered to build an efficient transgenic sexing system in D. suzukii.
Collapse
|