1
|
Yi S, Noh K, Kim H, Jung E, Kim S, Lee J, Guk K, Choi J, Lim EK, Kim S, Park H, Lim JH, Jung CR, Kang T, Jung J. Advancing pancreatic cancer therapy by mesothelin-specific nanobody conjugation. Mol Cancer 2025; 24:124. [PMID: 40275270 PMCID: PMC12020020 DOI: 10.1186/s12943-025-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is highly challenging to treat due to its poor prognosis and limited effective treatment options. Liposomal nanotechnology has emerged as a promising drug delivery platform in oncology, but existing liposomal therapies face limitations such as systemic toxicity, insufficient tumor selectivity, and low target specificity. Mesothelin (MSLN), an antigen overexpressed in PAAD, has attracted attention as a potential target for precision therapy. Here, we present the development of an anti-MSLN nanobody (D3 Nb) with high binding affinity (KD = 2.2 nM) that can selectively bind to MSLN-positive cancer cells. Structural analysis revealed that hydrophobic and hydrogen bonds within the complementary determining region (CDR) of D3 Nb promote strong binding to MSLN, leading to significant inhibition of AKT/NF-κB signaling and downregulation of fibronectin 1 (FN1) and twist1, key drivers of PAAD oncogenicity. In vivo studies confirmed that D3 Nb alone inhibits tumor progression. Furthermore, selective delivery to MSLN-positive tumors in combination with gemcitabine-loaded liposomes (D3-LNP-GEM) significantly improved cytotoxicity and promoted tumor regression. These findings highlight the potential of the D3-LNP-GEM platform as a novel targeted therapy for MSLN-expressing malignancies, showing promising efficacy in preclinical models and paving the way for continued clinical evaluation.
Collapse
Affiliation(s)
- Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyunghee Noh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunkyeong Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jieun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinsol Choi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Seokho Kim
- Department of Health Science, the Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Hwangseo Park
- Deparment of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin- gu, Seoul, 05006, Republic of Korea
| | - Jung Hwa Lim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Wei Z, Zhang X, Chen Y, Liu H, Wang S, Zhang M, Ma H, Yu K, Wang L. A new strategy based on a cascade amplification strategy biosensor for on-site eDNA detection and outbreak warning of crown-of-thorns starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172258. [PMID: 38583618 DOI: 10.1016/j.scitotenv.2024.172258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.
Collapse
Affiliation(s)
- Zongwu Wei
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuzhe Zhang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yingzhan Chen
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Honglin Ma
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd., Qionghai 571499, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Guk K, Yi S, Kim H, Bae Y, Yong D, Kim S, Lee KS, Lim EK, Kang T, Jung J. Hybrid CRISPR/Cas protein for one-pot detection of DNA and RNA. Biosens Bioelectron 2023; 219:114819. [PMID: 36327561 DOI: 10.1016/j.bios.2022.114819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have emerged as next-generation molecular diagnostics. In CRISPR-based diagnostics, Cas12 and Cas13 proteins have been widely employed to detect DNA and RNA, respectively. Herein, we developed a novel hybrid Cas protein capable of detecting universal nucleic acids (DNA and RNA). The CRISPR/hybrid Cas system simultaneously recognizes both DNA and RNA, enabling the dual detection of pathogenic viruses in a single tube. Using wild-type (WT) and N501Y mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as detection models, we successfully detected both virus strains with a detection limit of 10 viral copies per reaction without cross-reactivity. Furthermore, it is demonstrated the detection of WT SARS-CoV-2 and N501Y mutant variants in clinical samples by using the CRISPR/hybrid Cas system. The hybrid Cas protein is expected to be utilized in a molecular diagnostic method for infectious diseases, tissue and liquid biopsies, and other nucleic acid biomarkers.
Collapse
Affiliation(s)
- Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoonji Bae
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunjoo Kim
- Republic of Korea Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
5
|
Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon HJ, Lee IC, Kim S, Yong D, Yoon SW, Park SG, Guk K, Lim EK, Park HG, Choo J, Jung J, Kang T. Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosens Bioelectron 2022; 202:114008. [PMID: 35086030 PMCID: PMC8770391 DOI: 10.1016/j.bios.2022.114008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected humans worldwide for over a year now. Although various tests have been developed for the detection of SARS-CoV-2, advanced sensing methods are required for the diagnosis, screening, and surveillance of coronavirus disease 2019 (COVID-19). Here, we report a surface-enhanced Raman scattering (SERS)-based immunoassay involving an antibody pair, SERS-active hollow Au nanoparticles (NPs), and magnetic beads for the detection of SARS-CoV-2. The selected antibody pair against the SARS-CoV-2 antigen, along with the magnetic beads, facilitates the accurate direct detection of the virus. The hollow Au NPs exhibit strong, reproducible SERS signals, allowing sensitive quantitative detection of SARS-CoV-2. This assay had detection limits of 2.56 fg/mL for the SARS-CoV-2 antigen and 3.4 plaque-forming units/mL for the SARS-CoV-2 lysates. Furthermore, it facilitated the identification of SARS-CoV-2 in human nasopharyngeal aspirates and diagnosis of COVID-19 within 30 min using a portable Raman device. Thus, this assay can be potentially used for the diagnosis and prevention of COVID-19.
Collapse
Affiliation(s)
- Hyunjung Cha
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52828, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun-Woo Yoon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Kim H, Hwang SG, Guk K, Bae Y, Park H, Lim EK, Kang T, Jung J. Development of antibody against drug-resistant respiratory syncytial virus: Rapid detection of mutant virus using split superfolder green fluorescent protein-antibody system. Biosens Bioelectron 2021; 194:113593. [PMID: 34481240 DOI: 10.1016/j.bios.2021.113593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Respiratory syncytial virus (RSV) infections are associated with severe bronchiolitis or pneumonia. Although palivizumab is used to prevent RSV infections, the occurrence of palivizumab-resistant RSV strains is increasing, and these strains pose a threat to public health. Herein, we report an antibody with affinity to the S275F RSV antigen, enabling the specific detection of palivizumab-resistant RSV strains. Experimental and simulation results confirmed the affinity of the antibody to the S275F RSV antigen. Furthermore, we developed a rapid S275F RSV antigen detection method using a split superfolder green fluorescent protein (ssGFP) that can interact with the antibody. In the presence of the mutant virus antigen, ssGFP emitted fluorescence within 1 min, allowing the rapid identification of S275F RSV. We anticipate that the developed antibody would be useful for the precise diagnosis of antiviral drug-resistant RSV strains and help treat patients with RSV infections.
Collapse
Affiliation(s)
- Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seul Gee Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yoonji Bae
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Pradhan D, Biswasroy P, Kar B, Bhuyan SK, Ghosh G, Rath G. Clinical Interventions and Budding Applications of Probiotics in the Treatment and Prevention of Viral Infections. Arch Med Res 2021; 53:122-130. [PMID: 34690010 DOI: 10.1016/j.arcmed.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/06/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Over the period, viral infections remain the utmost challenge in front of the scientific community. Continuous shifting and drafting of viral antigenic peptides are the main drivers in the development of antiviral drug resistance. The resurgence of disease, difficulties facing the development of an effective vaccine and undesirable immunological outcomes, foster to develop an alternative therapeutic approach to combat viral infections. Biomimetic nature of viral particles competent to invade the host cell by downregulating the expression of immune responsive cells. To revive from such complications, strengthening the innate immunity places first and foremost defense mechanisms to restrict viral infiltration. Variegated probiotic strains show antiviral activity by stimulating the macrophage and dendritic cell to secret the inflammation response mediated chemokines and cytokines, production of antimicrobial peptides, and biosurfactants, modulate the antiviral gens expression, alter the proportional functionality of CD4+CD25+Foxp3+ regulatory cells (Tregs), etc. With the appreciation for the antiviral activity and health benefits, however, the selectivity of specific probiotic strain from the diversified microbiome, the interactive molecular mechanism of probiotics, viability and sustainability of a specific number of a probiotic strain at the end of the shelf life, stability, selection of the formulation materials, identification and validation of the key process parameters have the major challenges for the development of an effective probiotic therapy against viral infections.
Collapse
Affiliation(s)
- Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha "O" Anusandhan University, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India.
| |
Collapse
|
9
|
Ultrasensitive Detection of Ovarian Cancer Biomarker Using Au Nanoplate SERS Immunoassay. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00031-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Lee H, Youn H, Hwang A, Lee H, Park JY, Kim W, Yoo Y, Ban C, Kang T, Kim B. Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. NANOMATERIALS 2020; 10:nano10071402. [PMID: 32708486 PMCID: PMC7407982 DOI: 10.3390/nano10071402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/14/2023]
Abstract
Well-ordered bioreceptors on atomically flat Au surfaces can be a high-performance biosensor. Cardiac troponin I proteins (cTnIs) have been regarded as a specific biomarker for acute myocardial infarction (AMI). Here, we report the accurate detection of cTnIs using an aptamer-immobilized Au nanoplate platform. The single-crystalline and atomically flat Au nanoplate was characterized by atomic force microscopy. For the precise detection of cTnI, we immobilized an aptamer that can strongly bind to cTnI onto an atomically flat Au nanoplate. Using the aptamer-immobilized Au nanoplate, cTnIs were successfully detected at a concentration of 100 aM (2.4 fg/mL) in buffer solution. Furthermore, cTnIs in serum could be identified at a concentration of 100 fM (2.4 pg/mL). The total assay time was ~7 h. Importantly, the aptamer-immobilized Au nanoplate enabled us to diagnose AMI patients accurately, suggesting the potential of the present method in the diagnosis of AMI.
Collapse
Affiliation(s)
- Hyoban Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
| | - Hyungjun Youn
- Department of Chemistry, POSTECH, Pohang 37673, Korea;
| | - Ahreum Hwang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
| | - Hyunsoo Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Center for Nanomaterials and Chemical Reactions, IBS, Daejeon 34141, Korea
| | - Jeong Young Park
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Center for Nanomaterials and Chemical Reactions, IBS, Daejeon 34141, Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, Korea;
| | - Youngdong Yoo
- Department of Chemistry, Ajou University, Suwon 16499, Korea;
| | - Changill Ban
- Department of Chemistry, POSTECH, Pohang 37673, Korea;
- Correspondence: (C.B.); (T.K.); (B.K.)
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea
- Correspondence: (C.B.); (T.K.); (B.K.)
| | - Bongsoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (H.L.); (A.H.); (H.L.); (J.Y.P.)
- Correspondence: (C.B.); (T.K.); (B.K.)
| |
Collapse
|