1
|
Zhu H, Liu F, Zhang H, Zhao J. A Pseudo-Block Copolymerization Access to Cyclic Alternating Copolymers through Segment-Selective Transesterification. ACS Macro Lett 2025; 14:142-148. [PMID: 39836968 DOI: 10.1021/acsmacrolett.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Efficient synthesis of cyclic polymers remains a frontier challenge. We report here that macromolecular transesterification during a pseudoblock copolymerization process can be utilized for such a purpose. Organobase-catalyzed ring-opening alternating copolymerization of 3,4-dihydrocoumarin and epoxide is conducted with four-armed poly(ethylene oxide) (PEO) as a macroinitiator. Intramolecular transesterification (backbiting) occurs selectively on the newly formed polyester segments. The disconnected cyclic alternating copolymers can be easily isolated by precipitation owing to their substantial solubility difference from the PEO-containing acyclic parts. The obtained cyclic alternating copolymers exhibit low dispersity (<1.2) and a molar mass of around 3 kg mol-1, irrespective of the monomer-to-initiator feed ratio, indicating thermodynamic control over the ring size. The macrocyclic structure is confirmed by both mass spectroscopy and microscopic visualization and then utilized to prepare cyclic-brush terpolymer by thiol-ene modification, followed by graft polymerization of propylene oxide.
Collapse
Affiliation(s)
- Hongxuan Zhu
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Fengzhuang Liu
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Hongxin Zhang
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
2
|
Chen S, Zhang C, Zhang X. Autodegradable Polymers: Complete Degradation without Any Trigger, Tunable Performance, and Biomedical Applications. J Am Chem Soc 2024; 146:34852-34860. [PMID: 39630650 DOI: 10.1021/jacs.4c14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Degradable polymers are an emerging research interest. The innovation of new degradable polymers for biomedical applications is challenging due to strict demands including nontoxicity of polymers and degraded products, complete degradation to avoid polymer residues in the body, and other suitable properties. Here, we demonstrate a series of degradable polymers for sustained-release drug applications synthesized by the alternating copolymerization of cyclic anhydrides and Schiff bases. In addition to common feedstocks, the copolymerization is versatile and catalyst-free, affording polymers incorporating cyclic topologies and in-chain ester and peptoid groups. Particularly, the polymers exhibit self- and autodegradation without any trigger, which is distinct from remaining degradation mechanisms. The degradation performance is widely regulated by the polymer structure and external temperature, resulting in complete degradation from a few hours to several months. Owing to their unique properties, the polymers are approved for biomedical applications, as revealed soundly through cell viability assay, in vitro and in vivo drug release.
Collapse
Affiliation(s)
- Shuohong Chen
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Hosford BM, Ramos W, Lamb JR. Combining photocontrolled-cationic and anionic-group-transfer polymerizations using a universal mediator: enabling access to two- and three-mechanism block copolymers. Chem Sci 2024; 15:13523-13530. [PMID: 39183918 PMCID: PMC11339941 DOI: 10.1039/d4sc02511c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported. Herein, we report a TCT universal mediator that can sequentially perform photocontrolled cationic polymerization and thioacyl anionic group transfer polymerization to access poly(ethyl vinyl ether)-block-poly(thiirane) polymers for the first time. Thermal analyses of these block copolymers provide evidence of microphase separation. The success of this system, along with the established compatibility of radical polymerization, enabled us to further chain extend the cationic-anionic diblock using radical polymerization of N-isopropylacrylamide. The resulting terpolymer represents the first example of a triblock made from three different monomer classes incorporated via three different mechanisms without any end-group modification steps. The development of this simple, sequential synthesis using a universal mediator approach opens up new possibilities by providing facile access to diverse block copolymers of vinyl ethers, thiiranes, and acrylamides.
Collapse
Affiliation(s)
- Brandon M Hosford
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - William Ramos
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
4
|
Clarke BR, Tew GN. Programming Mechanical Properties through Encoded Network Topologies. JOURNAL OF POLYMER SCIENCE 2024; 62:3663-3680. [PMID: 39399843 PMCID: PMC11469555 DOI: 10.1002/pol.20230594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 10/15/2024]
Abstract
Polymer networks remain an essential class of soft materials. Despite their use in everyday materials, connecting the molecular structure of the network to its macroscopic properties remains an active area of research. Much current research is enabled by advances in modern polymer chemistry providing an unprecedented level of control over macromolecular structure. At the same time, renewed interest in self-healing, dynamic, and/or adaptable materials continues to drive substantial interest in polymer network design. As part of a special issue focused on research performed in the Polymer Science and Engineering Department at the University of Massachusetts, Amherst, this review highlights connections between macromolecular structure of networks and observed mechanical properties as investigated by the Tew research group.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| |
Collapse
|
5
|
Lu X, Zhang X, Zhang C, Zhang X. Cyclic Polyesters with Closed-Loop Recyclability from A New Chemically Reversible Alternating Copolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306072. [PMID: 38037295 PMCID: PMC10811513 DOI: 10.1002/advs.202306072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Polyesters with both cyclic topology and chemical recyclability are attractive. Here, the alternating copolymerization of cyclic anhydride and o-phthalaldehyde to synthesize a series of cyclic and recyclable polyesters are reported for the first time. Besides readily available monomers, the copolymerization is carried out at 25 °C, uses common Lewis/Brønsted acids as catalysts, and achieves high yields within 1 h. The resulting polyesters possess well-defined alternating sequences, high-purity cyclic topology, and tunable structures using distinct two monomer sets. Of interest, the copolymerization manifests obvious chemical reversibility as revealed by kinetic and thermodynamic studies, making the unprecedented polyesters easy to recycle to their distinct two monomers in a closed loop at high temperatures. This work furnishes a facile and efficient method to synthesize cyclic polyesters with closed-loop recyclability.
Collapse
Affiliation(s)
- Xiaoxian Lu
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
6
|
Duan BH, Yu JX, Gao RT, Li SY, Liu N, Wu ZQ. Controlled synthesis of cyclic helical polyisocyanides and bottlebrush polymers using a cyclic alkyne-Pd(II) catalyst. Chem Commun (Camb) 2023; 59:13002-13005. [PMID: 37830293 DOI: 10.1039/d3cc04095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cyclic polymers have very unique structure and properties, and thus have drawn intense research attention. However, controlled synthesis of cyclic polymers with predictable molar mass and narrow distribution is still a challenging task. In this study, we developed a novel cyclic catalyst that initiates the ring-expansion polymerisation of isocyanides, producing a series of cyclic helical polymers with predictable molecular weight and low dispersity. Interestingly, the ring-expansion polymerization of the isocyanide macromonomers gives well-defined cyclic bottlebrush polymers. The cyclic topology was demonstrated using transmission electron microscopy.
Collapse
Affiliation(s)
- Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jia-Xin Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China.
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Zhang Z, Xiong Y, Yang P, Li Y, Tang R, Nie X, Chen G, Wang LH, Hong CY, You YZ. Easy Access to Diverse Multiblock Copolymers with On-Demand Blocks via Thioester-Relayed In-Chain Cascade Copolymerization. Angew Chem Int Ed Engl 2023; 62:e202216685. [PMID: 36786232 DOI: 10.1002/anie.202216685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Multiblock copolymers are envisioned as promising materials with enhanced properties and functionality compared with their diblock/triblock counterparts. However, the current approaches can construct multiblock copolymers with a limited number of blocks but tedious procedures. Here, we report a thioester-relayed in-chain cascade copolymerization strategy for the easy preparation of multiblock copolymers with on-demand blocks, in which thioester groups with on-demand numbers are built in the polymer backbone by controlled/living polymerizations. These thioester groups further serve as the in-chain initiating centers to trigger the acyl group transfer ring-opening polymerization of episulfides independently and concurrently to extend the polymer backbone into multiblock structures. The compositions, number of blocks, and block degree of polymerization can be easily regulated. This strategy can offer easy access to a library of multiblock copolymers with ≈100 blocks in only 2 to 4 steps.
Collapse
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA-02115, USA
| | - Rui Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Zhang H, Zha H, Liu C, Hong C. Scalable preparation and direct visualization of cyclic polymers via self-folding cyclization technique. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Ochs J, Pagnacco CA, Barroso-Bujans F. Macrocyclic polymers: Synthesis, purification, properties and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Chen C, Weil T. Cyclic polymers: synthesis, characteristics, and emerging applications. NANOSCALE HORIZONS 2022; 7:1121-1135. [PMID: 35938292 DOI: 10.1039/d2nh00242f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclic polymers with a ring-like topology and no chain ends are a unique class of macromolecules. In the past several decades, significant advances have been made to prepare these fascinating polymers, which allow for the exploration of their topological effects and potential applications in various fields. In this Review, we first describe representative synthetic strategies for making cyclic polymers and their derivative topological polymers with more complex structures. Second, the unique physical properties and self-assembly behavior of cyclic polymers are discussed by comparing them with their linear analogues. Special attention is paid to highlight how polymeric rings can assemble into hierarchical macromolecular architectures. Subsequently, representative applications of cyclic polymers in different fields such as drug and gene delivery and surface functionalization are presented. Last, we envision the following key challenges and opportunities for cyclic polymers that may attract future attention: large-scale synthesis, efficient purification, programmable folding and assembly, and expansion of applications.
Collapse
Affiliation(s)
- Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Umabharathi PS, Karpagam S. Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
Collapse
Affiliation(s)
| | - Subramanian Karpagam
- Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore - 14 , Tamil Nadu , India
| |
Collapse
|
13
|
Wu B, You W, Wang HL, Zhang Z, Nie X, Wang F, You YZ. Cyclic topology enhances the killing activity of polycations against planktonic and biofilm bacteria. J Mater Chem B 2022; 10:4823-4831. [PMID: 35266490 DOI: 10.1039/d2tb00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial biofilms, as a fortress to protect bacteria, enhance resistance to antibiotics because of their limited penetration, which has become a major threat to current anti-infective therapy. Antimicrobial polycations have received wide attention to kill planktonic bacteria because of their unique antimicrobial mechanism without drug resistance but it is still hard to kill the bacteria in the deep of the biofilm. Unlike linear polymers, the cyclic topology has been demonstrated with enhanced penetration in tissues, which is attributed to the lack of end groups, constrained conformation and a smaller hydrodynamic volume, opening a new sight of polycations in the antibacterial application against biofilms. Here, polycations with different topologies including linear and cyclic polycations were synthesized and their killing activity against planktonic and biofilm bacteria was studied. The experimental results showed the enhanced antibacterial activity of cyclic polycations for planktonic bacteria, which is presumably attributed to their smaller hydrodynamic volume, higher local density of positive charge and more interactions between cation units and the bacterial membrane than their linear analogues. Besides, cyclic polycations exhibit enhanced killing effect for biofilm bacteria and inhibition effect for biofilms with 5-7 times and 2-3 times enhancements than the linear polycations, respectively. Furthermore, an Escherichia coli infection model on mice was established and the therapeutic effects of cyclic and linear polycations were evaluated. Compared with the linear polycations, the cyclic polycations exhibited enhanced antibacterial activity with an ∼4 times increase, promoting the healing of the infected wounds. This work provides a new perspective in the development of antimicrobial polycations, which are promising therapeutic agents to kill planktonic and biofilm bacteria without drug resistance.
Collapse
Affiliation(s)
- Bin Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hai-Li Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Fei Wang
- Department of Neurosurgical, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
14
|
Ma C, Quan Y, Zhang J, Sun R, Zhao Q, He X, Liao X, Xie M. Efficient Synthesis and Cyclic Molecular Topology of Ultralarge-Sized Bicyclic and Tetracyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Quan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jinhuan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiao He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Song PD, Xia L, Nie X, Chen G, Wang F, Zhang Z, Hong CY, You YZ. Synthesis of poly(thioester sulfonamide)s via the Ring-Opening Copolymerization of Cyclic Thioanhydride with N-Sulfonyl Aziridine Using Mild Phosphazene base. Macromol Rapid Commun 2022; 43:e2200140. [PMID: 35578395 DOI: 10.1002/marc.202200140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Indexed: 11/11/2022]
Abstract
Providing access to diverse polymer structures is highly desirable, which helps to explore new polymer materials. Poly(thioester sulfonamide)s, combining both the advantages of thioesters and amides, however, have been rarely available in polymer chemistry. Here, we report the ring-opening copolymerization (ROCOP) of cyclic thioanhydride with N-sulfonyl aziridine using mild phosphazene base, resulting in well-defined poly(thioester sulfonamide)s with highly alternative structures, high yields, and controlled molecular weights. Additionally, benefiting from the mild catalytic process, this ROCOP can be combined with ROCOP of N-sulfonyl aziridines with cyclic anhydrides to produce novel block copolymers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peng-Duo Song
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Lei Xia
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Fei Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Chun-Yan Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
16
|
Multicyclic topology-enhanced anticancer drug delivery. J Control Release 2022; 345:278-291. [DOI: 10.1016/j.jconrel.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
17
|
Zhu X, Yang G, Xie R, Wu G. One‐Pot Construction of Sulfur‐Rich Thermoplastic Elastomers Enabled by Metal‐Free Self‐Switchable Catalysis and Air‐Assisted Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guang‐Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
18
|
Yang X, Li C, Liu L, Zhang H, Feng HT, Li Y, Jiang G, Wang J. Donor–acceptor strategy to construct near infrared AIEgens for cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor–acceptor strategy was applied to construct NIR AIEgens. Six new AIEgens were obtained and among them, DMNIC exhibited the longest emission maximum at 694 nm and was successfully applied for NIR cell imaging.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongge Zhang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
19
|
Xie M, Ma C, Quan Y, Sun R, Song W, Liao X. Synthesis of conjugated segments-based cyclic polymers for direct imaging of cyclic molecular topology. Chem Commun (Camb) 2022; 58:4340-4343. [DOI: 10.1039/d1cc07223d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polyacetylene-based monocyclic and bicyclic polymers were synthesized by blocking-cyclization metathesis polymerization using the short ladderphanes as the intial motif and multi-cyclizing unit, and fully characterized to elucidate the cyclic...
Collapse
|
20
|
Li S, Liu P, Wang Z, Lian L, Zhao Y. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rational design of comb-like and linear conjugates comprising PNIPAM and PDMAEMA segments allows the construction of a multi-tunable hierarchical self-assembly platform and insight into the topology effect.
Collapse
Affiliation(s)
- Siyu Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu Lian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release 2021; 341:892-903. [PMID: 34953982 DOI: 10.1016/j.jconrel.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is refractory systemic disease resulting in low survival rate of breast cancer patients, especially in the late stage. The processes of metastasis are mainly initiated by strong "attractive force" from distant organs and deteriorated by weak "adhesion force" in primary tumor. Here, we reported "attractive/adhesion force" dual-regulatory nanogels (CQ-HF/PTX) for the precise treatment of both primary and metastasis of metastatic breast cancer. Hydroxychloroquine (HCQ) and hydrophobic Fmoc were grafted on hydrophilic hydroxyethyl starch (HES) to obtain amphiphilic CQ-HF polymer, which was assembly with chemotherapy drug paclitaxel (PTX) to form the nanogels for anti-primary tumor. Meanwhile, CQ-HF/PTX nanogels play two roles in anti-metastasis: i) For reducing the "attractive force", it could block the CXCR4/SDF-1 pathway, preventing tumor cells metastasis to the lung; ii) For reinforcing "adhesion force", it could inhibit the excessive autophagy for hindering the degradation of paxillin and enhancing the cell adhesion. As a result, dual-regulatory CQ-HF/PTX nanogels dramatically inhibited tumor and the lung metastasis of mouse breast cancer. Therefore, the fabricating of synergetic dual-regulatory nanogels uncovered the explicit mechanism and provided an efficient strategy for combating malignant metastatic tumors.
Collapse
Affiliation(s)
- Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chenfei Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feiran Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
22
|
Zhu XF, Yang GW, Xie R, Wu GP. One-Pot Construction of Sulfur-Rich Thermoplastic Elastomers Enabled by Metal-Free Self-Switchable Catalysis and Air-Assisted Coupling. Angew Chem Int Ed Engl 2021; 61:e202115189. [PMID: 34866295 DOI: 10.1002/anie.202115189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Construction of well-defined sulfur-rich macromolecules in a facile manner is an interesting but challenging topic. Herein, we disclose how to readily construct well-defined triblock sulfur-rich thermoplastic elastomers via a self-switchable isothiocyanate/episulfide copolymerization and air-assisted oxidative coupling strategy. During self-switchable polymerization, alternating copolymerization of isothiocyanate and episulfide occurs initially due to the lower energy barrier for isothiocyanate insertion with respect to successive episulfide ring-opening. After exhaustion of isothiocyanate, ring-opening polymerization of episulfide begins, providing diblock polymers. Subsequent exposure of the reaction to air leads to a transformation of diblock copolymers into triblock thermoplastic elastomers. This protocol can be extended to diverse isothiocyanates and episulfides, allowing fine-tuning of the performance of the produced sulfur-rich thermoplastic elastomers.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat Commun 2021; 12:5853. [PMID: 34615871 PMCID: PMC8494804 DOI: 10.1038/s41467-021-26186-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials.
Collapse
Affiliation(s)
- Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
24
|
Liang C, Zhang Y, Zhang B, Liu XM, Gao GL, Cao J, Xu P. Plasmonic Heating-Promoted Photothermal Synthesis of α-Cyanoacrylonitriles Over Au/h-BN Catalysts. Front Chem 2021; 9:732162. [PMID: 34568280 PMCID: PMC8455885 DOI: 10.3389/fchem.2021.732162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmonic nanoparticle-involved materials play an essential role in the field of photothermal conversion. Herein, we report the application of photothermal heterogeneous catalysts consisting of gold nanoparticles decorated on defect-rich h-BN sheets (Au/h-BN) for the photocatalytic synthesis of α-cyanoacrylonitriles under mild conditions. It has been demonstrated the–NH2 groups present in the defect-rich h-BN act as the catalytically active sites, while plasmonic heating from the gold nanoparticles can drive the reaction by providing local heat. Au/h-BN catalyst can work for a broad substrate scope in the synthesis of α-cyanoacrylonitriles, and a plausible –NH2 group-involved reaction mechanism has been proposed. This work may open up new avenues in photothermal catalysis by combining plasmonic materials and catalytic sites in one system.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xin-Miao Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
|
26
|
Chen G, Xia L, Wang F, Zhang Z, You YZ. Recent progress in the construction of polymers with advanced chain structures via hybrid, switchable, and cascade chain-growth polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00274k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent progress of hybrid, switchable, and cascade chain-growth polymerizations for the preparation of polymers with advanced chain structures with diverse compositions has been summarized.
Collapse
Affiliation(s)
- Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- Hefei
- China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- People's Republic of China
| |
Collapse
|