1
|
Zou D, Chen T, Meng H, Ang YS, Zhang X, Lee CH. Experimental observation of exceptional bound states in a classical circuit network. Sci Bull (Beijing) 2024; 69:2194-2204. [PMID: 38853044 DOI: 10.1016/j.scib.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Exceptional bound (EB) states represent a unique new class of robust bound states protected by the defectiveness of non-Hermitian exceptional points. Conceptually distinct from the more well-known topological states and non-Hermitian skin states, they were recently discovered as a novel source of negative entanglement entropy in the quantum entanglement context. Yet, EB states have been physically elusive, being originally interpreted as negative probability eigenstates of the propagator of non-Hermitian Fermi gases. In this work, we show that EB states are in fact far more ubiquitous, also arising robustly in broad classes of systems whether classical or quantum. This hinges crucially on a newly-discovered spectral flow that rigorously justifies the EB nature of small candidate lattice systems. As a highlight, we present their first experimental realization through an electrical circuit, where they manifest as prominent stable resonant voltage profiles. Our work brings a hitherto elusive but fundamentally distinctive quantum phenomenon into the realm of classical metamaterials, and provides a novel pathway for the engineering of robust modes in otherwise sensitive systems..
Collapse
Affiliation(s)
- Deyuan Zou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Tian Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyu Meng
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Yee Sin Ang
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.
| |
Collapse
|
2
|
Long Y, Wang Z, Zhang C, Xue H, Zhao YX, Zhang B. Non-Abelian Braiding of Topological Edge Bands. PHYSICAL REVIEW LETTERS 2024; 132:236401. [PMID: 38905662 DOI: 10.1103/physrevlett.132.236401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Braiding is a geometric concept that manifests itself in a variety of scientific contexts from biology to physics, and has been employed to classify bulk band topology in topological materials. Topological edge states can also form braiding structures, as demonstrated recently in a type of topological insulators known as Möbius insulators, whose topological edge states form two braided bands exhibiting a Möbius twist. While the formation of Möbius twist is inspiring, it belongs to the simple Abelian braid group B_{2}. The most fascinating features about topological braids rely on the non-Abelianness in the higher-order braid group B_{N} (N≥3), which necessitates multiple edge bands, but so far it has not been discussed. Here, based on the gauge enriched symmetry, we develop a scheme to realize non-Abelian braiding of multiple topological edge bands. We propose tight-binding models of topological insulators that are able to generate topological edge states forming non-Abelian braiding structures. Experimental demonstrations are conducted in two acoustic crystals, which carry three and four braided acoustic edge bands, respectively. The observed braiding structure can correspond to the topological winding in the complex eigenvalue space of projective translation operator, akin to the previously established point-gap winding topology in the bulk of the Hatano-Nelson model. Our Letter also constitutes the realization of non-Abelian braiding topology on an actual crystal platform, but not based on the "virtual" synthetic dimensions.
Collapse
Affiliation(s)
- Yang Long
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zihao Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chen Zhang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haoran Xue
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y X Zhao
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
- HK Institute of Quantum Science and Technology, The University of Hong Kong, Hong Kong, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
3
|
Park H, Oh SS, Lee S. Surface potential-adjusted surface states in 3D topological photonic crystals. Sci Rep 2024; 14:7173. [PMID: 38531983 PMCID: PMC11344842 DOI: 10.1038/s41598-024-56894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Surface potential in a topological matter could unprecedentedly localize the waves. However, this surface potential is yet to be exploited in topological photonic systems. Here, we demonstrate that photonic surface states can be induced and controlled by the surface potential in a dielectric double gyroid (DG) photonic crystal. The basis translation in a unit cell enables tuning of the surface potential, which in turn regulates the degree of wave localization. The gradual modulation of DG photonic crystals enables the generation of a pseudomagnetic field. Overall, this study shows the interplay between surface potential and pseudomagnetic field regarding the surface states. The physical consequences outlined herein not only widen the scope of surface states in 3D photonic crystals but also highlight the importance of surface treatments in a photonic system.
Collapse
Affiliation(s)
- Haedong Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Sang Soon Oh
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea.
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
4
|
Park H, Jones A, Kim M, Oh SS. Topological phase transition and surface states in a non-Abelian charged nodal line photonic crystal. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1079-1089. [PMID: 39634019 PMCID: PMC11501625 DOI: 10.1515/nanoph-2023-0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/10/2024] [Indexed: 12/07/2024]
Abstract
Topological charges of nodal lines in a multigap system are represented by non-Abelian numbers, and the Euler class, a topological invariant, can be used to explain their topological phase transitions, such as pair-annihilation of nodal lines. Up until now, no discussion of phase transitions of nodal lines in photonic crystals using the Euler class has been reported, despite the fact that the Euler class and topological phase transition have recently been addressed in metallic or acoustic crystals. Here, we show how the deformation of a photonic crystal causes topological phase transitions in the nodal lines, and the Euler class can be used to theoretically predict the nodal lines' stability based on the non-Abelian topological charge theory. Specifically, by manipulating the separation between the two single diamond structures and the extent of structural distortion, we numerically demonstrate the topological transition of nodal lines, e.g., from nodal lines to nodal rings. We then demonstrate that the range of surface states is strongly influenced by the topological phase transition of nodal lines. Moreover, the Zak phase was used to explain the surface states' existence.
Collapse
Affiliation(s)
- Haedong Park
- School of Physics and Astronomy, Cardiff University, CardiffCF24 3AA, UK
| | - Alexander Jones
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Minkyung Kim
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Sang Soon Oh
- School of Physics and Astronomy, Cardiff University, CardiffCF24 3AA, UK
| |
Collapse
|
5
|
Wu M, Weng M, Chi Z, Qi Y, Li H, Zhao Q, Meng Y, Zhou J. Observing Relative Homotopic Degeneracy Conversions with Circuit Metamaterials. PHYSICAL REVIEW LETTERS 2024; 132:016605. [PMID: 38242672 DOI: 10.1103/physrevlett.132.016605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Making nodal lines (NLs) deterministic is quite challenging because directly probing them requires bulk momentum resolution. Here, based on the general scattering theory, we show that the Bloch modes of the circuit metamaterials can be selectively excited with a proper source. Consequently, the transport measurement for characterizing the circuit band structure is momentum resolved. Facilitated by this bulk resolution, we systematically demonstrate the degeneracy conversions ruled by the relative homotopy, including the conversions between Weyl points (WPs) and NLs, and between NLs. It is experimentally shown that two WPs with opposite chirality in a two-band model surprisingly convert into an NL rather than annihilating. And the multiband anomaly (due to the delicate property) in the NL-to-NL conversions is also observed, which in fact is captured by the non-Abelian relative homotopy. Additionally, the physical effects owing to the conversions, like the Fermi arc connecting NLs and the parallel transport of eigenstates, are discussed as well. Other types of degeneracy conversions, such as those induced by spin-orbit coupling or symmetry breaking, are directly amenable to the proposed circuit platform.
Collapse
Affiliation(s)
- Maopeng Wu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingze Weng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhonghai Chi
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yingyi Qi
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hui Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Cui X, Zhang RY, Wang X, Wang W, Ma G, Chan CT. Experimental Realization of Stable Exceptional Chains Protected by Non-Hermitian Latent Symmetries Unique to Mechanical Systems. PHYSICAL REVIEW LETTERS 2023; 131:237201. [PMID: 38134766 DOI: 10.1103/physrevlett.131.237201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
Lines of exceptional points are robust in the three-dimensional non-Hermitian parameter space without requiring any symmetry. However, when more elaborate exceptional structures are considered, the role of symmetry becomes critical. One such case is the exceptional chain (EC), which is formed by the intersection or osculation of multiple exceptional lines (ELs). In this Letter, we investigate a non-Hermitian classical mechanical system and reveal that a symmetry intrinsic to second-order dynamical equations, in combination with the source-free principle of ELs, guarantees the emergence of ECs. This symmetry can be understood as a non-Hermitian generalized latent symmetry, which is absent in prevailing formalisms rooted in first-order Schrödinger-like equations and has largely been overlooked so far. We experimentally confirm and characterize the ECs using an active mechanical oscillator system. Moreover, by measuring eigenvalue braiding around the ELs meeting at a chain point, we demonstrate the source-free principle of directed ELs that underlies the mechanism for EC formation. Our Letter not only enriches the diversity of non-Hermitian exceptional point configurations, but also highlights the new potential for non-Hermitian physics in second-order dynamical systems.
Collapse
Affiliation(s)
- Xiaohan Cui
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Yang Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xulong Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
7
|
Jiang H, Lee CH. Dimensional Transmutation from Non-Hermiticity. PHYSICAL REVIEW LETTERS 2023; 131:076401. [PMID: 37656848 DOI: 10.1103/physrevlett.131.076401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023]
Abstract
Dimensionality plays a fundamental role in the classification of novel phases and their responses. In generic lattices of 2D and beyond, however, we found that non-Hermitian couplings do not merely distort the Brillouin zone (BZ), but can in fact alter its effective dimensionality. This is due to the fundamental noncommutativity of multidimensional non-Hermitian pumping, which obstructs the usual formation of a generalized complex BZ. As such, basis states are forced to assume "entangled" profiles that are orthogonal in a lower dimensional effective BZ, completely divorced from any vestige of lattice Bloch states unlike conventional skin states. Characterizing this reduced dimensionality is an emergent winding number intimately related to the homotopy of noncontractible spectral paths. We illustrate this dimensional transmutation through a 2D model whose topological zero modes are protected by a 1D, not 2D, topological invariant. Our findings can be readily demonstrated via the bulk properties of nonreciprocally coupled platforms such as circuit arrays, and provokes us to rethink the fundamental role of geometric obstruction in the dimensional classification of topological states.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
8
|
Fu H, Liu Q, Wang Z, Yang X. Multi-Fold Fan-Shape Surface State Induced by an Isolated Weyl Phonon Beyond No-Go Theorem. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207508. [PMID: 37088792 PMCID: PMC10288247 DOI: 10.1002/advs.202207508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Absence of any surface arc state has been regarded as the fundamental property of singular Weyl points, because they are circumvented from the Nielsen-Ninomiya no-go theorem. In this work, through systematic investigations on topological properties of isolated Weyl phonons (IWPs) surrounded by closed Weyl nodal walls (WNWs), which are located at the Brillouin zone (BZ) boundaries of bosonic systems, it uncovers that a new kind of phononic surface state, that is, the multi-fold fan-shape surface state named by us, is exhibited to connect the projections of IWP and WNWs. Importantly, the number of fan leaves in this surface state is associated with the Chern number of IWP. Moreover, the topological features of charge-two IWP in K2 Mg2 O3 (SG No. 96) and charge-four IWP in Nb3 Al2 N (SG No. 213) confirm further the above fundamental properties of this kind of surface state. The theoretical work not only provides an effective way to seek for IWPs as well as to determine their Chern number in real materials, but also uncovers a new class of surface states in the topological Weyl complex composed of IWPs and WNWs.
Collapse
Affiliation(s)
- Hua‐Hua Fu
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
- Institute for Quantum Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Qing‐Bo Liu
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
- Institute for Quantum Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhe‐Qi Wang
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
- Institute for Quantum Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiang‐Feng Yang
- School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhan430074P. R. China
- Institute for Quantum Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
9
|
Guo CX, Chen S, Ding K, Hu H. Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2023; 130:157201. [PMID: 37115861 DOI: 10.1103/physrevlett.130.157201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Defective spectral degeneracy, known as exceptional point (EP), lies at the heart of various intriguing phenomena in optics, acoustics, and other nonconservative systems. Despite extensive studies in the past two decades, the collective behaviors (e.g., annihilation, coalescence, braiding, etc.) involving multiple exceptional points or lines and their interplay have been rarely understood. Here we put forward a universal non-Abelian conservation rule governing these collective behaviors in generic multiband non-Hermitian systems and uncover several counterintuitive phenomena. We demonstrate that two EPs with opposite charges (even the pairwise created) do not necessarily annihilate, depending on how they approach each other. Furthermore, we unveil that the conservation rule imposes strict constraints on the permissible exceptional-line configurations. It excludes structures like Hopf link yet permits novel staggered rings composed of noncommutative exceptional lines. These intriguing phenomena are illustrated by concrete models which could be readily implemented in platforms like coupled acoustic cavities, optical waveguides, and ring resonators. Our findings lay the cornerstone for a comprehensive understanding of the exceptional non-Abelian topology and shed light on the versatile manipulations and applications based on exceptional degeneracies in nonconservative systems.
Collapse
Affiliation(s)
- Cui-Xian Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Kun Ding
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Haiping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang Q, Li Y, Sun H, Liu X, Zhao L, Feng X, Fan X, Qiu C. Observation of Acoustic Non-Hermitian Bloch Braids and Associated Topological Phase Transitions. PHYSICAL REVIEW LETTERS 2023; 130:017201. [PMID: 36669209 DOI: 10.1103/physrevlett.130.017201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Topological features embedded in ancient braiding and knotting arts endow significant impacts on our daily life and even cutting-edge science. Recently, fast growing efforts are invested to the braiding topology of complex Bloch bands in non-Hermitian systems. This new classification of band topology goes far beyond those established in Hermitian counterparts. Here, we present the first acoustic realization of the topological non-Hermitian Bloch braids, based on a two-band model easily accessible for realizing any desired knot structure. The non-Hermitian bands are synthesized by a simple binary cavity-tube system, where the long-range, complex-valued, and momentum-resolved couplings are accomplished by a well-controlled unidirectional coupler. In addition to directly visualizing various two-band braiding patterns, we unambiguously observe the highly elusive topological phase transitions between them. Not only do our results provide a direct demonstration for the non-Hermitian band topology, but also the experimental techniques open new avenues for designing unconventional acoustic metamaterials.
Collapse
Affiliation(s)
- Qicheng Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yitong Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huanfa Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xun Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Luekai Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiling Feng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiying Fan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chunyin Qiu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Shang C, Liu S, Shao R, Han P, Zang X, Zhang X, Salama KN, Gao W, Lee CH, Thomale R, Manchon A, Zhang S, Cui TJ, Schwingenschlögl U. Experimental Identification of the Second-Order Non-Hermitian Skin Effect with Physics-Graph-Informed Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202922. [PMID: 36372546 PMCID: PMC9799024 DOI: 10.1002/advs.202202922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems. The topological invariant of the bulk in d dimensions corresponds to the number of (d - 1)-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that nth order topological phases feature (d - n)-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. An unsupervised approach-physics-graph-informed machine learning (PGIML)-to enhance the data mining ability of machine learning with limited domain knowledge is introduced. Through PGIML, the second-order NHSE in a 2D non-Hermitian topoelectrical circuit is experimentally demonstrated. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems.
Collapse
Affiliation(s)
- Ce Shang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Shuo Liu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Ruiwen Shao
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Peng Han
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaoning Zang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Xiangliang Zhang
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Khaled Nabil Salama
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Wenlong Gao
- Paderborn University, Department of Physics, Warburger Str. 100, 33098, Paderborn, Germany
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117551, Republic of Singapore
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074, Würzburg, Germany
| | | | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Udo Schwingenschlögl
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Abstract
The mathematical foundation of quantum mechanics is built on linear algebra, while the application of nonlinear operators can lead to outstanding discoveries under some circumstances, such as the prediction of positron, a direct outcome of the Dirac equation which stems from the square-root of the Klein-Gordon equation. In this article, we propose a model of square-root higher-order Weyl semimetal (SHOWS) by inheriting features from its parent Hamiltonians. It is found that the SHOWS hosts both “Fermi-arc” surface and hinge states that respectively connect the projection of the Weyl points on the side surface and arris. We theoretically construct and experimentally observe the exotic SHOWS state in three-dimensional (3D) stacked electric circuits with honeycomb-kagome hybridizations and double-helix interlayer couplings. Our results open the door for realizing the square-root topology in 3D solid-state platforms. The topological properties of square-root Weyl semimetals are derived from the square of the Hamiltonian. Here, the authors propose a tight-binding model for a square-root higher-order Weyl semimetal hosting both Fermi-arc surface and hinge states.
Collapse
|
13
|
Park H, Gao W, Zhang X, Oh SS. Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2779-2801. [PMID: 39635682 PMCID: PMC11501740 DOI: 10.1515/nanoph-2021-0692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/07/2024]
Abstract
Topological insulators constitute one of the most intriguing phenomena in modern condensed matter theory. The unique and exotic properties of topological states of matter allow for unidirectional gapless electron transport and extremely accurate measurements of the Hall conductivity. Recently, new topological effects occurring at Dirac/Weyl points have been better understood and demonstrated using artificial materials such as photonic and phononic crystals, metamaterials and electrical circuits. In comparison, the topological properties of nodal lines, which are one-dimensional degeneracies in momentum space, remain less explored. Here, we explain the theoretical concept of topological nodal lines and review recent and ongoing progress using artificial materials. The review includes recent demonstrations of non-Abelian topological charges of nodal lines in momentum space and examples of nodal lines realized in photonic and other systems. Finally, we will address the challenges involved in both experimental demonstration and theoretical understanding of topological nodal lines.
Collapse
Affiliation(s)
- Haedong Park
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Wenlong Gao
- Department of Physics, Paderborn University, Warburger Straße 100, Paderborn, 33 098, Germany
| | - Xiao Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, 510 275, China
| | - Sang Soon Oh
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| |
Collapse
|
14
|
Yang H, Song L, Cao Y, Yan P. Experimental Realization of Two-Dimensional Weak Topological Insulators. NANO LETTERS 2022; 22:3125-3132. [PMID: 35353537 DOI: 10.1021/acs.nanolett.2c00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the experimental realization of a two-dimensional (2D) weak topological insulator (WTI) in spinless Su-Schrieffer-Heeger circuits with parity-time and chiral symmetries. Strong and weak Z2 topological indexes are adopted to explain the experimental findings that a Dirac semimetal (DSM) phase and four WTI phases emerge in turn when we modulate the centrosymmetric circuit deformations. In the DSM phase, it is found that the Dirac cone is highly anisotropic and that it is not pinned to any high-symmetry points but can widely move within the Brillouin zone, which eventually leads to the phase transition between WTIs. In addition, we observe a pair of flat-band domain wall states by designing spatially inhomogeneous node connections. Our work provides the first experimental evidence for 2D WTIs, which significantly advances our understanding of the strong and weak nature of topological insulators, the robustness of flat bands, and the itinerant and anisotropic features of Dirac cones.
Collapse
Affiliation(s)
- Huanhuan Yang
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lingling Song
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yunshan Cao
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Peng Yan
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
15
|
Zou D, Chen T, He W, Bao J, Lee CH, Sun H, Zhang X. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat Commun 2021; 12:7201. [PMID: 34893589 PMCID: PMC8664810 DOI: 10.1038/s41467-021-26414-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness-topological protection, as well as the non-Hermitian skin effect. In this work, we report the experimental realizations of hybrid higher-order skin-topological effect, in which the skin effect selectively acts only on the topological boundary modes, not the bulk modes. Our experiments, which are performed on specially designed non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal pumping and topological localization dynamically interplays to form various states like 2D skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-order non-Hermitian skin states. Realized through our highly versatile and scalable circuit platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way for applications in topological switching and sensing through the simultaneous non-trivial interplay of skin and topological boundary localizations.
Collapse
Affiliation(s)
- Deyuan Zou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Tian Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| | - Wenjing He
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiacheng Bao
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Houjun Sun
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
16
|
Liu T, He JJ, Yang Z, Nori F. Higher-Order Weyl-Exceptional-Ring Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:196801. [PMID: 34797150 DOI: 10.1103/physrevlett.127.196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetal, i.e., a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.
Collapse
Affiliation(s)
- Tao Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - James Jun He
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
- South China Normal University, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
17
|
Topological complex-energy braiding of non-Hermitian bands. Nature 2021; 598:59-64. [PMID: 34616054 DOI: 10.1038/s41586-021-03848-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
Effects connected with the mathematical theory of knots1 emerge in many areas of science, from physics2,3 to biology4. Recent theoretical work discovered that the braid group characterizes the topology of non-Hermitian periodic systems5, where the complex band energies can braid in momentum space. However, such braids of complex-energy bands have not been realized or controlled experimentally. Here, we introduce a tight-binding lattice model that can achieve arbitrary elements in the braid group of two strands 𝔹2. We experimentally demonstrate such topological complex-energy braiding of non-Hermitian bands in a synthetic dimension6,7. Our experiments utilize frequency modes in two coupled ring resonators, one of which undergoes simultaneous phase and amplitude modulation. We observe a wide variety of two-band braiding structures that constitute representative instances of links and knots, including the unlink, the unknot, the Hopf link and the trefoil. We also show that the handedness of braids can be changed. Our results provide a direct demonstration of the braid-group characterization of non-Hermitian topology and open a pathway for designing and realizing topologically robust phases in open classical and quantum systems.
Collapse
|
18
|
Abstract
Topologically quantized response is one of the focal points of contemporary condensed matter physics. While it directly results in quantized response coefficients in quantum systems, there has been no notion of quantized response in classical systems thus far. This is because quantized response has always been connected to topology via linear response theory that assumes a quantum mechanical ground state. Yet, classical systems can carry arbitrarily amounts of energy in each mode, even while possessing the same number of measurable edge states as their topological winding. In this work, we discover the totally new paradigm of quantized classical response, which is based on the spectral winding number in the complex spectral plane, rather than the winding of eigenstates in momentum space. Such quantized response is classical insofar as it applies to phenomenological non-Hermitian setting, arises from fundamental mathematical properties of the Green's function, and shows up in steady-state response, without invoking a conventional linear response theory. Specifically, the ratio of the change in one quantity depicting signal amplification to the variation in one imaginary flux-like parameter is found to display fascinating plateaus, with their quantized values given by the spectral winding numbers as the topological invariants.
Collapse
|
19
|
Wang K, Xiao L, Budich JC, Yi W, Xue P. Simulating Exceptional Non-Hermitian Metals with Single-Photon Interferometry. PHYSICAL REVIEW LETTERS 2021; 127:026404. [PMID: 34296894 DOI: 10.1103/physrevlett.127.026404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal space followed by interferometric measurements, we probe the complex eigenenergies of the corresponding NH Bloch Hamiltonians, and study in detail the topology of their exceptional lines (ELs), the NH counterpart of nodal lines in Hermitian systems. We focus on two distinct types of NH metals: two-dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-independent topological ELs in the form of knots. While both types feature open Fermi surfaces, we experimentally observe their distinctions by analyzing the impact of symmetry-breaking perturbations on the topology of ELs.
Collapse
Affiliation(s)
- Kunkun Wang
- Beijing Computational Science Research Center, Beijing 100084, China
- School of Physics and Material Science, Anhui University, Hefei 230601, China
| | - Lei Xiao
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Jan Carl Budich
- Institute of Theoretical Physics, Technische Universität Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat, 01062 Dresden, Germany
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Peng Xue
- Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
20
|
Stegmaier A, Imhof S, Helbig T, Hofmann T, Lee CH, Kremer M, Fritzsche A, Feichtner T, Klembt S, Höfling S, Boettcher I, Fulga IC, Ma L, Schmidt OG, Greiter M, Kiessling T, Szameit A, Thomale R. Topological Defect Engineering and PT Symmetry in Non-Hermitian Electrical Circuits. PHYSICAL REVIEW LETTERS 2021; 126:215302. [PMID: 34114871 DOI: 10.1103/physrevlett.126.215302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the APT-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel PT-symmetric Z_{2} invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not PT symmetric, the topological defect state disappears and only reemerges when APT symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.
Collapse
Affiliation(s)
- Alexander Stegmaier
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Stefan Imhof
- Physikalisches Institut and Röntgen Research Center for Complex Material Systems, Universität Würzburg, D-97074 Würzburg, Germany
| | - Tobias Helbig
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tobias Hofmann
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117542
| | - Mark Kremer
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock
| | - Alexander Fritzsche
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock
| | - Thorsten Feichtner
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 3220133 Milano, Italy
| | - Sebastian Klembt
- Technische Physik and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sven Höfling
- Physikalisches Institut and Röntgen Research Center for Complex Material Systems, Universität Würzburg, D-97074 Würzburg, Germany
| | - Igor Boettcher
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Ion Cosma Fulga
- Institute for Theoretical Solid State Physics, IFW Dresden, 01171 Dresden, Germany
| | - Libo Ma
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Martin Greiter
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tobias Kiessling
- Physikalisches Institut and Röntgen Research Center for Complex Material Systems, Universität Würzburg, D-97074 Würzburg, Germany
| | - Alexander Szameit
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock
| | - Ronny Thomale
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
21
|
Hu H, Zhao E. Knots and Non-Hermitian Bloch Bands. PHYSICAL REVIEW LETTERS 2021; 126:010401. [PMID: 33480787 DOI: 10.1103/physrevlett.126.010401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A Z_{2} knot invariant, the global biorthogonal Berry phase Q as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature, for example, the Hopf link, the trefoil knot, the figure-8 knot, and the Whitehead link.
Collapse
Affiliation(s)
- Haiping Hu
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Erhai Zhao
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|