1
|
Inskeep TR, Groen SC. Network properties constrain natural selection on gene expression in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639144. [PMID: 40060403 PMCID: PMC11888156 DOI: 10.1101/2025.02.19.639144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Gene regulatory networks (GRNs) integrate genetic and environmental signals to coordinate complex phenotypes and evolve through a balance of selection and drift. Using publicly available datasets from Caenorhabditis elegans, we investigated the extent of natural selection on transcript abundance by linking population-scale variation in gene expression to fecundity, a key fitness component. While the expression of most genes covaried only weakly with fitness, which is typical for polygenic traits, we identified seven transcripts under significant directional selection. These included nhr-114 and feh-1, implicating variation in nutrient-sensing and metabolic pathways as impacting fitness. Stronger directional selection on tissue-specific and older genes highlighted the germline and nervous system as focal points of adaptive change. Network position further constrained selection on gene expression; high-connectivity genes faced stronger stabilizing and directional selection, highlighting GRN architecture as a key factor in microevolutionary dynamics. The activity of transcription factors such as zip-3, which regulates mitochondrial stress responses, emerged as targets of selection, revealing potential links between energy homeostasis and fitness. Our findings demonstrate how GRNs mediate the interplay between selection and drift, shaping microevolutionary trajectories of gene expression and phenotypic diversity.
Collapse
Affiliation(s)
- Tyler R Inskeep
- Department of Botany and Plant Sciences, University of California, Riverside
- Institute for Integrative Genome Biology, University of California, Riverside
| | - Simon C Groen
- Department of Botany and Plant Sciences, University of California, Riverside
- Department of Nematology, University of California, Riverside
| |
Collapse
|
2
|
Palande S, Arsenault J, Basurto‐Lozada P, Bleich A, Brown BNI, Buysse SF, Connors NA, Das Adhikari S, Dobson KC, Guerra‐Castillo FX, Guerrero‐Carrillo MF, Harlow S, Herrera‐Orozco H, Hightower AT, Izquierdo P, Jacobs M, Johnson NA, Leuenberger W, Lopez‐Hernandez A, Luckie‐Duque A, Martínez‐Avila C, Mendoza‐Galindo EJ, Plancarte DC, Schuster JM, Shomer H, Sitar SC, Steensma AK, Thomson JE, Villaseñor‐Amador D, Waterman R, Webster BM, Whyte M, Zorilla‐Azcué S, Montgomery BL, Husbands AY, Krishnan A, Percival S, Munch E, VanBuren R, Chitwood DH, Rougon‐Cardoso A. Expression-based machine learning models for predicting plant tissue identity. APPLICATIONS IN PLANT SCIENCES 2025; 13:e11621. [PMID: 39906497 PMCID: PMC11788907 DOI: 10.1002/aps3.11621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 02/06/2025]
Abstract
Premise The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research. Methods Here, we examine the ability of models based on Arabidopsis gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on Arabidopsis data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on Arabidopsis data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64. Results The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. k-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants. Discussion Our data-driven results highlight that the assertion that knowledge from Arabidopsis is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on Arabidopsis and prioritize plant diversity.
Collapse
Affiliation(s)
- Sourabh Palande
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Jeremy Arsenault
- Department of Computer Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Patricia Basurto‐Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoJuriquillaQuerétaroMexico
| | - Andrew Bleich
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - Sophia F. Buysse
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
| | - Noelle A. Connors
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Sikta Das Adhikari
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichiganUSA
| | - Kara C. Dobson
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Francisco Xavier Guerra‐Castillo
- Unidad de Investigación Médica en Inmunología e InfectologíaInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
- Programa de Posgrado en Ciencias Biológicas, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Maria F. Guerrero‐Carrillo
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - Sophia Harlow
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Héctor Herrera‐Orozco
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Asia T. Hightower
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Paulo Izquierdo
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - MacKenzie Jacobs
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Nicholas A. Johnson
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Genetics and Genome SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Wendy Leuenberger
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Alessandro Lopez‐Hernandez
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoJuriquillaQuerétaroMexico
- Computational Population Genetics GroupUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Alicia Luckie‐Duque
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - Camila Martínez‐Avila
- Colección Nacional de Aves, Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eddy J. Mendoza‐Galindo
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - David Cruz Plancarte
- Departamento de Botánica, Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jenny M. Schuster
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- Cell and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Harry Shomer
- Department of Computer Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Sidney C. Sitar
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Plant Breeding, Genetics, and BiotechnologyMichigan State UniversityEast LansingMichiganUSA
- Crop and Soil Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Anne K. Steensma
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Joanne Elise Thomson
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- Cell and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Damián Villaseñor‐Amador
- Programa de Posgrado en Ciencias Biológicas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Robin Waterman
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
| | - Brandon M. Webster
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Madison Whyte
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Sofía Zorilla‐Azcué
- Programa de Posgrado en Ciencias Biológicas, Escuela Nacional de Estudios Superiores (ENES)Unidad Morelia, Universidad Nacional Autónoma de MéxicoMoreliaMichoacánMexico
| | | | - Aman Y. Husbands
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Krishnan
- Department of Biomedical Informatics, Center for Health AIUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sarah Percival
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Elizabeth Munch
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
| | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Daniel H. Chitwood
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Alejandra Rougon‐Cardoso
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
- Plantecc National LaboratoryENES‐LeónLeónGuanajuatoMexico
| |
Collapse
|
3
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Hoedjes KM, Grath S, Posnien N, Ritchie MG, Schlötterer C, Abbott JK, Almudi I, Coronado-Zamora M, Durmaz Mitchell E, Flatt T, Fricke C, Glaser-Schmitt A, González J, Holman L, Kankare M, Lenhart B, Orengo DJ, Snook RR, Yılmaz VM, Yusuf L. From whole bodies to single cells: A guide to transcriptomic approaches for ecology and evolutionary biology. Mol Ecol 2024:e17382. [PMID: 38856653 DOI: 10.1111/mec.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
RNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best. Here, we highlight the advantages and disadvantages of each of these approaches to provide a guide to help researchers make informed decisions and maximise the power of their study. Using illustrative examples of various ecological and evolutionary research questions, we guide the readers through the different RNAseq approaches and help them identify the most suitable design for their own projects.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sonja Grath
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | | | | | - Isabel Almudi
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claudia Fricke
- Institute for Zoology/Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Benedict Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Vera M Yılmaz
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Leeban Yusuf
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Mantica F, Iñiguez LP, Marquez Y, Permanyer J, Torres-Mendez A, Cruz J, Franch-Marro X, Tulenko F, Burguera D, Bertrand S, Doyle T, Nouzova M, Currie PD, Noriega FG, Escriva H, Arnone MI, Albertin CB, Wotton KR, Almudi I, Martin D, Irimia M. Evolution of tissue-specific expression of ancestral genes across vertebrates and insects. Nat Ecol Evol 2024; 8:1140-1153. [PMID: 38622362 DOI: 10.1038/s41559-024-02398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.
Collapse
Affiliation(s)
- Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Luis P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Marquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Mendez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Demian Burguera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Marcela Nouzova
- Institute of Parasitology, CAS, České Budějovice, Czech Republic
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia; Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Fernando G Noriega
- Biology and BSI, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | | | - Caroline B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - David Martin
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Kagan F, Hejnol A. Comparative Analysis of Maternal Gene Expression Patterns Unravels Evolutionary Signatures Across Reproductive Modes. Mol Biol Evol 2024; 41:msae081. [PMID: 38679468 DOI: 10.1093/molbev/msae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Maternal genes have a pivotal role in regulating metazoan early development. As such their functions have been extensively studied since the dawn of developmental biology. The temporal and spatial dynamics of their transcripts have been thoroughly described in model organisms and their functions have been undergoing heavy investigations. Yet, less is known about the evolutionary changes shaping their presence within diverse oocytes. Due to their unique maternal inheritance pattern, a high degree is predicted to be present when it comes to their expression. Insofar only limited and conflicting results have emerged around it. Here, we set out to elucidate which evolutionary changes could be detected in the maternal gene expression patterns using phylogenetic comparative methods on RNAseq data from 43 species. Using normalized gene expression values and fold change information throughout early development we set out to find the best-fitting evolutionary model. Through modeling, we find evidence supporting both the high degree of divergence and constraint on gene expression values, together with their temporal dynamics. Furthermore, we find that maternal gene expression alone can be used to explain the reproductive modes of different species. Together, these results suggest a highly dynamic evolutionary landscape of maternal gene expression. We also propose a possible functional dichotomy of maternal genes which is influenced by the reproductive strategy undertaken by examined species.
Collapse
Affiliation(s)
- Ferenc Kagan
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Faculty of Biological Sciences, Friedrich Schiller University, Institute for Zoology and Evolutionary Research, Jena, Germany
| |
Collapse
|
7
|
Islam M, Behura SK. Role of paralogs in the sex-bias transcriptional and metabolic regulation of the brain-placental axis in mice. Placenta 2024; 145:143-150. [PMID: 38134547 DOI: 10.1016/j.placenta.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Duplicated genes or paralogs play important roles in the adaptive function of eukaryotic genomes. Animal studies have shown evidence for the functional role of paralogs in pregnancy, but our knowledge about the role of paralogs in the fetoplacental regulation remains limited. In particular, if fetoplacental metabolic regulation is modulated by differential expression of paralogs remains unexamined. METHODS In this study, gene expression profiles of day-15 placenta and fetal brain were compared to identify families or groups of paralogous genes expressed in the placenta and brain of male versus female fetuses in mice. A Bayesian modeling was applied to infer directional relationship of transcriptional variation of the paralogs relative to the phylogenetic variation of the genes in each family. Gas chromatography-mass spectrometry (GC-MS) was used to perform untargeted metabolomics analysis of day-15 placenta and fetal brain of both sexes. RESULTS We identified paralog groups that were expressed in a sex and/or tissue biased manner between the placenta and fetal brain. Bayesian modeling showed evidence for directional relationship between expression and phylogeny of specific paralogs. These relationships were sex specific. GC-MS analysis identified metabolites that were expressed in a sex-bias manner between the placenta and fetal brain. By performing integrative analysis of the metabolomics and gene expression data, we showed that specific groups of metabolites and paralogous genes were expressed in a coordinated manner between the placenta and fetal brain. DISCUSSION The findings of this study collectively suggest that paralogs play an influential role in the regulation of the brain-placental axis in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, USA; Interdisciplinary Neuroscience Program, University of Missouri, USA.
| |
Collapse
|
8
|
Dimayacyac JR, Wu S, Jiang D, Pennell M. Evaluating the Performance of Widely Used Phylogenetic Models for Gene Expression Evolution. Genome Biol Evol 2023; 15:evad211. [PMID: 38000902 PMCID: PMC10709115 DOI: 10.1093/gbe/evad211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations. Using a previously developed approach, we then assessed how well the best model of the set described the data in an absolute (not just relative) sense. First, we find that Ornstein-Uhlenbeck models, in which expression values are constrained around an optimum, were the preferred models for 66% of gene-tissue combinations. Second, we find that for 61% of gene-tissue combinations, the best-fit model of the set was found to perform well; the rest were found to be performing poorly by at least one of the test statistics we examined. Third, we find that when simple models do not perform well, this appears to be typically a consequence of failing to fully account for heterogeneity in the rate of the evolution. We advocate that assessment of model performance should become a routine component of phylogenetic comparative expression studies; doing so can improve the reliability of inferences and inspire the development of novel models.
Collapse
Affiliation(s)
- Jose Rafael Dimayacyac
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Shanyun Wu
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matt Pennell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E, Low YW, Lindqvist C, Gilbert KJ, Renner T, Masuda S, Richter M, Vogg G, Shirasu K, Michael TP, Hedrich R, Albert VA, Fukushima K. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. NATURE PLANTS 2023; 9:2000-2015. [PMID: 37996654 DOI: 10.1038/s41477-023-01562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.
Collapse
Affiliation(s)
- Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Mathias Scharmann
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, Germany
| | - Takanori Wakatake
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Louisa Channon
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Emily Carroll
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | | | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station & Program in Ecology, Evolution, and Behavior, Michigan State University, Hickory Corners, MI, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sachiko Masuda
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gerd Vogg
- Botanical Garden, University of Würzburg, Würzburg, Germany
| | - Ken Shirasu
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
11
|
Takasugi M, Ohtani N, Takemura K, Emmrich S, Zakusilo FT, Yoshida Y, Kutsukake N, Mariani JN, Windrem MS, Chandler-Militello D, Goldman SA, Satoh J, Ito S, Seluanov A, Gorbunova V. CD44 correlates with longevity and enhances basal ATF6 activity and ER stress resistance. Cell Rep 2023; 42:113130. [PMID: 37708026 PMCID: PMC10591879 DOI: 10.1016/j.celrep.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Kutsukake
- Research Center for Integrative Evolutionary Science, SOKENDAI, The Graduate University for Advanced Studies, Kanagawa, Japan
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| |
Collapse
|
12
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Dimayacyac JR, Wu S, Jiang D, Pennell M. Evaluating the Performance of Widely Used Phylogenetic Models for Gene Expression Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527893. [PMID: 37645857 PMCID: PMC10461906 DOI: 10.1101/2023.02.09.527893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well-described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations. Using a previously developed approach, we then assessed how well the best model of the set described the data in an absolute (not just relative) sense. First, we find that Ornstein-Uhlenbeck models, in which expression values are constrained around an optimum, were the preferred model for 66% of gene-tissue combinations. Second, we find that for 61% of gene-tissue combinations, the best fit model of the set was found to perform well; the rest were found to be performing poorly by at least one of the test statistics we examined. Third, we find that when simple models do not perform well, this appears to be typically a consequence of failing to fully account for heterogeneity in the rate of the evolution. We advocate that assessment of model performance should become a routine component of phylogenetic comparative expression studies; doing so can improve the reliability of inferences and inspire the development of novel models.
Collapse
Affiliation(s)
- Jose Rafael Dimayacyac
- Department of Zoology, University of British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Canada
| | - Shanyun Wu
- Department of Zoology, University of British Columbia, Canada
- Department of Genetics, Washington University School of Medicine, USA
| | - Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Matt Pennell
- Department of Zoology, University of British Columbia, Canada
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
14
|
Takasugi M, Yoshida Y, Nonaka Y, Ohtani N. Gene expressions associated with longer lifespan and aging exhibit similarity in mammals. Nucleic Acids Res 2023; 51:7205-7219. [PMID: 37351606 PMCID: PMC10415134 DOI: 10.1093/nar/gkad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Although molecular features underlying aging and species maximum lifespan (MLS) have been comprehensively studied by transcriptome analyses, the actual impact of transcriptome on aging and MLS remains elusive. Here, we found that transcriptional signatures that are associated with mammalian MLS exhibited significant similarity to those of aging. Moreover, transcriptional signatures of longer MLS and aging both exhibited significant similarity to that of longer-lived mouse strains, suggesting that gene expression patterns associated with species MLS contribute to extended lifespan even within a species and that aging-related gene expression changes overall represent adaptations that extend lifespan rather than deterioration. Finally, we found evidence of co-evolution of MLS and promoter sequences of MLS-associated genes, highlighting the evolutionary contribution of specific transcription factor binding motifs such as that of E2F1 in shaping MLS-associated gene expression signature. Our results highlight the importance of focusing on adaptive aspects of aging transcriptome and demonstrate that cross-species genomics can be a powerful approach for understanding adaptive aging transcriptome.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Nonaka
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Wang S, Gao J, Li Z, Chen K, Pu W, Feng C. Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in Nicotiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1205683. [PMID: 37575947 PMCID: PMC10421670 DOI: 10.3389/fpls.2023.1205683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Introduction Nicotiana L. (Solanaceae) is of great scientific and economic importance, and polyploidization has been pivotal in shaping this genus. Despite many previous studies on the Nicotiana phylogenetic relationship and hybridization, evidence from whole genome data is still lacking. Methods In this study, we obtained 995 low-copy genes and plastid transcript fragments from the transcriptome datasets of 26 Nicotiana species, including all sections. We reconstructed the phylogenetic relationship and phylogenetic network of diploid species. Results The incongruence among gene trees showed that the formation of N. sylvestris involved incomplete lineage sorting. The nuclear-plastid discordance and nuclear introgression absence indicated that organelle capture from section Trigonophyllae was involved in forming section Petunioides. Furthermore, we analyzed the evolutionary origin of polyploid species and dated the time of hybridization events based on the analysis of PhyloNet, sequence similarity search, and phylogeny of subgenome approaches. Our results highly evidenced the hybrid origins of five polyploid sections, including sections Nicotiana, Repandae, Rusticae, Polydicliae, and Suaveolentes. Notably, we provide novel insights into the hybridization event of section Polydicliae and Suaveolentes. The section Polydicliae formed from a single hybridization event between maternal progenitor N. attenuata and paternal progenitor N. undulata; the N. sylvestris (paternal progenitor) and the N. glauca (maternal progenitor) were involved in the formation of section Suaveolentes. Discussion This study represents the first exploration of Nicotiana polyploidization events and phylogenetic relationships using the high-throughput RNA-seq approach. It will provide guidance for further studies in molecular systematics, population genetics, and ecological adaption studies in Nicotiana and other related species.
Collapse
Affiliation(s)
- Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Zhaowu Li
- Puai Medical College, Shaoyang University, Shaoyang, China
| | - Kai Chen
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex-situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
16
|
Son KH, Aldonza MBD, Nam AR, Lee KH, Lee JW, Shin KJ, Kang K, Cho JY. Integrative mapping of the dog epigenome: Reference annotation for comparative intertissue and cross-species studies. SCIENCE ADVANCES 2023; 9:eade3399. [PMID: 37406108 DOI: 10.1126/sciadv.ade3399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Dogs have become a valuable model in exploring multifaceted diseases and biology relevant to human health. Despite large-scale dog genome projects producing high-quality draft references, a comprehensive annotation of functional elements is still lacking. We addressed this through integrative next-generation sequencing of transcriptomes paired with five histone marks and DNA methylome profiling across 11 tissue types, deciphering the dog's epigenetic code by defining distinct chromatin states, super-enhancer, and methylome landscapes, and thus showed that these regions are associated with a wide range of biological functions and cell/tissue identity. In addition, we confirmed that the phenotype-associated variants are enriched in tissue-specific regulatory regions and, therefore, the tissue of origin of the variants can be traced. Ultimately, we delineated conserved and dynamic epigenomic changes at the tissue- and species-specific resolutions. Our study provides an epigenomic blueprint of the dog that can be used for comparative biology and medical research.
Collapse
Affiliation(s)
- Keun Hong Son
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Mark Borris D Aldonza
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jeong-Woon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Ju Shin
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Roberts M, Josephs EB. Weaker selection on genes with treatment-specific expression consistent with a limit on plasticity evolution in Arabidopsis thaliana. Genetics 2023; 224:iyad074. [PMID: 37094602 PMCID: PMC10484170 DOI: 10.1093/genetics/iyad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and divergence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation supports the existence of a hypothesized trade-off between the environment specificity of a gene's expression and the strength of selection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of many variables in limiting plasticity evolution.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Arzumanova K, Rohlfs RV, Grønvold L, Strand MA, Hvidsten TR, Sandve SR. Analyses of Genome Regulatory Evolution Following Whole-Genome Duplication Using the Phylogenetic EVE Model. Methods Mol Biol 2023; 2545:209-225. [PMID: 36720815 DOI: 10.1007/978-1-0716-2561-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-genome duplications (WGDs) are important in shaping the evolution of complex genomes, including rewiring of genome regulation. To address key questions about how WGDs impact the evolution of genome regulation, we need to understand the relative importance of selection versus drift and temporal evolutionary dynamics. One promising class of statistical models that can help address such questions are phylogenetic Ornstein-Uhlenbeck (OU) models.Here we present a computational pipeline for the comparative phylogenetic analyses of genome regulation using an OU model. We have implemented this model in R and provide a step-by-step protocol for the use of this model, including example scripts and simulated test data. We provide the nonspecialist a brief overview of how this model works and how to perform tests for signatures of selection on genome regulation as well as power simulations to aid in experimental design and interpretation of results. We believe that these resources could help polyploidy research move forward in an era of rapidly increasing functional genomics data across the tree of life.
Collapse
Affiliation(s)
- Ksenia Arzumanova
- Center for Theoretical Evolutionary Genomics, Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rori V Rohlfs
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Marius A Strand
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
19
|
Konno N, Iwasaki W. Machine learning enables prediction of metabolic system evolution in bacteria. SCIENCE ADVANCES 2023; 9:eadc9130. [PMID: 36630500 PMCID: PMC9833677 DOI: 10.1126/sciadv.adc9130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Evolution prediction is a long-standing goal in evolutionary biology, with potential impacts on strategic pathogen control, genome engineering, and synthetic biology. While laboratory evolution studies have shown the predictability of short-term and sequence-level evolution, that of long-term and system-level evolution has not been systematically examined. Here, we show that the gene content evolution of metabolic systems is generally predictable by applying ancestral gene content reconstruction and machine learning techniques to ~3000 bacterial genomes. Our framework, Evodictor, successfully predicted gene gain and loss evolution at the branches of the reference phylogenetic tree, suggesting that evolutionary pressures and constraints on metabolic systems are universally shared. Investigation of pathway architectures and meta-analysis of metagenomic datasets confirmed that these evolutionary patterns have physiological and ecological bases as functional dependencies among metabolic reactions and bacterial habitat changes. Last, pan-genomic analysis of intraspecies gene content variations proved that even "ongoing" evolution in extant bacterial species is predictable in our framework.
Collapse
Affiliation(s)
- Naoki Konno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Corresponding author. (N.K.); (W.I.)
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Corresponding author. (N.K.); (W.I.)
| |
Collapse
|
20
|
Bastide P, Soneson C, Stern DB, Lespinet O, Gallopin M. A Phylogenetic Framework to Simulate Synthetic Interspecies RNA-Seq Data. Mol Biol Evol 2023; 40:msac269. [PMID: 36508357 PMCID: PMC11249980 DOI: 10.1093/molbev/msac269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that benefits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the community with a clear picture on the relative performances of the available methods in various settings. However, synthetic dataset simulation tools are still missing in the interspecies gene expression context. In this work, we develop and implement a new simulation framework. This tool builds on both the RNA-Seq and the phylogenetic comparative methods literatures to generate realistic count datasets, while taking into account the phylogenetic relationships between the samples. We illustrate the usefulness of this new framework through a targeted simulation study, that reproduces the features of a recently published dataset, containing gene expression data in adult eye tissue across blind and sighted freshwater crayfish species. Using our simulated datasets, we perform a fair comparison of several approaches used for differential expression analysis. This benchmark reveals some of the strengths and weaknesses of both the classical and phylogenetic approaches for interspecies differential expression analysis, and allows for a reanalysis of the crayfish dataset. The tool has been integrated in the R package compcodeR, freely available on Bioconductor.
Collapse
Affiliation(s)
- Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David B Stern
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Olivier Lespinet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Mélina Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Church SH, Munro C, Dunn CW, Extavour CG. The evolution of ovary-biased gene expression in Hawaiian Drosophila. PLoS Genet 2023; 19:e1010607. [PMID: 36689550 PMCID: PMC9894553 DOI: 10.1371/journal.pgen.1010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/02/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
With detailed data on gene expression accessible from an increasingly broad array of species, we can test the extent to which our developmental genetic knowledge from model organisms predicts expression patterns and variation across species. But to know when differences in gene expression across species are significant, we first need to know how much evolutionary variation in gene expression we expect to observe. Here we provide an answer by analyzing RNAseq data across twelve species of Hawaiian Drosophilidae flies, focusing on gene expression differences between the ovary and other tissues. We show that over evolutionary time, there exists a cohort of ovary specific genes that is stable and that largely corresponds to described expression patterns from laboratory model Drosophila species. Our results also provide a demonstration of the prediction that, as phylogenetic distance increases, variation between species overwhelms variation between tissue types. Using ancestral state reconstruction of expression, we describe the distribution of evolutionary changes in tissue-biased expression, and use this to identify gains and losses of ovary-biased expression across these twelve species. We then use this distribution to calculate the evolutionary correlation in expression changes between genes, and demonstrate that genes with known interactions in D. melanogaster are significantly more correlated in their evolution than genes with no or unknown interactions. Finally, we use this correlation matrix to infer new networks of genes that share evolutionary trajectories, and we present these results as a dataset of new testable hypotheses about genetic roles and interactions in the function and evolution of the Drosophila ovary.
Collapse
Affiliation(s)
- Samuel H Church
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Current address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Catriona Munro
- Collège de France, PSL Research University, CNRS, Inserm, Center for Interdisciplinary Research in Biology, Paris, France
| | - Casey W Dunn
- Current address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
22
|
Detecting macroevolutionary genotype-phenotype associations using error-corrected rates of protein convergence. Nat Ecol Evol 2023; 7:155-170. [PMID: 36604553 PMCID: PMC9834058 DOI: 10.1038/s41559-022-01932-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
On macroevolutionary timescales, extensive mutations and phylogenetic uncertainty mask the signals of genotype-phenotype associations underlying convergent evolution. To overcome this problem, we extended the widely used framework of non-synonymous to synonymous substitution rate ratios and developed the novel metric ωC, which measures the error-corrected convergence rate of protein evolution. While ωC distinguishes natural selection from genetic noise and phylogenetic errors in simulation and real examples, its accuracy allows an exploratory genome-wide search of adaptive molecular convergence without phenotypic hypothesis or candidate genes. Using gene expression data, we explored over 20 million branch combinations in vertebrate genes and identified the joint convergence of expression patterns and protein sequences with amino acid substitutions in functionally important sites, providing hypotheses on undiscovered phenotypes. We further extended our method with a heuristic algorithm to detect highly repetitive convergence among computationally non-trivial higher-order phylogenetic combinations. Our approach allows bidirectional searches for genotype-phenotype associations, even in lineages that diverged for hundreds of millions of years.
Collapse
|
23
|
Koo H, Lee YS, Nguyen VB, Giang VNL, Koo HJ, Park HS, Mohanan P, Song YH, Ryu B, Kang KB, Sung SH, Yang TJ. Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis. J Ginseng Res 2023; 47:44-53. [PMID: 36644396 PMCID: PMC9834023 DOI: 10.1016/j.jgr.2022.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Background The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.
Collapse
Affiliation(s)
- Hyunjin Koo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun Sun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jo Koo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Padmanaban Mohanan
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea,Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byeol Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea,Corresponding author. Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Suetsugu K, Fukushima K, Makino T, Ikematsu S, Sakamoto T, Kimura S. Transcriptomic heterochrony and completely cleistogamous flower development in the mycoheterotrophic orchid Gastrodia. THE NEW PHYTOLOGIST 2023; 237:323-338. [PMID: 36110047 DOI: 10.1111/nph.18495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cleistogamy, in which plants can reproduce via self-fertilization within permanently closed flowers, has evolved in > 30 angiosperm lineages; however, consistent with Darwin's doubts about its existence, complete cleistogamy - the production of only cleistogamous flowers - has rarely been recognized. Thus far, the achlorophyllous orchid genus, Gastrodia, is the only known genus with several plausible completely cleistogamous species. Here, we analyzed the floral developmental transcriptomes of two recently evolved, completely cleistogamous Gastrodia species and their chasmogamous sister species to elucidate the possible changes involved in producing common cleistogamous traits. The ABBA-BABA test did not support introgression and protein sequence convergence as evolutionary mechanisms leading to cleistogamy, leaving convergence in gene expression as a plausible mechanism. Regarding transcriptomic differentiation, the two cleistogamous species had common modifications in the expression of developmental regulators, exhibiting a gene family-wide signature of convergent expression changes in MADS-box genes. Our transcriptomic pseudotime analysis revealed a prolonged juvenile state and eventual maturation, a heterochronic pattern consistent with partial neoteny, in cleistogamous flower development. These findings indicate that transcriptomic partial neoteny, arising from changes in the expression of conserved developmental regulators, might have contributed to the rapid and repeated evolution of cleistogamous flowers in Gastrodia.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
25
|
Li J, Sun K, Dai W, Leng H, Feng J. Divergence in interspecific and intersubspecific gene expression between two closely related horseshoe bats ( Rhinolophus). J Mammal 2022. [DOI: 10.1093/jmammal/gyac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Closely related species have been used as representative systems to investigate the genetic mechanisms involved in the early stages of species differentiation. Previous studies have indicated that variation in gene expression might be a sensitive indicator of initial species divergence, although the role of expression divergence, and especially that associated with phenotypic variation remained relatively undefined. For three organs (cochlea, brain, and liver) from two closely related bat species (Rhinolophus siamensis and R. episcopus), the interspecific and intersubspecific gene expression profiles were compared using transcriptomics in this study. Striking organ specificity of expression was observed, and expression profiles exhibited similarities between cochlea and brain tissues. Numerous differentially expressed genes (DEGs) were identified for each organ in the interspecific comparison (cochlea/brain/liver: 1,069/647/692) and intersubspecific comparison (608/528/368). Functional enrichment analysis indicated vital variation in expression related to the immune system, ion activities, neuronal function, and multisensory system regulation in both comparisons. DEGs relevant to the variation in echolocation calls (RF) were found, and some of them were involved in the pivotal patterns of expression variation. The regulation of immune, ion channel, neural activity, and sophisticated sensory functions at the expression level might be key mechanisms in the early species divergence of bats, and the expression variation related to acoustical signal could have played a crucial part. This study expands our knowledge of gene expression and patterns of variation for three key organs to echolocation at both the interspecific and intersubspecific levels. Further, the framework described here provides insight into the genetic basis of phenotypic variation during the incipient stage of species differentiation.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- College of Life Science, Jilin Agricultural University , Changchun 130118 , China
| |
Collapse
|
26
|
Wang S, Ding P, Yuan J, Wang H, Zhang X, Chen D, Ma D, Zhang X, Wang F. Integrative cross-species analysis of GABAergic neuron cell types and their functions in Alzheimer's disease. Sci Rep 2022; 12:19358. [PMID: 36369318 PMCID: PMC9652313 DOI: 10.1038/s41598-022-21496-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the phenotypic and functional diversity of cerebral cortical GABAergic neurons requires a comprehensive analysis of key transcriptional signatures and neuronal subtype identity. However, the diversity and conservation of GABAergic neurons across multiple mammals remain unclear. Here, we collected the single-nucleus RNA sequencing (snRNA-seq) datasets of cerebral cortex from human, macaque, mouse, and pig to identify the conserved neuronal cell types across species. After systematic analysis of the heterogeneity of GABAergic neurons, we defined four major conserved GABAergic neuron subclasses (Inc SST, Inc LAMP5, Inc PVALB, and Inc VIP) across species. We characterized the species-enriched subclasses of GABAergic neurons from four mammals, such as Inc Meis2 in mouse. Then, we depicted the genetic regulatory network (GRNs) of GABAergic neuron subclasses, which showed the conserved and species-specific GRNs for GABAergic neuron cell types. Finally, we investigated the GABAergic neuron subclass-specific expression modules of Alzheimer's disease (AD)-related genes in GABAergic neuron cell types. Overall, our study reveals the conserved and divergent GABAergic neuron subclasses and GRNs across multiple species and unravels the gene expression modules of AD-risk genes in GABAergic neuron subclasses, facilitating the GABAergic neurons research and clinical treatment.
Collapse
Affiliation(s)
- Shiyou Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Peiwen Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jingnan Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Haoyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Dongli Ma
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Xingliang Zhang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, China.
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Fei Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Favate JS, Liang S, Cope AL, Yadavalli SS, Shah P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 2022; 11:e81979. [PMID: 36214449 PMCID: PMC9645810 DOI: 10.7554/elife.81979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Shun Liang
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Alexander L Cope
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Robert Wood Johnson Medical School, Rutgers UniversityNew BrunswickUnited States
| | - Srujana S Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New Jersey, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
28
|
Distinguishing Evolutionary Conservation from Derivedness. Life (Basel) 2022; 12:life12030440. [PMID: 35330191 PMCID: PMC8954198 DOI: 10.3390/life12030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
While the concept of “evolutionary conservation” has enabled biologists to explain many ancestral features and traits, it has also frequently been misused to evaluate the degree of changes from a common ancestor, or “derivedness”. We propose that the distinction of these two concepts allows us to properly understand phenotypic and organismal evolution. From a methodological aspect, “conservation” mainly considers genes or traits which species have in common, while “derivedness” additionally covers those that are not commonly shared, such as novel or lost traits and genes to evaluate changes from the time of divergence from a common ancestor. Due to these differences, while conservation-oriented methods are effective in identifying ancestral features, they may be prone to underestimating the overall changes accumulated during the evolution of certain lineages. Herein, we describe our recently developed method, “transcriptomic derivedness index”, for estimating the phenotypic derivedness of embryos with a molecular approach using the whole-embryonic transcriptome as a phenotype. Although echinoderms are often considered as highly derived species, our analyses with this method showed that their embryos, at least at the transcriptomic level, may not be much more derived than those of chordates. We anticipate that the future development of derivedness-oriented methods could provide quantitative indicators for finding highly/lowly evolvable traits.
Collapse
|
29
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
30
|
Munro C, Zapata F, Howison M, Siebert S, Dunn CW. Evolution of gene expression across species and specialized zooids in Siphonophora. Mol Biol Evol 2022; 39:6521037. [PMID: 35134205 PMCID: PMC8844502 DOI: 10.1093/molbev/msac027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Siphonophores are complex colonial animals, consisting of asexually produced bodies (zooids) that are functionally specialized for specific tasks, including feeding, swimming, and sexual reproduction. Though this extreme functional specialization has captivated biologists for generations, its genomic underpinnings remain unknown. We use RNA-seq to investigate gene expression patterns in five zooids and one specialized tissue across seven siphonophore species. Analyses of gene expression across species present several challenges, including identification of comparable expression changes on gene trees with complex histories of speciation, duplication, and loss. We examine gene expression within species, conduct classical analyses examining expression patterns between species, and introduce species branch filtering, which allows us to examine the evolution of expression across species in a phylogenetic framework. Within and across species, we identified hundreds of zooid-specific and species-specific genes, as well as a number of putative transcription factors showing differential expression in particular zooids and developmental stages. We found that gene expression patterns tended to be largely consistent in zooids with the same function across species, but also some large lineage-specific shifts in gene expression. Our findings show that patterns of gene expression have the potential to define zooids in colonial organisms. Traditional analyses of the evolution of gene expression focus on the tips of gene phylogenies, identifying large-scale expression patterns that are zooid or species variable. The new explicit phylogenetic approach we propose here focuses on branches (not tips) offering a deeper evolutionary perspective into specific changes in gene expression within zooids along all branches of the gene (and species) trees.
Collapse
Affiliation(s)
- Catriona Munro
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Howison
- Research Improving People’s Lives (RIPL), Providence, RI, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California, 95616, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
31
|
Ioannidis P, Buer B, Ilias A, Kaforou S, Aivaliotis M, Orfanoudaki G, Douris V, Geibel S, Vontas J, Denecke S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics 2022; 23:75. [PMID: 35073840 PMCID: PMC8785469 DOI: 10.1186/s12864-021-08274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. Results Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. Conclusions This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08274-x.
Collapse
|
32
|
Suzuki TK, Matsui M, Sriswasdi S, Iwasaki W. Lifestyle Evolution Analysis by Binary-State Speciation and Extinction (BiSSE) Model. Methods Mol Biol 2022; 2569:327-342. [PMID: 36083456 DOI: 10.1007/978-1-0716-2691-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phylogenetic comparative methods (PCMs) combine statistics and evolutionary models to infer the dynamics of trait evolution and diversification that underlie the observed phylogeny. While PCMs have been used to study macro-evolutionary processes and evolutionary transitions of macroorganisms, their application to microbes is still limited. With the abundance of publicly available genomic and trait character data for diverse microbes nowadays, applications of PCMs on these data can provide insights into the fundamental principles that govern microbial evolution. Here, we introduce the Binary-State Speciation and Extinction (BiSSE) model, which is a relatively simple yet powerful approach for analyzing trait evolution. We begin by explaining the theoretical background and intuition behind the BiSSE model. Then, R commands for running the BiSSE model are presented. Finally, we introduce a case study that successfully applied the BiSSE model to investigate generalist and specialist microbial lifestyle evolution.
Collapse
Affiliation(s)
- Takao K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Motomu Matsui
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Begum T, Serrano‐Serrano ML, Robinson‐Rechavi M. Performance of a phylogenetic independent contrast method and an improved pairwise comparison under different scenarios of trait evolution after speciation and duplication. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Martha Liliana Serrano‐Serrano
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| |
Collapse
|
34
|
Begum T, Robinson-Rechavi M. Special Care Is Needed in Applying Phylogenetic Comparative Methods to Gene Trees with Speciation and Duplication Nodes. Mol Biol Evol 2021; 38:1614-1626. [PMID: 33169790 PMCID: PMC8042747 DOI: 10.1093/molbev/msaa288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional genomics results between species and between genes. Most comparative studies of functional genomics have used pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenetically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assumptions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to test the “ortholog conjecture,” the hypothesis that functional evolution is faster in paralogs than in orthologs. Although pairwise comparisons of tissue specificity (τ) provided support for the ortholog conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic methods to study the evolution of gene function and provides some support for the ortholog conjecture using three different phylogenetic approaches.
Collapse
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
35
|
Cheng X, Yan J, Liu Y, Wang J, Taubert S. eVITTA: a web-based visualization and inference toolbox for transcriptome analysis. Nucleic Acids Res 2021; 49:W207-W215. [PMID: 34019643 PMCID: PMC8218201 DOI: 10.1093/nar/gkab366] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes.
Collapse
Affiliation(s)
- Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program for Cell and Developmental Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongxing Liu
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiahe Wang
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program for Cell and Developmental Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|