1
|
Yang JS, Wang XY, Li YY, Zhang FM, Zhang XM, Tu YQ. Catalytic Asymmetric 1,4-Hydrocarbonation of 1,3-Enynes via Photoredox/Cobalt/Chromium Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420563. [PMID: 39797407 DOI: 10.1002/anie.202420563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
| | - Xing-Yu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Yao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Liu G, Shi Z, Guo C, Gu D, Wang Z. Metallaphotoredox Enabled Single Carbon Atom Insertion into Alkenes for Allene Synthesis. Angew Chem Int Ed Engl 2025; 64:e202418746. [PMID: 39779479 DOI: 10.1002/anie.202418746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner. The protocol exhibits a broad substrate scope and demonstrates applicability in the late-stage diversification of alkene-containing natural products and bioactive molecules. Preliminary mechanistic studies and density functional theory (DFT) calculations offer insights into the reaction pathway, indicating a radical mechanism involving fleeting cyclopropyl carbene intermediates followed by rapid ring opening to form allenes.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Chuning Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Danyu Gu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
3
|
Chen P, Zhang MM, Rao L, Li YH, Jia Y, Tan Y, Xiao WJ, Lu LQ. Access to N-α-quaternary chiral morpholines via Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy. Sci Bull (Beijing) 2024; 69:3516-3524. [PMID: 39183108 DOI: 10.1016/j.scib.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91% yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.
Collapse
Affiliation(s)
- Peng Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mao-Mao Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan-Heng Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yue Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Wu Y, Wang Z, Shan Y, Ma Y, Li T, Yuan C, Guo H, Mao B. Palladium-catalyzed asymmetric [4 + 3] cycloaddition of methylene-trimethylenemethane: access to seven-membered exocyclic axially chiral allenes. Chem Sci 2024; 15:9703-9708. [PMID: 38939158 PMCID: PMC11205274 DOI: 10.1039/d4sc01649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
A palladium-catalyzed asymmetric [4 + 3] cycloaddition of the methylene-trimethylenemethane donor with an azadiene has been developed, affording benzofuro[3,2-b]azepine-derived exocyclic chiral allene with control of axial and point chirality. The target compounds were generated in good to excellent yields and with high diastereoselectivities and enantioselectivities (up to >20 : 1 dr, 99% ee). Furthermore, this cycloaddition reaction could be efficiently scaled-up and several synthetic transformations were accomplished for the construction of useful chiral allenol and chiral spirocyclic derivatives.
Collapse
Affiliation(s)
- Yafei Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Zhuo Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Yuqian Shan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Yukun Ma
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Teng Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong China
| | - Hongchao Guo
- Department of Applied Chemistry and Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Biming Mao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| |
Collapse
|
6
|
Cheng YY, Kuo TS, Wu PY, Hsieh JC, Wu HL. Rhodium(I)/Chiral Diene Complexes Catalyzed Asymmetric Desymmetrization of Alkynyl-Tethered 2,5-Cyclohexadienones Through an Arylative Cyclization Cascade. J Org Chem 2024; 89:4861-4876. [PMID: 38525772 DOI: 10.1021/acs.joc.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cis-hydrobenzofurans, cis-hydroindoles, and cis-hydrindanes, privileged structural motifs found in numerous biologically active natural and synthetic compounds, are efficiently prepared by a Rh(I)-catalyzed cascade syn-arylation/1,4-addition protocol. This approach starts with the regioselective syn-arylation of the alkyne tethered to 2,5-hexadienone moieties, using a chiral Rh(I) catalyst generated in situ from a chiral bicyclo[2.2.1]hepatadiene ligand L4f. By forging two new carbon-carbon bonds and introducing two chiral centers, the resulting alkenylrhodium species undergoes desymmetrization via an intramolecular 1,4-addition reaction, delivering annulated products with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co. Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
7
|
Zhou J, Zhao Z, Mori S, Yamamoto K, Shibata N. Cross-coupling of organic fluorides with allenes: a silyl-radical-relay pathway for the construction of α-alkynyl-substituted all-carbon quaternary centres. Chem Sci 2024; 15:5113-5122. [PMID: 38577357 PMCID: PMC10988592 DOI: 10.1039/d3sc06617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Controlling the transformation of versatile and reactive allenes is a considerable challenge. Herein, we report an efficient silylboronate-mediated cross-coupling reaction of organic fluorides with allenes to construct a series of sterically demanding α-ethynyl-containing all-carbon quaternary centers (ACQCs), using catalyst-free silyl-radical-relay reactions to selectively functionalize highly inert C-F bonds in organic fluorides. The key to the success of this transformation lies in the radical rearrangement of an in situ-generated allenyl radical to form a bulky tertiary propargyl radical; however, the transformation does not show efficiency when using the propargyl isomer directly. This unique reaction enables the cross-coupling of a tertiary carbon radical center with a C(sp2)-F bond or a benzylic C(sp3)-F bond. α-Ethynyl-containing ACQCs with (hetero)aromatic substituents and benzyl were efficiently synthesized in a single step using electronically and sterically diverse organic fluorides and allenes. The practical utility of this protocol is showcased by the late-stage functionalization of bioactive molecules and the modification of a liquid crystalline material.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Soichiro Mori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
8
|
Liu G, Yang X, Gu P, Wang M, Zhang X, Dong XQ. Challenging Task of Ni-Catalyzed Highly Regio-/Enantioselective Semihydrogenation of Racemic Tetrasubstituted Allenes via a Kinetic Resolution Process. J Am Chem Soc 2024; 146:7419-7430. [PMID: 38447583 DOI: 10.1021/jacs.3c12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.
Collapse
Affiliation(s)
- Gang Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xuanliang Yang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pei Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, Guangdong, P. R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
9
|
Hossain A, Anderson RL, Zhang CS, Chen PJ, Fu GC. Nickel-Catalyzed Enantioconvergent and Diastereoselective Allenylation of Alkyl Electrophiles: Simultaneous Control of Central and Axial Chirality. J Am Chem Soc 2024; 146:7173-7177. [PMID: 38447585 PMCID: PMC11003353 DOI: 10.1021/jacs.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In recent years, remarkable progress has been described in the development of methods that simultaneously control vicinal stereochemistry, wherein both stereochemical elements are central chirality; in contrast, methods that control central and axial chirality are comparatively rare. Herein we report that a chiral nickel catalyst achieves the enantioconvergent and diastereoselective coupling of racemic secondary alkyl electrophiles with prochiral 1,3-enynes (in the presence of a hydrosilane) to generate chiral tetrasubstituted allenes that bear an adjacent stereogenic center. A carbon-carbon and a carbon-hydrogen bond are formed in this process, which provides good stereoselectivity and is compatible with an array of functional groups.
Collapse
Affiliation(s)
- Asik Hossain
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert L Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Claudia S Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peng-Jui Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Liu LX, Huang WJ, Yu CB, Zhou YG. Palladium-catalyzed stereoselective construction of chiral allenes bearing nonadjacent axial and two central chirality. Org Biomol Chem 2023; 21:8516-8520. [PMID: 37853833 DOI: 10.1039/d3ob01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
It is challenging to enantioselectively construct molecules bearing multiple nonadjacent stereocenters, in contrast to those bearing a single stereocenter or adjacent stereocenters. Herein, we report an enantio- and diastereoselective synthesis of substituted chiral allenes with nonadjacent axial and two central chiral centers through a combination of retro-oxa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation. This methodology exhibits good functional-group compatibility, and the corresponding allenylic alkylated compounds, including flavonoid frameworks, are obtained with good yields and diastereoselectivities and excellent enantioselectivities (all >95% ee). Furthermore, the scalability of the current synthetic protocol was proven by performing a gram-scale reaction.
Collapse
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Luo P, Li L, Mao X, Sun Z, Wang Y, Peng F, Shao Z. Chemodivergence in Pd-catalyzed desymmetrization of allenes: enantioselective [4+3] cycloaddition, desymmetric allenylic substitution and enynylation. Chem Sci 2023; 14:10812-10823. [PMID: 37829037 PMCID: PMC10566515 DOI: 10.1039/d3sc04581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
A class of prochiral allenylic di-electrophiles have been introduced for the first time as three-atom synthons in cycloadditions, and a new type of [4+3] cycloaddition involving transition metal-catalyzed enantioselective sequential allenylic substitution has been successfully developed, enabling challenging seven-membered exocyclic axially chiral allenes to be accessed in good yields with good enantioselectivity. Through the addition of a catalytic amount of ortho-aminoanilines or ortho-aminophenols, the racemization of the [4+3] cycloaddition products is effectively suppressed. Mechanistic studies reveal that elusive Pd-catalyzed enantioselective intramolecular allenylic substitution rather than intermolecular allenylic substitution is the enantio-determining step in this cycloaddition. By tuning the ligands, a Pd-catalyzed enantioselective desymmetric allenylic substitution leading to linear axially chiral tri-substituted allenes or a Pd-catalyzed tandem desymmetric allenylic substitution/β-vinylic hydrogen elimination (formal enynylation) leading to multi-functionalized 1,3-enynes is achieved chemodivergently.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Long Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Xinfang Mao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| |
Collapse
|
12
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
13
|
Wang T, Guan JX, Tan YX, Tian P. Cobalt-Catalyzed Chemo- and Stereoselective Arylative Carbocyclization of 1,6-Allenynes. Org Lett 2023; 25:5935-5940. [PMID: 37539986 DOI: 10.1021/acs.orglett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Different from the well-investigated enynes, transition-metal-catalyzed carbocyclization reactions of allenynes are more attractive as a result of the unique structure and versatile reactivity of allenes. Herein, we report the first cobalt-catalyzed highly chemo- and stereoselective arylative carbocyclization of 1,6-allenynes with arylboronic acids, affording five-membered carbocycles and heterocycles with moderate to high yields, broad substrate scope, and wide functional group compatibility. Moreover, several mechanistic experiments were conducted to gain insight into the reaction process.
Collapse
Affiliation(s)
- Tao Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ji-Xun Guan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
14
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Han J, Liu S, Wang H, Wang J, Qian H, Li Z, Ma S, Zhang J. Pd/Xu-Phos-catalyzed asymmetric elimination of fully substituted enol triflates into axially chiral trisubstituted allenes. SCIENCE ADVANCES 2023; 9:eadg1002. [PMID: 36930705 PMCID: PMC10022902 DOI: 10.1126/sciadv.adg1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The β-H elimination, as one of the most important elementary reactions in transition metal chemistry, is a key step in quenching the carbon-palladium bond for the Heck reaction. However, the β-H elimination of the alkenyl palladium species leading to allene is an energetically unfavored process, and therefore, it has been a long-standing challenge in control of this process via enantioselective manner. We developed a concise and efficient methodology to construct trisubstituted chiral allenes from stereodefined fully substituted enol triflates by the enantioselective β-H elimination of the alkenyl palladium species under mild conditions. The identified Xu-Phos play a crucial role in the chemoselectivity and enantioselectivity. Multiple linear regression analysis shows the important steric effect on enantioselectivity. DFT computation results allow us to propose an intramolecular base (-OAc)-assisted deprotonation mechanism for this progress. Distortion-interaction and energy decomposition analysis indicate that the difference in electrostatic energy (Eelec) of the two intramolecular base-assisted deprotonation transition states dominates the stereoselectivity.
Collapse
Affiliation(s)
- Jie Han
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Siyuan Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Huanan Wang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jie Wang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Qian
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Shengming Ma
- Department of Chemistry, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
16
|
Zou S, Yu B, Huang H. Palladium-Catalyzed Ring-Closing Aminoalkylative Amination of Unactivated Aminoenynes. Angew Chem Int Ed Engl 2023; 62:e202215325. [PMID: 36409522 DOI: 10.1002/anie.202215325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
An efficient strategy for preventing the β-hydride elimination of alkylpalladium species by ligation of the palladium with adjacent amino-group was developed, which enabled a novel palladium-catalyzed ring-closing aminoalkylative amination of unactivated aminoenynes. The reaction is amenable to aminals, as well as aliphatic aldehydes with secondary amines, which provides straightforward access to structurally diverse exocyclic allenic amines bearing 5 to 12-membered N-heterocycles. With chiral phosphoramidite-ligated palladium complex as the catalyst, an enantioselective variant was achieved with up to 93 % ee. Simultaneously, synthetic transformations of the chiral products were also conducted to afford structurally unique spirodiamines including one pharmaceutically active molecule via axial-to-central chirality transfer.
Collapse
Affiliation(s)
- Suchen Zou
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bangkui Yu
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
17
|
Green and efficient enantioseparation of amlodipine using a novel pairwise crystallization-circulating extraction coupling method aimed at in situ reuse of mother liquor. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhang G, Feng XJ, Li MY, Ji XM, Lin GQ, Feng CG. Synthesis of tetrasubstituted allenes via a 1,4-palladium migration/carbene insertion/β-H elimination sequence. Org Biomol Chem 2022; 20:5383-5386. [PMID: 35748786 DOI: 10.1039/d2ob00751g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A palladium-catalyzed synthesis of tetrasubstituted allenes from aryl bromides and aryl diazoacetates is developed. This transformation proceeded via an aryl to alkenyl 1,4-palladium migration/carbene insertion/β-H elimination sequence under mild reaction conditions.
Collapse
Affiliation(s)
- Ge Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao-Jiao Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ming Ji
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
19
|
Pothikumar R, Sivaraj C, Giridharan K, Ravva MK, Namitharan K. Stereoselective Addition of Alkynes to Ketenimines: Copper/Amine Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions for the Synthesis of ( Z)-1,3-Enynes. Org Lett 2022; 24:4310-4315. [PMID: 35696547 DOI: 10.1021/acs.orglett.2c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a copper/amine catalyzed stereoselective addition of alkynes to ketenimine intermediates generated in situ from the sulfonyl azide-alkyne cycloaddition cascade for the stereoselective synthesis of (Z)-1,3-enynes. Significantly, for the first-time, enamine intermediates generated in the copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions have been successfully trapped and isolated as the products. Density functional theory computations have also been performed and found to be consistent with the observed experimental stereoselectivity.
Collapse
Affiliation(s)
- Rajagopal Pothikumar
- Organic Synthesis and Catalysis Laboratory, Department of Chemistry, SRM Research Institute, SRM Institute of Science and Technology, Chennai 603 203, India
| | - Chandrasekaran Sivaraj
- Organic Synthesis and Catalysis Laboratory, Department of Chemistry, SRM Research Institute, SRM Institute of Science and Technology, Chennai 603 203, India
| | - Kayambu Giridharan
- Organic Synthesis and Catalysis Laboratory, Department of Chemistry, SRM Research Institute, SRM Institute of Science and Technology, Chennai 603 203, India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
| | - Kayambu Namitharan
- Organic Synthesis and Catalysis Laboratory, Department of Chemistry, SRM Research Institute, SRM Institute of Science and Technology, Chennai 603 203, India.,Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201 301, India
| |
Collapse
|
20
|
Shi B, Liu JB, Wang ZT, Wang L, Lan Y, Lu LQ, Xiao WJ. Synthesis of Chiral Endocyclic Allenes by Palladium-Catalyzed Asymmetric Annulation Followed by Cope Rearrangement. Angew Chem Int Ed Engl 2022; 61:e202117215. [PMID: 35333435 DOI: 10.1002/anie.202117215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
Catalytic asymmetric synthesis of chiral endocyclic allenes remains a challenge in allene chemistry owing to unfavored tension and complex chirality. Here, we present a new relay strategy merging Pd-catalyzed asymmetric [3+2] annulation with enyne-Cope rearrangement, providing a facile route to chiral 9-membered endocyclic allenes with high efficiency and enantioselectivity. Moreover, theoretical calculations and experimental studies were performed to illustrate the critical, but unusual Cope rearrangement that allows for the complete central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Bin Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ze-Tian Wang
- School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Liang Wang
- School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
21
|
Li Q, Wang ZL, Lu HX, Xu YH. Copper-Catalyzed Enantioselective 1,4-Protosilylation of Alkynyl-substituted Enones to Synthesize the Highly Diastereomeric Chiral Homoallenylsilanes. Org Lett 2022; 24:2832-2836. [PMID: 35394282 DOI: 10.1021/acs.orglett.2c00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed 1,4-protosilylation of α-alkynyl-enones to form the functionalized chiral homoallenylsilanes was developed. In the presence of a chiral monopyridine oxazoline ligand, a variety of trisubstituted allene derivatives bearing a contiguous stereogenic center and axis were prepared in good yields with excellent enantioselectivities and diastereoselectivities.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huan-Xuan Lu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Lu LQ, Shi B, Liu JB, Wang ZT, Wang L, Lan Y, Xiao WJ. Synthesis of Chiral Endocyclic Allenes by Palladium‐Catalyzed Asymmetric Annulation Followed by Cope Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang-Qiu Lu
- Central China Normal University CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology 152 Luoyu Road 430079 Wuhan, Hubei CHINA
| | - Bin Shi
- Central China Normal University College of Chemistry CHINA
| | - Jia-Bin Liu
- Zhengzhou University College of Chemistry CHINA
| | - Ze-Tian Wang
- Jianghan University School of Chemical and Environmental Engineering CHINA
| | - Liang Wang
- Jianghan University School of Chemical and Environmental Engineering CHINA
| | - Yu Lan
- Zhengzhou University College of Chemistry CHINA
| | - Wen-Jing Xiao
- Central China Normal University College of Chemistry CHINA
| |
Collapse
|
23
|
Xiao W, Wu J. Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes are summarized. This review is categorized based on the starting material, including alkynes, racemic allenes, and conjugated dienes.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
24
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
25
|
Chen Y, Wang J, Lu Y. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis. Chem Sci 2021; 12:11316-11321. [PMID: 34667542 PMCID: PMC8447876 DOI: 10.1039/d1sc02896k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
We disclose herein the first example of merging photoredox catalysis and copper catalysis for radical 1,4-carbocyanations of 1,3-enynes. Alkyl N-hydroxyphthalimide esters are utilized as radical precursors, and the reported mild and redox-neutral protocol has broad substrate scope and remarkable functional group tolerance. This strategy allows for the synthesis of diverse multi-substituted allenes with high chemo- and regio-selectivities, also permitting late stage allenylation of natural products and drug molecules.
Collapse
Affiliation(s)
- Ya Chen
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Junjie Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| |
Collapse
|
26
|
Zhang J, Huo X, Xiao J, Zhao L, Ma S, Zhang W. Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. J Am Chem Soc 2021; 143:12622-12632. [PMID: 34351136 DOI: 10.1021/jacs.1c05087] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to the widely explored methods for the asymmetric synthesis of molecules bearing a single stereocenter or adjacent stereocenters, the concurrent construction of 1,3-stereogenic centers in an enantio- and diastereoselective manner remains a challenge, especially in acyclic systems. Herein, we report an enantio- and diastereodivergent construction of 1,3-nonadjacent stereocenters bearing allenyl axial and central chirality through synergistic Pd/Cu-catalyzed dynamic kinetic asymmetric allenylation with racemic allenylic esters. The protocol is suitable for a wide range of substrates including the challenging allenylic esters with less sterically bulky substituents and provided chiral allenylic products bearing 1,3-nonadjacent stereocenters with high levels of enantio- and diastereoselectivities (up to >20:1 dr and >99% ee). Furthermore, several representative transformations involving axial-to-central chirality transfer were conducted, affording useful structural motifs containing nonadjacent stereocenters in a diastereodivergent manner.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
27
|
Wei Y, Jiang X, Gao H, Bian M, Huang Y, Zhou Z, Yi W. Rhodium(III)‐Catalyzed Cascade C−H Coupling/C‐Terminus Michael Addition of
N
‐Phenoxy Amides with 1,6‐Enynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Xinlin Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
28
|
|
29
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
30
|
Xu H, Tan YX, Xie PP, Ding R, Liao Q, Zhang JW, Li QH, Wang YH, Hong X, Lin GQ, Tian P. Rhodium(III)-Catalyzed Asymmetric Reductive Cyclization of Cyclohexadienone-Containing 1,6-Dienes via an Anti-Michael/Michael Cascade Process. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Rui Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Liao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Shu T, Cossy J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem Soc Rev 2021; 50:658-666. [DOI: 10.1039/d0cs00666a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is covering the recent development of catalytic asymmetric domino reactions for the desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metals and chiral ligands.
Collapse
Affiliation(s)
- Tao Shu
- Molecular, Macromolecular Chemistry and Materials
- ESPCI Paris
- PSL University
- Paris
- France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials
- ESPCI Paris
- PSL University
- Paris
- France
| |
Collapse
|
32
|
Chen B, He CY, Chu WD, Liu QZ. Recent advances in the asymmetric transformations of achiral cyclohexadienones. Org Chem Front 2021. [DOI: 10.1039/d0qo01358g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes recent developments in the asymmetric transformations of achiral cyclohexadienones, including enantioselective desymmetrization of prochiral cyclohexadienones and kinetic resolution of racemic cyclohexadienones.
Collapse
Affiliation(s)
- Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| |
Collapse
|
33
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Ye J, Liao Y, Huang H, Liu Y, Fang D, Wang M, Hu L, Liao J. Halogenated salt assisted Cu-catalyzed asymmetric 1,4-borylstannation of 1,3-enynes: enantioselective synthesis of allenylstannes. Chem Sci 2020; 12:3032-3038. [PMID: 34164072 PMCID: PMC8179376 DOI: 10.1039/d0sc05425a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies. In this protocol, a catalytic amount of additive, a halogenated salt, plays a crucial role in the success. Control experiments and theoretical studies disclosed that the four-membered ring transmetallation transition states which were stabilized by a halide anion are the key to yields and stereochemical outcomes.
Collapse
Affiliation(s)
- Jialin Ye
- College of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Yang Liao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| | - Hao Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| | - Yang Liu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| | - Dongmei Fang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| | - Min Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| | - Lianrui Hu
- School of Science and Research Center for Advanced Computation, Xihua University Chengdu 610039 China
| | - Jian Liao
- College of Chemical Engineering, Sichuan University Chengdu 610065 China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 10049 China
| |
Collapse
|
35
|
Wang B, Li Y, Pang JH, Watanabe K, Takita R, Chiba S. Hydromagnesiation of 1,3‐Enynes by Magnesium Hydride for Synthesis of Tri‐ and Tetra‐substituted Allenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bin Wang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yihang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jia Hao Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
36
|
Wang B, Li Y, Pang JH, Watanabe K, Takita R, Chiba S. Hydromagnesiation of 1,3‐Enynes by Magnesium Hydride for Synthesis of Tri‐ and Tetra‐substituted Allenes. Angew Chem Int Ed Engl 2020; 60:217-221. [DOI: 10.1002/anie.202012027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Bin Wang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yihang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jia Hao Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
37
|
Dherbassy Q, Manna S, Talbot FJT, Prasitwatcharakorn W, Perry GJP, Procter DJ. Copper-catalyzed functionalization of enynes. Chem Sci 2020; 11:11380-11393. [PMID: 34094380 PMCID: PMC8163025 DOI: 10.1039/d0sc04012f] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
The copper-catalyzed functionalization of enyne derivatives has recently emerged as a powerful approach in contemporary synthesis. Enynes are versatile and readily accessible substrates that can undergo a variety of reactions to yield densely functionalized, enantioenriched products. In this perspective, we review copper-catalyzed transformations of enynes, such as boro- and hydrofunctionalizations, copper-mediated radical difunctionalizations, and cyclizations. Particular attention is given to the regiodivergent functionalization of 1,3-enynes, and the current mechanistic understanding of such processes.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Srimanta Manna
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Fabien J T Talbot
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Watcharapon Prasitwatcharakorn
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| |
Collapse
|