1
|
Lu Z, Nie J, Wang Z, Wang Z, Zhang P, Jiang Y, Zheng P. Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents. J Phys Chem Lett 2025; 16:1282-1287. [PMID: 39869377 DOI: 10.1021/acs.jpclett.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system. Our results demonstrate that the Ni-N(His) bond in protein exhibits a rupture force of ∼56 pN. Notably, kinetic analysis revealed a significantly lower off-rate compared to the synthetic system, suggesting that the protein environment plays a crucial role in stabilizing the bond. Moreover, we found that the bond is less susceptible to displacement by competing agents, such as imidazole, and experiences only a modest decrease in stability under acidic conditions, compared to the dramatic weakening seen in a synthetic system. These findings highlight the role of protein structure in protecting the mechanical and kinetic stability of the Ni-N(His) bond, offering insights into understanding the metal-ligand interactions in proteins in general.
Collapse
Affiliation(s)
- Zhuojian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ziling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yajun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Zhang Y, Du J, Liu X, Shang F, Deng Y, Ye J, Wang Y, Yan J, Chen H, Yu M, Le S. Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification. Nat Commun 2024; 15:6151. [PMID: 39034324 PMCID: PMC11271494 DOI: 10.1038/s41467-024-50430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
α-Actinins play crucial roles in cytoskeletal mechanobiology by acting as force-bearing structural modules that orchestrate and sustain the cytoskeletal framework, serving as pivotal hubs for diverse mechanosensing proteins. The mechanical stability of α-actinin dimer, a determinant of its functional state, remains largely unexplored. Here, we directly quantify the force-dependent lifetimes of homo- and hetero-dimers of human α-actinins, revealing an ultra-high mechanical stability of the dimers associated with > 100 seconds lifetime within 40 pN forces under shear-stretching geometry. Intriguingly, we uncover that the strong dimer stability is arisen from much weaker sub-domain pair interactions, suggesting the existence of distinct dimerized functional states of the dimer, spanning a spectrum of mechanical stability, with the spectrin repeats (SRs) in folded or unfolded conformation. In essence, our study supports a potent mechanism for building strength in biomolecular dimers through weak, multiple sub-domain interactions, and illuminates multifaceted roles of α-actinin dimers in cytoskeletal mechanics and mechanotransduction.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Jingyi Du
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xian Liu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei Shang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Yunxin Deng
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Jiaqing Ye
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Yukai Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Hu Chen
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China.
| | - Miao Yu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Shimin Le
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
3
|
Sun Y, Liu X, Huang W, Le S, Yan J. Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner. Nat Commun 2024; 15:4496. [PMID: 38802383 PMCID: PMC11530556 DOI: 10.1038/s41467-024-48828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Titin N2B unique sequence (N2B-us) is a 572 amino acid sequence that acts as an elastic spring to regulate muscle passive elasticity. It is thought to lack stable tertiary structures and is a force-bearing region that is regulated by mechanical stretching. In this study, the conformation of N2B-us and its interaction with four-and-a-half LIM domain protein 2 (FHL2) are investigated using AlphaFold2 predictions and single-molecule experimental validation. Surprisingly, a stable alpha/beta structural domain is predicted and confirmed in N2B-us that can be mechanically unfolded at forces of a few piconewtons. Additionally, more than twenty FHL2 LIM domain binding sites are predicted to spread throughout N2B-us. Single-molecule manipulation experiments reveals the force-dependent binding of FHL2 to the N2B-us structural domain. These findings provide insights into the mechano-sensing functions of N2B-us and its interactions with FHL2.
Collapse
Affiliation(s)
- Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Xuyao Liu
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Wenmao Huang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
- Centre for Biological Imaging Sciences, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
4
|
Huang W, Liu J, Le S, Yao M, Shi Y, Yan J. In situ single-molecule investigations of the impacts of biochemical perturbations on conformational intermediates of monomeric α-synuclein. APL Bioeng 2024; 8:016114. [PMID: 38435467 PMCID: PMC10908564 DOI: 10.1063/5.0188714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
α-Synuclein aggregation is a common trait in synucleinopathies, including Parkinson's disease. Being an unstructured protein, α-synuclein exists in several distinct conformational intermediates, contributing to both its function and pathogenesis. However, the regulation of these monomer conformations by biochemical factors and potential drugs has remained elusive. In this study, we devised an in situ single-molecule manipulation approach to pinpoint kinetically stable conformational intermediates of monomeric α-synuclein and explore the effects of various biochemical factors and drugs. We uncovered a partially folded conformation located in the non-amyloid-β component (NAC) region of monomeric α-synuclein, which is regulated by a preNAC region. This conformational intermediate is sensitive to biochemical perturbations and small-molecule drugs that influencing α-synuclein's aggregation tendency. Our findings reveal that this partially folded intermediate may play a role in α-synuclein aggregation, offering fresh perspectives for potential treatments aimed at the initial stage of higher-order α-synuclein aggregation. The single-molecule approach developed here can be broadly applied to the study of disease-related intrinsically disordered proteins.
Collapse
Affiliation(s)
- Wenmao Huang
- Authors to whom correspondence should be addressed: and
| | - Jingzhun Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | | | - Yi Shi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
5
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
6
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
7
|
Huang W, Le S, Sun Y, Lin DJ, Yao M, Shi Y, Yan J. Mechanical Stabilization of a Bacterial Adhesion Complex. J Am Chem Soc 2022; 144:16808-16818. [PMID: 36070862 PMCID: PMC9501914 DOI: 10.1021/jacs.2c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The adhesions between Gram-positive bacteria and their
hosts are
exposed to varying magnitudes of tensile forces. Here, using an ultrastable
magnetic tweezer-based single-molecule approach, we show the catch-bond
kinetics of the prototypical adhesion complex of SD-repeat protein
G (SdrG) to a peptide from fibrinogen β (Fgβ) over a physiologically
important force range from piconewton (pN) to tens of pN, which was
not technologically accessible to previous studies. At 37 °C,
the lifetime of the complex exponentially increases from seconds at
several pN to ∼1000 s as the force reaches 30 pN, leading to
mechanical stabilization of the adhesion. The dissociation transition
pathway is determined as the unbinding of a critical β-strand
peptide (“latch” strand of SdrG that secures the entire
adhesion complex) away from its binding cleft, leading to the dissociation
of the Fgβ ligand. Similar mechanical stabilization behavior
is also observed in several homologous adhesions, suggesting the generality
of catch-bond kinetics in such bacterial adhesions. We reason that
such mechanical stabilization confers multiple advantages in the pathogenesis
and adaptation of bacteria.
Collapse
Affiliation(s)
- Wenmao Huang
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542.,Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Dennis Jingxiong Lin
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Shi
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546
| |
Collapse
|
8
|
Wang Z, Zhao Z, Li G, Zheng P. Single-Molecule Force Spectroscopy Reveals the Dynamic HgS Coordination Site in the De Novo-Designed Metalloprotein α 3DIV. J Phys Chem Lett 2022; 13:5372-5378. [PMID: 35678420 DOI: 10.1021/acs.jpclett.2c01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The de novo-designed metalloprotein α3DIV binds to mercury via three cysteine residues under dynamic conditions. An unusual trigonal three-coordinate HgS3 site is formed in the protein in basic solution, whereas a linear two-coordinate HgS2 site is formed in acidic solution. Furthermore, it is unknown whether the two coordinated cysteines in the HgS2 site are fixed or not, which may lead to more dynamics. However, the signal for HgS2 sites with different cysteines may be similar or may be averaged and indistinguishable. To circumvent this problem, we adopt a single-molecule approach to study one mercury site at a time. Using atomic force microscopy-based single-molecule force spectroscopy, the protein is unfolded, and the HgS site is ruptured. The results confirm the formation of HgS3 and HgS2 sites at different pH values. Moreover, it is found that any two of the three cysteines in the protein bind to mercury in the HgS2 site.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhongxing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
9
|
Nie JY, Song GB, Deng YB, Zheng P. Single-Molecule Force Spectroscopy Reveals Stability of mitoNEET and its [2Fe2Se] Cluster in Weakly Acidic and Basic Solutions. Chemistry 2022; 11:e202200056. [PMID: 35608094 PMCID: PMC9127745 DOI: 10.1002/open.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Indexed: 11/05/2022]
Abstract
The outer mitochondrial membrane protein mitoNEET (mNT) is a recently identified iron-sulfur protein containing a unique Fe2 S2 (His)1 (Cys)3 metal cluster with a single Fe-N(His87) coordinating bond. This labile Fe-N bond led to multiple unfolding/rupture pathways of mNT and its cluster by atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), one of most common tools for characterizing the molecular mechanics. Although previous ensemble studies showed that this labile Fe-N(His) bond is essential for protein function, they also indicated that the protein and its [2Fe2S] cluster are stable under acidic conditions. Thus, we applied AFM-SMFS to measure the stability of mNT and its cluster at pH values of 6, 7, and 8. Indeed, all previous multiple unfolding pathways of mNT were still observed. Moreover, single-molecule measurements revealed that the stabilities of the protein and the [2Fe2S] cluster are consistent at these pH values with only ≈20 pN force differences. Thus, we found that the behavior of the protein is consistent in both weakly acidic and basic solutions despite a labile Fe-N bond.
Collapse
Affiliation(s)
- Jing-Yuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guo-Bin Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yi-Bing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
10
|
Abstract
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Min Ju Shon
- Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
11
|
Maciuba K, Zhang F, Kaiser CM. Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys J 2021; 120:2691-2700. [PMID: 33989618 DOI: 10.1016/j.bpj.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach "molecular handles" to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.
Collapse
Affiliation(s)
- Kevin Maciuba
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Fan Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|