1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Shanmugam A, Merrigan M, O'Reilly S, Molloy AM, Brody L, Hardiman O, Bodmer W, McLaughlin RL, Cavalleri GL, Byrne RP, Gilbert EH. A genetic perspective on the recent demographic history of Ireland and Britain. Eur J Hum Genet 2025; 33:538-545. [PMID: 39910328 PMCID: PMC11986122 DOI: 10.1038/s41431-025-01794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/10/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
While subtle yet discrete clusters of genetic identity across Ireland and Britain have been identified, their recent demographic history is unclear. Using genotype data from 6574 individuals with associated regional Irish or British ancestry, we identified genetic communities by applying Leiden community detection. Using haplotype segments segregated by length as proxy for time, we inferred regional Irish and British demographic histories. Using a subset of Irish participants, we provide genealogical context by estimating the enrichment/depletion of surnames within the Irish genetic communities. Through patterns of haplotype sharing, we find evidence of recent population bottlenecks in Orcadian, Manx and Welsh genetic communities. We observed temporal changes in genetic affinities within and between genetic communities in Ireland and Britain. Structure in Ireland is subtler compared to neighbouring British communities, with the Irish groups sharing relatively more short haplotype segments. In addition, we detected varying degrees of genetic isolation in peripheral Irish and British genetic communities across different time periods. Further, we observe a stable migration corridor between north-east Ireland and south-west Scotland while there is a recent migration barrier between south-east and west Ireland. Genealogical analysis of surnames in Ireland reflects history-Anglo-Norman surnames are enriched in the Wexford community while Scottish and Gallowglass surnames were enriched in the Ulster community. Using these new insights into the regional demographic history of Ireland and Britain across different time periods, we hope to understand the driving forces of rare allele frequencies and disease risk association within these populations.
Collapse
Affiliation(s)
- Ashwini Shanmugam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Research Ireland Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics and Applied Mathematics, University of Galway, Galway, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Lawrence Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orla Hardiman
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Walter Bodmer
- Weatherall Institute of Molecular Medicine and Department of Oncology, University of Oxford, Oxford, UK
| | - Russell L McLaughlin
- The SFI Research Ireland Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics and Applied Mathematics, University of Galway, Galway, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Research Ireland Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics and Applied Mathematics, University of Galway, Galway, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross P Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Edmund H Gilbert
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
3
|
Condori-Catachura S, Ahannach S, Ticlla M, Kenfack J, Livo E, Anukam KC, Pinedo-Cancino V, Collado MC, Dominguez-Bello MG, Miller C, Vinderola G, Merten S, Donders GGG, Gehrmann T, Lebeer S. Diversity in women and their vaginal microbiota. Trends Microbiol 2025:S0966-842X(24)00328-7. [PMID: 39919958 DOI: 10.1016/j.tim.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025]
Abstract
Women's health is essential to global societal and economic wellbeing, yet health disparities remain prevalent. The vaginal microbiota plays a critical role in health, with research indicating that reduced levels of core bacteria, such as lactobacilli, are associated with conditions like bacterial vaginosis (BV) and increased infection susceptibility. Lower levels of vaginal lactobacilli are reported more frequently in women of African and Latin American descent compared with women of European and Asian descent. However, geographical and other study inclusion and analysis biases influence current research. This opinion highlights the need for a more comprehensive understanding of a 'healthy' vaginal microbiome. It underscores efforts to broaden global research on microbiome diversity in socially relevant contexts, avoiding inappropriate applications of terms such as race and ethnicity.
Collapse
Affiliation(s)
- Sandra Condori-Catachura
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; U-MaMi Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica Ticlla
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Unit Society, Gender and Health - Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Josiane Kenfack
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon; Centre for Research on Emerging and Reemerging Diseases, Institute of Medical Research and Medicinal Plant Studies, Yaounde, Cameroon; The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon
| | - Esemu Livo
- Centre for Research on Emerging and Reemerging Diseases, Institute of Medical Research and Medicinal Plant Studies, Yaounde, Cameroon; The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon; Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon; Strengthening Health and Applied Research, Yaounde, Cameroon
| | - Kingsley C Anukam
- Department of Medical Microbiology and Public Health, Faculty of Medical Laboratory Science, Nnamdi Azikiwe University, Nigeria
| | - Viviana Pinedo-Cancino
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía (LIPNAA), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru; Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; Department of Anthropology, Rutgers University, New Brunswick, NJ, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Corrie Miller
- Department of Obstetrics, Gynecology, and Women's Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sonja Merten
- Unit Society, Gender and Health - Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Gilbert G G Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium.; Regional Hospital Heilig Hart, Tienen, Belgium; Femicare Clinical Research for Women, Tienen, Belgium
| | - Thies Gehrmann
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; U-MaMi Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Alves I, Giemza J, Blum MGB, Bernhardsson C, Chatel S, Karakachoff M, Saint Pierre A, Herzig AF, Olaso R, Monteil M, Gallien V, Cabot E, Svensson E, Bacq D, Baron E, Berthelier C, Besse C, Blanché H, Bocher O, Boland A, Bonnaud S, Charpentier E, Dandine-Roulland C, Férec C, Fruchet C, Lecointe S, Le Floch E, Ludwig TE, Marenne G, Meyer V, Quellery E, Racimo F, Rouault K, Sandron F, Schott JJ, Velo-Suarez L, Violleau J, Willerslev E, Coativy Y, Jézéquel M, Le Bris D, Nicolas C, Pailler Y, Goldberg M, Zins M, Le Marec H, Jakobsson M, Darlu P, Génin E, Deleuze JF, Redon R, Dina C. Human genetic structure in Northwest France provides new insights into West European historical demography. Nat Commun 2024; 15:6710. [PMID: 39112481 PMCID: PMC11306750 DOI: 10.1038/s41467-024-51087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The demographical history of France remains largely understudied despite its central role toward understanding modern population structure across Western Europe. Here, by exploring publicly available Europe-wide genotype datasets together with the genomes of 3234 present-day and six newly sequenced medieval individuals from Northern France, we found extensive fine-scale population structure across Brittany and the downstream Loire basin and increased population differentiation between the northern and southern sides of the river Loire, associated with higher proportions of steppe vs. Neolithic-related ancestry. We also found increased allele sharing between individuals from Western Brittany and those associated with the Bell Beaker complex. Our results emphasise the need for investigating local populations to better understand the distribution of rare (putatively deleterious) variants across space and the importance of common genetic legacy in understanding the sharing of disease-related alleles between Brittany and people from western Britain and Ireland.
Collapse
Affiliation(s)
- Isabel Alves
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Strasbourg, CNRS, GMGM, Strasbourg, France
| | - Joanna Giemza
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michael G B Blum
- TIMC-IMAG, UMR 5525 CNRS, Univ. Grenoble Alpes, Grenoble, France
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Uppsala, Sweden
| | - Stéphanie Chatel
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, INSERMCIC 1413, Nantes, France
| | | | | | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Martial Monteil
- Nantes Université, CNRS, Ministère de la Culture, CReAAH, LARA, Nantes, France
| | - Véronique Gallien
- INRAP - Institut national de recherches archéologiques préventives, Paris, France
- CEPAM UMR7264 - Culture et Environnements, Préhistoire, Antiquité, Moyen-Age, Nice, France
| | - Elodie Cabot
- INRAP - Institut national de recherches archéologiques préventives, Paris, France
- Anthropologie Bio-Culturelle, Droit, Ethique et Santé, Faculté de Médecine Site Nord, Marseille, France
| | - Emma Svensson
- Department of Organismal Biology, Human Evolution, Uppsala University, Uppsala, Sweden
| | - Delphine Bacq
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Estelle Baron
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Charlotte Berthelier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Céline Besse
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | | | - Ozvan Bocher
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Stéphanie Bonnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Claire Dandine-Roulland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - Christine Fruchet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Simon Lecointe
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Edith Le Floch
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Thomas E Ludwig
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | | | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Elisabeth Quellery
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rouault
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - Florian Sandron
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | - Jade Violleau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eske Willerslev
- Lundbeck GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yves Coativy
- Centre de Recherche Bretonne et Celtique, UR 4451, Université de Bretagne Occidentale, Brest, France
| | - Mael Jézéquel
- Centre de Recherche Bretonne et Celtique, UR 4451, Université de Bretagne Occidentale, Brest, France
| | - Daniel Le Bris
- Centre de Recherche Bretonne et Celtique, UR 4451, Université de Bretagne Occidentale, Brest, France
| | - Clément Nicolas
- CNRS UMR 8215 Trajectoires, Université Paris 1 Panthéon-Sorbonne, Centre Malher, 9 rue Malher, Paris, France
| | - Yvan Pailler
- CPJ ArMeRIE UBO, UMR 6554 LETG, CNRS, Université de Brest, Université de Nantes, Université de Rennes 2, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Marcel Goldberg
- Université Paris Cité, "Population-based Cohorts Unit", INSERM, Paris Saclay University, UVSQ, Paris, France
| | - Marie Zins
- Université Paris Cité, "Population-based Cohorts Unit", INSERM, Paris Saclay University, UVSQ, Paris, France
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Uppsala, Sweden
| | - Pierre Darlu
- UMR 7206 Eco-anthropologie, Musée de l'Homme, MNHN, CNRS, Université de Paris Cité, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
- Labex GenMed, Evry, France
- Fondation Jean Dausset, CEPH, Paris, France
| | - Richard Redon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.
| |
Collapse
|
6
|
Wijekoon N, Gonawala L, Ratnayake P, Liyanage R, Amaratunga D, Hathout Y, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. Eur J Med Res 2024; 29:37. [PMID: 38195599 PMCID: PMC10775540 DOI: 10.1186/s40001-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - K Ranil D de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka.
| |
Collapse
|
7
|
Marriott H, Kabiljo R, Hunt GP, Khleifat AA, Jones A, Troakes C, Pfaff AL, Quinn JP, Koks S, Dobson RJ, Schwab P, Al-Chalabi A, Iacoangeli A. Unsupervised machine learning identifies distinct ALS molecular subtypes in post-mortem motor cortex and blood expression data. Acta Neuropathol Commun 2023; 11:208. [PMID: 38129934 PMCID: PMC10734072 DOI: 10.1186/s40478-023-01686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .
Collapse
Affiliation(s)
- Heather Marriott
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Guy P Hunt
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Ashley Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Richard J Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick Schwab
- GlaxoSmithKline, Artificial Intelligence and Machine Learning, Durham, NC, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- King's College Hospital, London, SE5 9RS, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK.
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| |
Collapse
|
8
|
Li W, Lin M, Li J, Liu D, Tan W, Yin X, Zhai Y, Zhou Y, Xing W. Genome-wide association study of drought tolerance traits in sugar beet germplasms at the seedling stage. Front Genet 2023; 14:1198600. [PMID: 37547461 PMCID: PMC10401439 DOI: 10.3389/fgene.2023.1198600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Sugar beets are an important crop for global sugar production. Intense drought and the increasing lack of water resources pose a great threat to sugar beet cultivation. It is a priority to investigate favourable germplasms and functional genes to improve the breeding of drought tolerant plants. Methods: Thus, in this study, 328 sugar beet germplasms were used in a genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers and candidate genes associated with drought tolerance. Results: The results showed that under drought stress (9% PEG-6000), there were 11 significantly associated loci on chromosomes 2, 3, 5, 7, and 9 from the 108946 SNPs filtered using a mixed linear model (MLM). Genome-wide association analysis combined with qRT-PCR identified 13 genes that were significantly differentially expressed in drought-tolerant extreme materials. Discussion: These candidate genes mainly exhibited functions such as regulating sugar metabolism, maintaining internal environmental stability and participating in photosystem repair. This study provides valuable information for exploring the molecular mechanisms of drought tolerance and improvement in sugar beet.
Collapse
Affiliation(s)
- Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xilong Yin
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Zhai
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
9
|
Gilbert E, Zurel H, MacMillan ME, Demiriz S, Mirhendi S, Merrigan M, O'Reilly S, Molloy AM, Brody LC, Bodmer W, Leach RA, Scott REM, Mugford G, Randhawa R, Stephens JC, Symington AL, Cavalleri GL, Phillips MS. The Newfoundland and Labrador mosaic founder population descends from an Irish and British diaspora from 300 years ago. Commun Biol 2023; 6:469. [PMID: 37117635 PMCID: PMC10147672 DOI: 10.1038/s42003-023-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
The founder population of Newfoundland and Labrador (NL) is a unique genetic resource, in part due to its geographic and cultural isolation, where historical records describe a migration of European settlers, primarily from Ireland and England, to NL in the 18th and 19th centuries. Whilst its historical isolation, and increased prevalence of certain monogenic disorders are well appreciated, details of the fine-scale genetic structure and ancestry of the population are lacking. Understanding the genetic origins and background of functional, disease causing, genetic variants would aid genetic mapping efforts in the Province. Here, we leverage dense genome-wide SNP data on 1,807 NL individuals to reveal fine-scale genetic structure in NL that is clustered around coastal communities and correlated with Christian denomination. We show that the majority of NL European ancestry can be traced back to the south-east and south-west of Ireland and England, respectively. We date a substantial population size bottleneck approximately 10-15 generations ago in NL, associated with increased haplotype sharing and autozygosity. Our results reveal insights into the population history of NL and demonstrate evidence of a population conducive to further genetic studies and biomarker discovery.
Collapse
Affiliation(s)
- Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Heather Zurel
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Sedat Demiriz
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Sadra Mirhendi
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | | | - Anne M Molloy
- School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walter Bodmer
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Richard A Leach
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Roderick E M Scott
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gerald Mugford
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Ranjit Randhawa
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Alison L Symington
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael S Phillips
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
10
|
Colbert SM, Keller MC, Agrawal A, Johnson EC. Exploring the Relationships Between Autozygosity, Educational Attainment, and Cognitive Ability in a Contemporary, Trans-Ancestral American Sample. Behav Genet 2022; 52:315-323. [PMID: 36169746 PMCID: PMC10658661 DOI: 10.1007/s10519-022-10113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Previous studies have found significant associations between estimated autozygosity - the proportion of an individual's genome contained in homozygous segments due to distant inbreeding - and multiple traits, including educational attainment (EA) and cognitive ability. In one study, estimated autozygosity showed a stronger association with parental EA than the subject's own EA. This was likely driven by parental EA's association with mobility: more educated parents tended to migrate further from their hometown, and because of the strong correlation between ancestry and geography in the Netherlands, these individuals chose partners farther from their ancestry and therefore more different from them genetically. We examined the associations between estimated autozygosity, cognitive ability, and parental EA in a contemporary sub-sample of adolescents from the Adolescent Brain Cognitive Development Study℠ (ABCD Study®) (analytic N = 6,504). We found a negative association between autozygosity and child cognitive ability consistent with previous studies, while the associations between autozygosity and parental EA were in the expected direction of effect (with greater levels of autozygosity being associated with lower EA) but the effect sizes were significantly weaker than those estimated in previous work. We also found a lower mean level of autozygosity in the ABCD sample compared to previous autozygosity studies, which may reflect overall decreasing levels of autozygosity over generations. Variation in spousal similarities in ancestral background in the ABCD study compared to other studies may explain the pattern of associations between estimated autozygosity, EA, and cognitive ability in the current study.
Collapse
Affiliation(s)
- Sarah Mc Colbert
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Matthew C Keller
- Department of Psychology, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
11
|
Revealing the recent demographic history of Europe via haplotype sharing in the UK Biobank. Proc Natl Acad Sci U S A 2022; 119:e2119281119. [PMID: 35696575 PMCID: PMC9233301 DOI: 10.1073/pnas.2119281119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Haplotype-based analyses have recently been leveraged to interrogate the fine-scale structure in specific geographic regions, notably in Europe, although an equivalent haplotype-based understanding across the whole of Europe with these tools is lacking. Furthermore, study of identity-by-descent (IBD) sharing in a large sample of haplotypes across Europe would allow a direct comparison between different demographic histories of different regions. The UK Biobank (UKBB) is a population-scale dataset of genotype and phenotype data collected from the United Kingdom, with established sampling of worldwide ancestries. The exact content of these non-UK ancestries is largely uncharacterized, where study could highlight valuable intracontinental ancestry references with deep phenotyping within the UKBB. In this context, we sought to investigate the sample of European ancestry captured in the UKBB. We studied the haplotypes of 5,500 UKBB individuals with a European birthplace; investigated the population structure and demographic history in Europe, showing in parallel the variety of footprints of demographic history in different genetic regions around Europe; and expand knowledge of the genetic landscape of the east and southeast of Europe. Providing an updated map of European genetics, we leverage IBD-segment sharing to explore the extent of population isolation and size across the continent. In addition to building and expanding upon previous knowledge in Europe, our results show the UKBB as a source of diverse ancestries beyond Britain. These worldwide ancestries sampled in the UKBB may complement and inform researchers interested in specific communities or regions not limited to Britain.
Collapse
|
12
|
Burt CH. Challenging the utility of polygenic scores for social science: Environmental confounding, downward causation, and unknown biology. Behav Brain Sci 2022; 46:e207. [PMID: 35551690 PMCID: PMC9653522 DOI: 10.1017/s0140525x22001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sociogenomics revolution is upon us, we are told. Whether revolutionary or not, sociogenomics is poised to flourish given the ease of incorporating polygenic scores (or PGSs) as "genetic propensities" for complex traits into social science research. Pointing to evidence of ubiquitous heritability and the accessibility of genetic data, scholars have argued that social scientists not only have an opportunity but a duty to add PGSs to social science research. Social science research that ignores genetics is, some proponents argue, at best partial and likely scientifically flawed, misleading, and wasteful. Here, I challenge arguments about the value of genetics for social science and with it the claimed necessity of incorporating PGSs into social science models as measures of genetic influences. In so doing, I discuss the impracticability of distinguishing genetic influences from environmental influences because of non-causal gene-environment correlations, especially population stratification, familial confounding, and downward causation. I explain how environmental effects masquerade as genetic influences in PGSs, which undermines their raison d'être as measures of genetic propensity, especially for complex socially contingent behaviors that are the subject of sociogenomics. Additionally, I draw attention to the partial, unknown biology, while highlighting the persistence of an implicit, unavoidable reductionist genes versus environments approach. Leaving sociopolitical and ethical concerns aside, I argue that the potential scientific rewards of adding PGSs to social science are few and greatly overstated and the scientific costs, which include obscuring structural disadvantages and cultural influences, outweigh these meager benefits for most social science applications.
Collapse
Affiliation(s)
- Callie H Burt
- Department of Criminal Justice & Criminology, Center for Research on Interpersonal Violence (CRIV), Georgia State University, Atlanta, GA, USA ; www.callieburt.org
| |
Collapse
|
13
|
Lee D, Wang D, Yang XR, Shi J, Landi MT, Zhu B. SUITOR: Selecting the number of mutational signatures through cross-validation. PLoS Comput Biol 2022; 18:e1009309. [PMID: 35377867 PMCID: PMC9009674 DOI: 10.1371/journal.pcbi.1009309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/14/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
For de novo mutational signature analysis, the critical first step is to decide how many signatures should be expected in a cancer genomics study. An incorrect number could mislead downstream analyses. Here we present SUITOR (Selecting the nUmber of mutatIonal signaTures thrOugh cRoss-validation), an unsupervised cross-validation method that requires little assumptions and no numerical approximations to select the optimal number of signatures without overfitting the data. In vitro studies and in silico simulations demonstrated that SUITOR can correctly identify signatures, some of which were missed by other widely used methods. Applied to 2,540 whole-genome sequenced tumors across 22 cancer types, SUITOR selected signatures with the smallest prediction errors and almost all signatures of breast cancer selected by SUITOR were validated in an independent breast cancer study. SUITOR is a powerful tool to select the optimal number of mutational signatures, facilitating downstream analyses with etiological or therapeutic importance.
Collapse
Affiliation(s)
- Donghyuk Lee
- Department of Statistics, Pusan National University, Busan, Korea
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Pärna K, Nolte IM, Snieder H, Fischer K, Marnetto D, Pagani L. A Principal Component Informed Approach to Address Polygenic Risk Score Transferability Across European Cohorts. Front Genet 2022; 13:899523. [PMID: 35923706 PMCID: PMC9340200 DOI: 10.3389/fgene.2022.899523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
One important confounder in genome-wide association studies (GWASs) is population genetic structure, which may generate spurious associations if not properly accounted for. This may ultimately result in a biased polygenic risk score (PRS) prediction, especially when applied to another population. To explore this matter, we focused on principal component analysis (PCA) and asked whether a population genetics informed strategy focused on PCs derived from an external reference population helps in mitigating this PRS transferability issue. Throughout the study, we used two complex model traits, height and body mass index, and samples from UK and Estonian Biobanks. We aimed to investigate 1) whether using a reference population (1000G) for computation of the PCs adjusted for in the discovery cohort improves the resulting PRS performance in a target set from another population and 2) whether adjusting the validation model for PCs is required at all. Our results showed that any other set of PCs performed worse than the one computed on samples from the same population as the discovery dataset. Furthermore, we show that PC correction in GWAS cannot prevent residual population structure information in the PRS, also for non-structured traits. Therefore, we confirm the utility of PC correction in the validation model when the investigated trait shows an actual correlation with population genetic structure, to account for the residual confounding effect when evaluating the predictive value of PRS.
Collapse
Affiliation(s)
- Katri Pärna
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Epidemiology, University of Groningen, Groningen, Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, Groningen, Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, Groningen, Netherlands
| | - Krista Fischer
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | | | - Davide Marnetto
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Neurosciences "Rita Levi Montalcini", University of Turin, Torino, Italy
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Flores-Bello A, Font-Porterias N, Aizpurua-Iraola J, Duarri-Redondo S, Comas D. The genetic scenario of Mercheros: an under-represented group within the Iberian Peninsula. BMC Genomics 2021; 22:897. [PMID: 34911433 PMCID: PMC8672588 DOI: 10.1186/s12864-021-08203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The general picture of human genetic variation has been vastly depicted in the last years, yet many populations remain broadly understudied. In this work, we analyze for the first time the Merchero population, a Spanish minority ethnic group that has been scarcely studied and historically persecuted. Mercheros have been roughly characterised by an itinerant history, common traditional occupations, and the usage of their own language. RESULTS Here, we examine the demographic history and genetic scenario of Mercheros, by using genome-wide array data, whole mitochondrial sequences, and Y chromosome STR markers from 25 individuals. These samples have been complemented with a wide-range of present-day populations from Western Eurasia and North Africa. Our results show that the genetic diversity of Mercheros is explained within the context of the Iberian Peninsula, evidencing a modest signal of Roma admixture. In addition, Mercheros present low genetic isolation and intrapopulation heterogeneity. CONCLUSIONS This study represents the first genetic characterisation of the Merchero population, depicting their fine-scale ancestry components and genetic scenario within the Iberian Peninsula. Since ethnicity is not only influenced by genetic ancestry but also cultural factors, other studies from multiple disciplines are needed to further explore the Merchero population. As with Mercheros, there is a considerable gap of underrepresented populations and ethnic groups in publicly available genetic data. Thus, we encourage the consideration of more ethnically diverse population panels in human genetic studies, as an attempt to improve the representation of human populations and better reconstruct their fine-scale history.
Collapse
Affiliation(s)
- André Flores-Bello
- Departament de Ciències de la Salut i de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Neus Font-Porterias
- Departament de Ciències de la Salut i de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Julen Aizpurua-Iraola
- Departament de Ciències de la Salut i de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Sara Duarri-Redondo
- Departament de Ciències de la Salut i de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - David Comas
- Departament de Ciències de la Salut i de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
16
|
Sohail M, Izarraras-Gomez A, Ortega-Del Vecchyo D. Populations, Traits, and Their Spatial Structure in Humans. Genome Biol Evol 2021; 13:evab272. [PMID: 34894236 PMCID: PMC8715524 DOI: 10.1093/gbe/evab272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The spatial distribution of genetic variants is jointly determined by geography, past demographic processes, natural selection, and its interplay with environmental variation. A fraction of these genetic variants are "causal alleles" that affect the manifestation of a complex trait. The effect exerted by these causal alleles on complex traits can be independent or dependent on the environment. Understanding the evolutionary processes that shape the spatial structure of causal alleles is key to comprehend the spatial distribution of complex traits. Natural selection, past population size changes, range expansions, consanguinity, assortative mating, archaic introgression, admixture, and the environment can alter the frequencies, effect sizes, and heterozygosities of causal alleles. This provides a genetic axis along which complex traits can vary. However, complex traits also vary along biogeographical and sociocultural axes which are often correlated with genetic axes in complex ways. The purpose of this review is to consider these genetic and environmental axes in concert and examine the ways they can help us decipher the variation in complex traits that is visible in humans today. This initiative necessarily implies a discussion of populations, traits, the ability to infer and interpret "genetic" components of complex traits, and how these have been impacted by adaptive events. In this review, we provide a history-aware discussion on these topics using both the recent and more distant past of our academic discipline and its relevant contexts.
Collapse
Affiliation(s)
- Mashaal Sohail
- Department of Human Genetics, University of Chicago, USA
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alan Izarraras-Gomez
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, México
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, México
| |
Collapse
|
17
|
Kerminen S, Cerioli N, Pacauskas D, Havulinna AS, Perola M, Jousilahti P, Salomaa V, Daly MJ, Vyas R, Ripatti S, Pirinen M. Changes in the fine-scale genetic structure of Finland through the 20th century. PLoS Genet 2021; 17:e1009347. [PMID: 33661898 PMCID: PMC7932171 DOI: 10.1371/journal.pgen.1009347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
Information about individual-level genetic ancestry is central to population genetics, forensics and genomic medicine. So far, studies have typically considered genetic ancestry on a broad continental level, and there is much less understanding of how more detailed genetic ancestry profiles can be generated and how accurate and reliable they are. Here, we assess these questions by developing a framework for individual-level ancestry estimation within a single European country, Finland, and we apply the framework to track changes in the fine-scale genetic structure throughout the 20th century. We estimate the genetic ancestry for 18,463 individuals from the National FINRISK Study with respect to up to 10 genetically and geographically motivated Finnish reference groups and illustrate the annual changes in the fine-scale genetic structure over the decades from 1920s to 1980s for 12 geographic regions of Finland. We detected major changes after a sudden, internal migration related to World War II from the region of ceded Karelia to the other parts of the country as well as the effect of urbanization starting from the 1950s. We also show that while the level of genetic heterogeneity in general increases towards the present day, its rate of change has considerable differences between the regions. To our knowledge, this is the first study that estimates annual changes in the fine-scale ancestry profiles within a relatively homogeneous European country and demonstrates how such information captures a detailed spatial and temporal history of a population. We provide an interactive website for the general public to examine our results. We have inherited our genomes from our parents, who, in turn, inherited their genomes from their parents, etc. Hence, a comparison between genomes of present day individuals reveals genetic population structure due to the varying levels of genetic relatedness among the individuals. We have utilized over 18,000 Finnish samples to characterize the fine-scale genetic population structure in Finland starting from a binary East-West division and ending up with 10 Finnish source populations. Furthermore, we have applied the resulting ancestry information to generate records of how the population structure has evolved each year between 1923 and 1987 in 12 geographical regions of Finland. For example, the war-related evacuation of Karelians from Southeast Finland to other parts of the country show up as a clear, sudden increase in the Evacuated ancestry elsewhere in Finland between 1939 and 1945. Additionally, different regions of Finland show very different levels of genetic mixing in 1900s, from little mixed regions like Ostrobothnia to highly mixed regions like Southwestern Finland. To distribute the results among general public, we provide an interactive website for browsing the municipality and region-level genetic ancestry profiles at https://geneviz.aalto.fi/genetic_ancestry_finland/
Collapse
Affiliation(s)
- Sini Kerminen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nicola Cerioli
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
| | - Darius Pacauskas
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Autovista Group, Helsinki, Finland
| | - Aki S. Havulinna
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mark J. Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Rupesh Vyas
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
18
|
Wendt FR, Pathak GA, Overstreet C, Tylee DS, Gelernter J, Atkinson EG, Polimanti R. Characterizing the effect of background selection on the polygenicity of brain-related traits. Genomics 2021; 113:111-119. [PMID: 33278486 PMCID: PMC7855394 DOI: 10.1016/j.ygeno.2020.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have demonstrated that psychopathology phenotypes are affected by many risk alleles with small effect (polygenicity). It is unclear how ubiquitously evolutionary pressures influence the genetic architecture of these traits. METHODS We partitioned SNP heritability to assess the contribution of background (BGS) and positive selection, Neanderthal local ancestry, functional significance, and genotype networks in 75 brain-related traits (8411 ≤ N ≤ 1,131,181, mean N = 205,289). We applied binary annotations by dichotomizing each measure based on top 2%, 1%, and 0.5% of all scores genome-wide. Effect size distribution features were calculated using GENESIS. We tested the relationship between effect size distribution descriptive statistics and natural selection. In a subset of traits, we explore the inclusion of diagnostic heterogeneity (e.g., number of diagnostic combinations and total symptoms) in the tested relationship. RESULTS SNP-heritability was enriched (false discovery rate q < 0.05) for loci with elevated BGS (7 phenotypes) and in genic (34 phenotypes) and loss-of-function (LoF)-intolerant regions (67 phenotypes). These effects were strongest in GWAS of schizophrenia (1.90-fold BGS, 1.16-fold genic, and 1.92-fold LoF), educational attainment (1.86-fold BGS, 1.12-fold genic, and 1.79-fold LoF), and cognitive performance (2.29-fold BGS, 1.12-fold genic, and 1.79-fold LoF). BGS (top 2%) significantly predicted effect size variance for trait-associated loci (σ2 parameter) in 75 brain-related traits (β = 4.39 × 10-5, p = 1.43 × 10-5, model r2 = 0.548). Considering the number of DSM-5 diagnostic combinations per psychiatric disorder improved model fit (σ2 ~ BTop2% × Genic × diagnostic combinations; model r2 = 0.661). CONCLUSIONS Brain-related phenotypes with larger variance in risk locus effect sizes are associated with loci under BGS. We show exploratory results suggesting that diagnostic complexity may also contribute to the increased polygenicity of psychiatric disorders.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Cassie Overstreet
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA CT Healthcare System and Department of Psychiatry, Yale University School of Medicine, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA; Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elizabeth G Atkinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
19
|
Zaidi AA, Mathieson I. Demographic history mediates the effect of stratification on polygenic scores. eLife 2020; 9:e61548. [PMID: 33200985 PMCID: PMC7758063 DOI: 10.7554/elife.61548] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Population stratification continues to bias the results of genome-wide association studies (GWAS). When these results are used to construct polygenic scores, even subtle biases can cumulatively lead to large errors. To study the effect of residual stratification, we simulated GWAS under realistic models of demographic history. We show that when population structure is recent, it cannot be corrected using principal components of common variants because they are uninformative about recent history. Consequently, polygenic scores are biased in that they recapitulate environmental structure. Principal components calculated from rare variants or identity-by-descent segments can correct this stratification for some types of environmental effects. While family-based studies are immune to stratification, the hybrid approach of ascertaining variants in GWAS but reestimating effect sizes in siblings reduces but does not eliminate stratification. We show that the effect of population stratification depends not only on allele frequencies and environmental structure but also on demographic history.
Collapse
Affiliation(s)
- Arslan A Zaidi
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|