1
|
Zhao Z, Bi Y, Wu Y, Wang Z, Liu H, Du C, Yuan H, Ding D, Ou H, Tan Y. Poly(methyl methacrylate) Nanosphere-Based Photocrosslinked Hydrogels with Ultralong Phosphorescence Lifetimes for High-Precision 3D Printing. NANO LETTERS 2025; 25:8547-8557. [PMID: 40360454 DOI: 10.1021/acs.nanolett.5c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogel-based afterglow materials offer significant potential for broadening the application field of organic room-temperature phosphorescence (RTP) materials owing to their tissue-mimetic flexibility and superior biocompatibility. However, achieving a colorful and efficient RTP in a water-rich hydrogel environment remains challenging. Here, we present a general strategy to fabricate colorful and efficient RTP hydrogels by incorporating compact and hydrophobic nanospheres loaded with chromophores, synthesized via emulsion polymerization, into photocrosslinked hydrogels with oxygen barrier properties. The resultant hydrogel demonstrates a remarkably high water content of 94.6% and a maximum phosphorescence lifetime of up to 1697.0 ms, both significantly surpassing the relevant values of organic RTP hydrogels reported in prior studies. Furthermore, 3D RTP hydrogels with complex geometries and high precision are fabricated using digital light processing (DLP) 3D printing technology. This approach connects the RTP hydrogel and 3D printing fields for the first time, opening up substantial potential for advancing the applications of RTP materials.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanyu Bi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Yi Wu
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhengshuo Wang
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Huilong Liu
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Cong Du
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Hua Yuan
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Hanlin Ou
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yeqiang Tan
- Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
2
|
Das P, Routray S, Baroi MK, Das T, Das D. An Aggregation-Induced Room Temperature Phosphorescence Probe for the Efficient and Selective Detection of Heparin and Protamine. Anal Chem 2025; 97:10628-10637. [PMID: 40156889 DOI: 10.1021/acs.analchem.5c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Heparin is a vital macromolecule that regulates blood coagulation, while protamine is an essential polypeptide clinically used to counteract heparin overdose. Detecting both heparin and its antidote protamine under physiological conditions is crucial for biological and clinical applications. This report introduces a cucurbituril[8] (CB[8])-based phosphorescent probe for their detection. The method employs a nanoassembly induced phosphorescence switch-on mechanism for heparin sensing and a disassembly induced phosphorescence switch-off approach for protamine detection. An arginine-rich guest forms a supramolecular complex with heparin, enhancing phosphorescence under secondary confinement and enabling its detection. Conversely, protamine sulfate, as a stronger competitor for heparin, disrupts the probe-heparin aggregates, leading to emission quenching and protamine sensing. This sensor demonstrated high selectivity in detecting both analytes in biological samples, such as human blood serum and urine. The detection limits for heparin and protamine were determined to be 61 and 82 ng/mL in 10% HBS, respectively.
Collapse
Affiliation(s)
- Priyam Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sampurna Routray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Sérgio Dos Santos G, Aparecido de Oliveira W, da Silva Kutz M, Gomes Franca L, Farias G, Monkman AP, Bock H, Bechtold IH, Westphal E. Delayed Fluorescence and Room Temperature Phosphorescence from a Liquid Arene. Chemistry 2025; 31:e202404698. [PMID: 39950828 DOI: 10.1002/chem.202404698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Delayed emission (DF) of fluorescence is generally observed either in solution or in the crystalline state. In the latter, well-defined intermolecular interactions may play a significant role in defining the emission characteristics. Here, we present a trialkoxy-homotruxene that is liquid at room temperature and compare its emission behavior with that of a crystalline analog containing the same π-electron system. The DF observed is due to triplet-triplet annihilation (TTA) and persists at low temperatures (90 K). Accompanied by slightly shorter phosphorescence and DF lifetimes, the singlet-triplet energy gap increased by 4 % compared to the crystalline homolog. The replacement of methyl groups with racemic branched alkoxy chains in homotruxene derivatives proves efficient in suppressing crystallization without significantly altering DF. In neat films, the compound exhibited TTA-DF at room temperature, phosphorescence lasting up to 50 ms and Photoluminescence Quantum Yield (PLQY) of 24 %. Thus, TTA-DF persists in a single-component isotropic liquid phase, showing both molecular and aggregate emissions, only slightly affected by the absence of periodic molecular stacking.
Collapse
Affiliation(s)
| | - Wilson Aparecido de Oliveira
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Centre de Recherche Paul Pascal, Université de Bordeaux and Centre National de la Recherche Scientifique, Pessac, France
| | - Monike da Silva Kutz
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Centre de Recherche Paul Pascal, Université de Bordeaux and Centre National de la Recherche Scientifique, Pessac, France
| | - Larissa Gomes Franca
- Department of Physics, Durham University, Durham, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Giliandro Farias
- Department of Materials Physics and Mechanics, Universidade de São Paulo, São Paulo, Brazil
| | | | - Harald Bock
- Centre de Recherche Paul Pascal, Université de Bordeaux and Centre National de la Recherche Scientifique, Pessac, France
| | - Ivan H Bechtold
- Department of Physics, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduard Westphal
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Qian Y, Zhai Y, Li M, Qin Y, Lv L, James TD, Wang L, Chen Z. Bio-Based Thermoplastic Room Temperature Phosphorescent Materials with Closed-Loop Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414439. [PMID: 40085139 PMCID: PMC12061272 DOI: 10.1002/advs.202414439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Indexed: 03/16/2025]
Abstract
Producing thermoplastic room temperature phosphorescent (RTP) materials with closed-loop recyclability from natural sources is an attractive approach but hard to achieve. Here, the study develops such RTP materials, Poly(TA)/Cell, by thermally polymerizing thioctic acid in the presence of cellulose. Specifically, polymerized thioctic acid poly(TA) forms strong hydrogen bonding interactions with CNF, promoting formation of molecular clusters between the oxygen-containing units. The as-formed clusters generate humidity- and excitation-sensitive green RTP emission. Red afterglow emission is also obtained by integrating Poly(TA)/Cell together with Rhodamine B (RhB) via an energy transfer process. Attributed to the thermoplastic properties, the as-obtained Poly(TA)/Cell can be thermally molded into flexible shapes with uncompromised RTP performance. Moreover, owing to the alkali-cleavable properties of the disulfide bond in Poly(TA)/Cell, thioctic acid and cellulose can be successfully recycled from Poly(TA)/Cell with a yield of 92.3% and 81.5%, respectively. As a demonstrator for potential utility, Poly(TA)/Cell is used to fabricate materials for information encryption.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Yingxiang Zhai
- Key Laboratory of Bio‐based Material Science & TechnologyNortheast Forestry UniversityHarbin150040P. R. China
| | - Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Yinping Qin
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Liang Lv
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Tony D. James
- Department of ChemistryUniversity of BathBathBA2 7AYUK
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007P. R. China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Zhijun Chen
- Key Laboratory of Bio‐based Material Science & TechnologyNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
5
|
Si J, Wang S, Zeng X, Zhong Y, Xia Y, Bao X, Gong Y, Yue S, Wang J, Liu X. Enhanced Room-Temperature Phosphorescence in Delignified Wood Through Combination with Pyrene-Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408497. [PMID: 40243938 DOI: 10.1002/smll.202408497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/12/2025] [Indexed: 04/18/2025]
Abstract
Organic room-temperature phosphorescent (RTP) materials, featured by their large Stokes shifts and long lifetimes, have garnered significant attention due to their promising applications in biophotonics and optoelectronics. However, the instability of their triplet states and their proneness to quenching in aerobic, room-temperature environments pose significant challenges. Herein, delignified wood (DW) is used as a porous substrate and applied heat to drive dehydration condensation between cellulose/hemicellulose hydroxyls and the phosphorescent chromophore 1-pyrenylboronic acid (Py-BOH). This reaction forms B─O bonds, anchoring Py-BOH in a rigid microenvironment created by hydrogenbonding in the DW pores, which restricts molecular thermal motion and facilitates the RTP emission, resulting in a lifetime of 340 ms for the target RTP-DW film. Furthermore, due to the susceptibility of the cellulose hydrogen-bond network to disruption by water molecules, the RTP-DW film is sensitive to water and exhibits repeatable stimulus-responsive behavior under water/thermal stimulation. This material can be processed into various luminous objects by directly cutting the wood film into different shapes or grinding it into powder and compounding it with polymers, thereby holding potential applications in luminous indication and anti-counterfeiting. The successful preparation of this (room-temperature phosphorescent-delignified wood)RTP-DW film will provide an effective pathway for achieving high-value utilization of wood resources.
Collapse
Affiliation(s)
- Jiaqi Si
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Shaoli Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xin Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yiyang Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
6
|
Xia Y, Bai Q, Jiang Y, Li Q, Wang D, Xiao X. Supramolecular Self-Assembly and Metal-Ligand-Enhanced Organic Room-Temperature Phosphorescence for Live Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22375-22383. [PMID: 40189871 DOI: 10.1021/acsami.5c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A purely organic supramolecular assembly emitting room-temperature phosphorescence (RTP) was constructed from 1-(3-(bis(pyridin-2-ylmethyl)amino)propyl)-4-(4-bromophenyl)pyridin-1-ium bromide (BP-DPA) by complexing with cucurbit[8]uril (Q[8]) and Zn2+ through a supramolecular assembly. Benefiting from the strong affinity and the macrocyclic restriction effect of Q[8], phosphorescence emission was achieved by encapsulating BP-DPA in the Q[8] cavity. Notably, secondary assembly with Zn2+ formed the supramolecular complex BP-DPA@Q[8]⊂Zn2+, which greatly contributed to the enhancement of the phosphorescence quantum yield and lifetime from 1.75% to 6.25% and from 0.48 to 1.25 ms, respectively. Meanwhile, BP-DPA@Q[8] specifically recognizes Zn2+ with a low detection limit without interference from common metal ions, anions, and biomolecules. It permeates the plasma membrane of cells and emits a specific phosphorescence response signal in the presence of Zn2+. In addition, this material can also be utilized for the development of portable indicator papers, enabling the rapid and visualized detection of Zn2+. This work provides a route for constructing multilevel supramolecular assemblies of RTP, extending the biological applications of purely organic RTP materials and offering additional possibilities for the potential utilization of cucurbit[n]uril-based room-temperature phosphorescence materials.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Qinghong Bai
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| | - Yangming Jiang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Qing Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Daoping Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xin Xiao
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Wang M, Yin WM, Zhai Y, Zhou J, Liu S, Li J, Li S, James TD, Chen Z. Solvent-free processing of lignin into robust room temperature phosphorescent materials. Nat Commun 2025; 16:2455. [PMID: 40075064 PMCID: PMC11904197 DOI: 10.1038/s41467-025-57712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Producing room temperature phosphorescent (RTP) materials from biomass resources using a solvent free method is essential but hard to achieve. Here, we discovered that lignin dissolved well in the liquid monomer, 2-hydroxyethyl acrylate (HEA), due to extensive hydrogen bonding and non-bonding interactions between lignin and HEA. Motivated by this discovery, we developed a solvent free system consisting of HEA and urethane dimethacrylate (UDMA) for converting lignin into RTP materials. With this design, lignin generated radicals upon UV irradiation, which initiated the polymerization of HEA (as monomer) and UDMA (as crosslinker). The as-obtained polymer network rigidifies lignin and activates the humidity/water-resistant RTP of lignin with a lifetime of 202.9 ms. Moreover, the afterglow color was successfully tuned to red after loading with RhB via energy transfer (TS-FRET). Using these properties, the as-developed material was used as photocured multiple-emission RTP inks, luminescent coatings and a smart anti-counterfeiting logo for a medicine bottle.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Wei-Ming Yin
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Jingyi Zhou
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China.
| |
Collapse
|
8
|
Feng R, Yan X, Sang Y, Liu X, Luo Z, Xie Z, Ke Y, Song Q. Transitioning Room-Temperature Phosphorescence from Solid States to Aqueous Phases via a Cyclic Peptide-Based Supramolecular Scaffold. Angew Chem Int Ed Engl 2025; 64:e202421729. [PMID: 39569830 DOI: 10.1002/anie.202421729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Aqueous room-temperature phosphorescence (RTP) materials have garnered considerable attention for their significant potential across various applications such as bioimaging, sensing, and encryption. However, establishing a universally applicable method for achieving aqueous RTP remains a substantial challenge. Herein, we present a versatile supramolecular strategy to transition RTP from solid states to aqueous phases. By leveraging a cyclic peptide-based supramolecular scaffold, we have developed a noncovalent approach to molecularly disperse diverse organic phosphors within its rigid hydrophobic microdomain in water, yielding a series of aqueous RTP materials. Moreover, high-performance supramolecular phosphorescence resonance energy transfer (PRET) systems have been constructed. Through the facile co-assembly of a fluorescent acceptor with the existing RTP system, these PRET systems exhibit high energy transfer efficiencies (>80 %), red-shifted afterglow emission (520-790 nm), ultralarge Stokes shifts (up to 450 nm), and improved photoluminescence quantum yields (6.1-30.7 %). This study not only provides a general strategy for constructing aqueous RTP materials from existing phosphors, but also facilitates the creation of PRET systems featuring color-tunable afterglow emission.
Collapse
Affiliation(s)
- Ruicong Feng
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianjia Yan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Sang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xindi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenhua Xie
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Liang JL, Huang QX, Chen QW, Jin XK, Han ZY, Ji P, Cheng SX, Chen WH, Zhang XZ. Perturbing Organelle-Level K +/Ca 2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416574. [PMID: 39955648 DOI: 10.1002/adma.202416574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Intracellular ions are involved in numerous pivotal immune processes, but the precise regulation of these signaling ions to achieve innovative immune therapeutic strategies is still a huge challenge. Here, an ion-mediated immunotherapy agent (IMIA) is engineered to achieve precise spatiotemporal control of perturbing K+/Ca2+ homeostasis at the organelle-level, thereby amplifying antitumor immune responses to achieve high-performance cancer therapy. By taking in intracellular K+ and supplying exogenous Ca2+ within tumor cells, K+/Ca2+ homeostasis is perturbed by IMIA. In parallel, perturbing K+ homeostasis induced endoplasmic reticulum (ER) stress triggers the release of Ca2+ from ER and causes a decreased concentration of Ca2+ in ER, which further accelerates ER-mitochondria Ca2+ flux and the influx of extracellular Ca2+ (store-operated Ca2+ entry (SOCE)) via opening Ca2+ release-activated Ca2+ (CRAC) channels, thus creating a self-amplifying ion interference loop to perturb K+/Ca2+ homeostasis. In this process, the elevated immunogenicity of tumor cells would evoke robust antitumor immune responses by driving the excretion of damage-associated molecular patterns (DAMPs). Importantly, this ion-immunotherapy strategy reshapes the immunosuppressive tumor microenvironment (TME), and awakens the systemic immune response and long-term immune memory effect, thus effectively inhibiting the growth of primary/distant tumors, orthotopic tumors as well as metastatic tumors in different mice models.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Xiao Huang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Yin Z, Xie Z, Zhang X, Xue Y, Zhang D, Liu B. Cocrystallization-Induced Red Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2025; 64:e202417868. [PMID: 39444192 DOI: 10.1002/anie.202417868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Organic cocrystals formed through multicomponent self-assembly have attracted significant interest owing to their clear structure and tunable optical properties. However, most cocrystal systems suffer from inefficient long-wavelength emission and low phosphorescence efficiency due to strong non-radiative processes governed by the energy gap law. Herein, an efficient long-lived red afterglow is achieved using a pyrene (Py) cocrystal system incorporating a second component (NPYC4) with thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) properties. The cocrystal (NPYC4-Py) not only inherits the excellent luminescence of its monomeric counterparts, but also exhibits unique dual-mode characteristics, including persistent TADF and UOP emission with a high quantum yield of 58 % and a lifetime of 362 ms. The precise cocrystal stacking distinctly reveals that intermolecular interactions lock the cocrystal formation and weaken the intermolecular π-π interactions between NPYC4 and Py, thereby stabilizing the excited triplet excitons. Furthermore, the favorable energy level of NPYC4 acts as a bridge, reducing the energy gap between the S1 and T1 states for Py, therefore activating its red phosphorescence from Py. This research provides direct insights into achieving efficient red UOP through co-crystallization.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongliang Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufeng Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Chen Q, Cao P, Wu P. Enabling Aqueous Phase Long-lived Deep-blue Phosphorescence With Layered Double Hydroxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413896. [PMID: 39737535 PMCID: PMC11848578 DOI: 10.1002/advs.202413896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Indexed: 01/01/2025]
Abstract
Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap. Herein, the use of water-dispersible layered double hydroxide (ZnAl-LDH) is proposed for isolating Ph-(COOH)n and the distance between the adjacent chromophores is confirmed to be larger (≈7.0 Å) than the threshold of π-π interaction. Deep-blue phosphorescence with a lifetime over 0.1 s, and a maximum luminescence quantum yield of 42%, is harvested in the aqueous phase. The long-lived deep-blue phosphorescence is successfully explored for high-temperature display and luminescent dyes.
Collapse
Affiliation(s)
- Qian Chen
- Analytical & Testing CenterChengdu610064China
| | - Peisheng Cao
- College of ChemistrySichuan UniversityChengdu610064China
| | - Peng Wu
- Analytical & Testing CenterChengdu610064China
- College of ChemistrySichuan UniversityChengdu610064China
| |
Collapse
|
12
|
Lee B, Jablonska A, Pham D, Sagoo R, Gryczynski Z, Pham TT, Gryczynski I. Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films. Int J Mol Sci 2025; 26:514. [PMID: 39859229 PMCID: PMC11764979 DOI: 10.3390/ijms26020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.74), as determined relative to a quinine sulfate standard. In addition, we observed that HOE-doped PVA films exhibit room temperature phosphorescence (RTP) that remains visible for several seconds after UV excitation ceases. The slightly negative phosphorescence anisotropy implies that the triplet-singlet radiative transition is orthogonal to the singlet-singlet transition governing fluorescence. Notably, we observed that direct triplet-state excitation at longer wavelengths (beyond the primary absorption band) produces highly polarized RTP. We believe this possibility of direct triplet-state excitation opens new avenues for studying RTP in polymer-immobilized molecules.
Collapse
Affiliation(s)
- Bong Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.J.); (D.P.); (R.S.); (Z.G.)
| | | | | | | | | | | | - Ignacy Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.J.); (D.P.); (R.S.); (Z.G.)
| |
Collapse
|
13
|
Wei YM, Li CH, Dong M, Huang RK, Pang W, Xu Z, Wei Y, Qin W, Huang J, Huang Y, Ye JW, Huang J. A Sodium Metal-Organic Framework with Deep Blue Room-Temperature Phosphorescence. Chemistry 2025; 31:e202402715. [PMID: 39434241 DOI: 10.1002/chem.202402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
It is a great challenge to manufacture room-temperature blue long afterglow phosphorescent materials adapted to environmental conditions. Herein, an Na-based metal-organic framework (MOF) was constructed using Na+ and 1H-1,2,4-triazole-3,5-dicarboxylic acid, which exhibits long-lived of 378.9 ms, deep blue and room-temperature phosphorescence, meanwhile possesses the visible blue afterglow for 3~6 seconds after removing excitation light source. The three-dimensional coordination bonds network provided by Na-based MOF protects the organic ligands intrinsic hydrogen bond network, resulting in the phosphor lifetime and residual color remaining unchanged in different gas atmospheres. Furthermore, first-principles time-dependent density functional theory reveals that the rigid Na-based MOF structure can limit the rotation and vibration of the room-temperature phosphorescent organic ligands. This limitation results in the suppression of non-radiative decay for both singlet and triplet excitons, promotes intersystem crossing, and increases the rate of radiative decay, ultimately achieving long-lived room-temperature phosphorescence.
Collapse
Affiliation(s)
- Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Chen-Hui Li
- School of Biotechnology and Health Science, Wuyi University, Wuyi, 529020, PR China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Wei Pang
- College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, P. R. China
| | - Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yongbiao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Weirong Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jia-Wen Ye
- School of Biotechnology and Health Science, Wuyi University, Wuyi, 529020, PR China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
14
|
Zhao Z, Du R, Feng X, Wang Z, Wang T, Xie Z, Yuan H, Tan Y, Ou H. Regulating Triplet Excitons of Organic Luminophores for Promoted Bioimaging. Curr Med Chem 2025; 32:322-342. [PMID: 38468516 DOI: 10.2174/0109298673301552240305064259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Afterglow materials with organic room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF) exhibit significant potential in biological imaging due to their long lifetime. By utilizing time-resolved technology, interference from biological tissue fluorescence can be mitigated, enabling high signal-tobackground ratio imaging. Despite the continued emergence of individual reports on RTP or TADF in recent years, comprehensive reviews addressing these two materials are rare. Therefore, this review aims to provide a comprehensive overview of several typical molecular designs for organic RTP and TADF materials. It also explores the primary methods through which triplet excitons resist quenching by water and oxygen. Furthermore, we analyze the principal challenges faced by afterglow materials and discuss key directions for future research with the hope of inspiring developments in afterglow imaging.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Rui Du
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Xiaodi Feng
- Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No. 4, Renmin Rd., Shibei District, Qingdao, 266033, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Tianjie Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zongzhao Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hanlin Ou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| |
Collapse
|
15
|
Muheyati M, Wu G, Li Y, Pan Z, Chen Y. Supramolecular nanotherapeutics based on cucurbiturils. J Nanobiotechnology 2024; 22:790. [PMID: 39710716 DOI: 10.1186/s12951-024-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention. Therefore, this paper reviews recent advances in CB[n] material-based supramolecular therapeutics for clinical treatments, including targeted delivery applications and related imaging and sensing systems. This study also covers the distinctive benefits of CB materials for biological applications, as well as the trends and prospects of this interdisciplinary subject, based on numerous state-of-the-art research findings.
Collapse
Affiliation(s)
- Maiyier Muheyati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guangheng Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ziting Pan
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
- School of Basic Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
16
|
Yu J, Yu H, Niu J, Lei Z, Liu Y. Tunable Nano-Supramolecules Based on Cucurbiturils for Near-Infrared Phosphorescence Imaging. NANO LETTERS 2024; 24:16124-16131. [PMID: 39636037 DOI: 10.1021/acs.nanolett.4c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nano-supramolecules based on artificial macrocycles can not only regulate assembly morphology but also boost phosphorescence resonance energy transfer (PRET). Herein, a water-soluble phosphorescence supramolecule was constructed from the hyaluronic acid-modified bromophenylpyridinium (HAPY), cucurbit[n]uril (CB[n], n = 7/8), and energy acceptor phenyl-bridged phenothiazine derivatives, displaying efficient PRET and achieving near-infrared (NIR) phosphorescence by macrocyclic CB[n] and the assembly confinements. As compared with weak phosphorescent nanofibers of HAPY/CB[7], the spherical nanoparticles of HAPY/CB[8] not only gave strong green phosphorescence with extended lifetime to 1.27 ms but also could act as the energy donor and confine cationic phenothiazine in the secondary assemblies, leading to highly efficient PRET efficiency (87.27%) from the phosphors to triplet acceptors, realizing phosphorescence emission at 750 nm and an ultralarge Stokes shift of 440 nm. Ultimately, the nanoassembly achieved by the multiscale confinements boosting PRET was successfully applied in targeted cancer cell imaging, providing new insight for fabricating NIR phosphorescence materials.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Huijia Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Zhang Y, Zhu Y, Deng T, Du Y. Exploring and Anticipating the Applications of Organic Room-Temperature Phosphorescent Materials in Biomedicine and Dentistry. Int J Nanomedicine 2024; 19:13201-13216. [PMID: 39670197 PMCID: PMC11636246 DOI: 10.2147/ijn.s492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
As popular materials, organic room-temperature phosphorescent (RTP) materials have been studied and developed in many fields. RTP materials have the characteristics of a high signal-to-noise ratio (SNR) and high reactive oxygen species (ROS) quantum yield, which can achieve clear bioimaging and efficient ability of anti-tumor and antibacterial, and have received extensive attention from researchers for imaging, tumor therapy, and antibacterial treatment. Moreover, owing to their flexible molecular structures and various synthesis systems and methods, it may be possible to design and synthesize materials according to individual physiologic environments of patients in medical applications, making bioimaging more accurate and greatly improving tumor and bacterial killing rates. So they have great development potential in the medical field. On the basis of introducing the mechanism of RTP materials that emit phosphorescence and generate ROS, this review summarizes the medical applications of RTP materials from three aspects-bioimaging, tumor treatment and antibacterial treatment-to provide a basis for their application in the field of stomatology.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yeyuhan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
18
|
Liu R, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room temperature phosphorescent wood hydrogel. Nat Commun 2024; 15:10588. [PMID: 39632929 PMCID: PMC11618341 DOI: 10.1038/s41467-024-55025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Room temperature phosphorescent (RTP) hydrogels exhibit great potential but show poor mechanical performance (Tensile strengthen <1 MPa) and non-tunable RTP performance, hindering their practical applications. Here, we develop wood hydrogel (W-hydrogel) by the in situ polymerization of acrylamide in the presence of delignified wood. As a result of the molecular interactions between the components of delignified wood and polyacrylamide, the W-hydrogel exhibit a tensile strengthen of 38.4 MPa and green RTP emission with a lifetime of 32.5 ms. Moreover, the tensile strength and RTP lifetime are increased to 153.8 MPa and 69.7 ms, upon treating W-hydrogel with ethanol. Significantly, the mechanical and RTP performance of W-hydrogel is switched by alternating "ethanol and water" treatments. Additionally, W-hydrogel is used as energy donor in order to produce red afterglow emission using RhB via an energy transfer process. Taking advantage of these properties, W-hydrogel is processed into multiple hydrogel-based luminescent materials.
Collapse
Affiliation(s)
- Ruixia Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, PR China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China.
| |
Collapse
|
19
|
Gu S, Wu Q, Wu J. Ultralong room temperature phosphorescence with multicolor afterglow achieved in a harsh polymeric viscous flow state. MATERIALS HORIZONS 2024; 11:5692-5700. [PMID: 39230091 DOI: 10.1039/d4mh00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polymer-based ultralong room temperature phosphorescence (RTP) is more attractive than that of organic small molecules. However, the intrinsic contradictions between the motion of the chain and the stability of phosphors' triplet excitons make achieving ultralong lifetime in polymeric systems a big challenge. Herein, we have achieved ultralong RTP emission in a polymeric viscous flow state with free chain motion through a facile B-O click reaction among boric acid, polyvinyl alcohol, and hydroxyl silicone oil. The yielded RTP putties (RTPPs) exhibited long lifetimes under ambient conditions (up to 2.39 s), surpassing those of all reported elastic RTP polymers and most glassy RTP polymers. Furthermore, multi-color afterglow can be achieved in RTPPs using the triplet-to-singlet Förster resonance energy transfer strategy. Impressively, utilizing viscous liquid features combined with RTP performance, RTPPs can be easily applied in complex models, handiwork, and anti-counterfeiting. Therefore, this progress, achieving a long phosphorescence lifetime in a viscous flow state, greatly expands the application scope of polymeric RTP materials and further compels a conceptual advance of polymeric RTP.
Collapse
Affiliation(s)
- Shiyu Gu
- College of Polymer Science and Engineering, Stake Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Qi Wu
- College of Polymer Science and Engineering, Stake Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Jinrong Wu
- College of Polymer Science and Engineering, Stake Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
20
|
Han R, Du K, Li S, Zuo M, Jeyakkumar P, Jiang H, Wang L, Hu XY. A guanidiniocarbonyl-pyrrole functionalized cucurbit[7]uril derivative as a cytomembrane disruptor for synergistic antibacterial therapy. J Mater Chem B 2024; 12:11105-11109. [PMID: 39439387 DOI: 10.1039/d4tb01840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The antibiotic resistance of bacterial membranes poses a significant threat to global public health, highlighting the urgent need for novel therapeutic agents and strategies to combat bacterial membranes. In response, we have developed a novel macrocyclic host molecule (GCPCB) based on guanidiniocarbonyl-pyrrole (GCP) functionalized cucurbit[7]uril with an aggregation-induced luminescence effect. GCPCB exhibits high antimicrobial potency against bacterial membranes, particularly demonstrating strong antibacterial activity against Gram-positive strains of S. aureus and Gram-negative strains of E. coli. Significantly, due to the strong binding between GCP and the bacterial membrane, GCPCB can effectively eradicate the bacteria encapsulated within. Furthermore, the formation of a host-guest complex between GCPCB and berberine hydrochloride (BH) not only enhances synergistic destructive activity against both species of bacteria but also provides a potential supramolecular platform for effective bacterial membrane destruction.
Collapse
Affiliation(s)
- Ruixue Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Kehan Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Ponmani Jeyakkumar
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
21
|
Gao H, Zhang T, Lei Y, Jiao D, Yu B, Yuan WZ, Ji J, Jin Q, Ding D. An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery. Angew Chem Int Ed Engl 2024; 63:e202406651. [PMID: 38781352 DOI: 10.1002/anie.202406651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Tingting Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Di Jiao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
22
|
Song Q, Liu Z, Li J, Sun Y, Ge Y, Dai XY. Achieving Near-Infrared Phosphorescence Supramolecular Hydrogel Based on Amphiphilic Bromonaphthalimide Pyridinium Hierarchical Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409983. [PMID: 39185797 DOI: 10.1002/adma.202409983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Phosphorescent supramolecular hydrogels are currently a prevalent topic for their great promise in various photonic applications. Herein, an efficient near-infrared (NIR) phosphorescence supramolecular hydrogel is reported via the hierarchical assembly strategy in aqueous solution, which is fabricated from amphiphilic bromonaphthalimide pyridinium derivative (G), exfoliated Laponite (LP) nanosheets, and polymeric polyacrylamide (PAAm). Initially, G spontaneously self-aggregates into spherical nanoparticles covered with positively charged pyridinium units and emits single fluorescence at 410 nm. Driven by electrostatic interactions with negatively charged nanosheets, the nanoparticles subsequently function as the cross-linked binders and coassemble with LP into supramolecular hydrogels with an engendered red room-temperature phosphorescence (RTP) up to 620 nm. Benefiting from hydrogen-bonding interactions-mediated physical cross-linkage, the further introduction of PAAm not only significantly elevates the mechanical strength of the hydrogels showing fast self-healing capability, but also increases phosphorescence lifetime from 2.49 to 4.20 ms, especially generating phosphorescence at even higher temperature (τ 363 K = 2.46 ms). Additionally, efficient RTP energy transfer occurs after doping a small amount of organic dye heptamethine cyanine (IR780) as an acceptor into hydrogels, resulting in a long-lived NIR emission at 823 nm with a high donor/acceptor ratio, which is successfully applied for cell labeling in the NIR window.
Collapse
Affiliation(s)
- Qi Song
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhenliang Liu
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Jinwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yongbin Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Xian-Yin Dai
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| |
Collapse
|
23
|
Feng W, Lou Z, Zhao X, Zhao M, Xu Y, Gao Y. Study on the Influence of Host-Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals. Molecules 2024; 29:4537. [PMID: 39407466 PMCID: PMC11478084 DOI: 10.3390/molecules29194537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host-guest structure or using polymers and crystal to build rigid environments are effective ways of preparing high-performance materials with long-lasting afterglow. In this study, four types of crystalline materials (MODPA: DDF-O, MODPA: DDF-CHO, MODPA: DDF-Br, and MODPA: DDF-TRC) were prepared by a convenient host-guest doping method at room temperature under ambient conditions, i.e., in the presence of oxygen. The first three types exhibited long-lived charge-separated (CS) states and achieved visible LPL emissions with durations over 7, 4, and 2 s, respectively. More surprisingly, for the DDF-O material prepared with PMMA as the polymer substrate, the afterglow time of DDF-O: PMMA was longer than 10 s. The persistent room-temperature phosphorescence effect caused by different CS state generation efficiencies and rigid environment were the main reason for the difference in LPL duration. The fourth crystalline material was without charge separation and exhibited no LPL because it was not a D-A system. The research results indicate that the CS state generation efficiency and a rigid environment are the key factors affecting the LPL properties. This work provides new understandings in designing organic LPL materials.
Collapse
Affiliation(s)
- Wenhui Feng
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| | - Zongyong Lou
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| | - Xiaoqiang Zhao
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| | - Mingming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yaqin Xu
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| | - Yide Gao
- Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| |
Collapse
|
24
|
Yin G, Zhou J, Lu W, Li L, Liu D, Qi M, Tang BZ, Théato P, Chen T. Targeting Compact and Ordered Emitters by Supramolecular Dynamic Interactions for High-performance Organic Ambient Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311347. [PMID: 38335472 DOI: 10.1002/adma.202311347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Purely organic room-temperature phosphorescence (RTP) materials have received intense attention due to their fascinating optical properties and advanced optoelectronic applications. The promotion of intersystem crossing (ISC) and minimalization of nonradiative dissipation under ambient conditions are key prerequisites for realizing high-performance organic RTP; However, the ISC process is generally inefficient for organic fluorogens and the populated triplet excitons are always too susceptible to be well stabilized by conventional means. Particularly, organizing organic fluorophores into compact and ordered entities by supramolecular dynamic interactions has proven to be a newly-emerged strategy to boost the ISC process greatly and suppress the non-radiative relaxations immensely, facilitating the population and stabilization of triplet excitons to access high-performance organic RTP. Consequently, well-defined organic emitters enable robust RTP emission even in the solution state, thus greatly extending the applications. Here, this review is focused on a timely and brief introduction to recent progress in tailoring ordered high-performance RTP emitters by supramolecular dynamic interactions. Their typical preparation strategies, optoelectronic properties, and applications are thoroughly summarized. In the summary section, key challenges and perspectives of this field are highlighted to suggest potential directions for future study.
Collapse
Affiliation(s)
- Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longqiang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
25
|
Wang R, Ma D, Kong X, Peng F, Cao X, Zhao Y, Lu C, Shi W. Metastable Supramolecular Assembly of Simple Monomers Enabled by Confinement: Towards Aqueous Phase Room Temperature Phosphorescence. Angew Chem Int Ed Engl 2024; 63:e202409162. [PMID: 38860443 DOI: 10.1002/anie.202409162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The application of supramolecular assembly (SA) with room temperature phosphorescence (RTP) in aqueous phase has the potential to revolutionize numerous fields. However, using simple molecules with crystalline RTP to construct SA with aqueous phase RTP is hardly possible from the standpoint of forces. The reason lies in that the transition from crystal to SA involves a structure transformation from highly stable to more dynamic state, leading to increased non-radiative deactivation pathways and silent RTP signal. Here, with the benefit of the confinement from the layered double hydroxide (LDH), various simple molecules (benzene derivatives) can successfully form metastable SA with aqueous phase RTP. The maximum of RTP lifetime and efficiency can reach 654.87 ms and 5.02 %, respectively. Mechanistic studies reveal the LDH energy trap can strengthen the intermolecular interaction, providing the prerequisite for the existence of metastable SA and appearance of aqueous phase RTP. The universality of this strategy will usher exploration into other multifunctional monomer, facilitating the development of SAs with aqueous phase RTP.
Collapse
Affiliation(s)
- Ruixing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Da Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Feifei Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Xiaoqing Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| |
Collapse
|
26
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
27
|
Panda SK, De A, Banerjee S. Room-temperature phosphorescence from organic materials in aqueous media. Photochem Photobiol 2024; 100:796-829. [PMID: 38837372 DOI: 10.1111/php.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
In recent years, organic materials with room-temperature phosphorescence (RTP) features have gained significant attention due to their wide applications in the fields of bioimaging, light-harvesting materials, encryption technology, etc. Although several examples of organic RTP materials in the crystalline state and polymer-based systems have been reported in the last decade or so, achieving organic RTP in the solution phase, particularly in the aqueous phase has remained a challenging task. Herein in this review, we summarize the progress in this direction by highlighting design strategies based on supramolecular scaffolding and host-guest complexation and the applications of such aqueous organic RTP materials in bioimaging, sensing, etc.
Collapse
Affiliation(s)
- Sourav Kumar Panda
- The Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, India
| | - Antara De
- The Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, India
| | - Supratim Banerjee
- The Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, India
| |
Collapse
|
28
|
Xu W, Wang B, Liu S, Fang W, Jia Q, Liu J, Bo C, Yan X, Li Y, Chen L. Urea-formaldehyde resin room temperature phosphorescent material with ultra-long afterglow and adjustable phosphorescence performance. Nat Commun 2024; 15:4415. [PMID: 38789444 PMCID: PMC11126683 DOI: 10.1038/s41467-024-48744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.
Collapse
Affiliation(s)
- Wensheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China.
| | - Shuai Liu
- Shaoxing Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang, PR China
| | - Wangwang Fang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China
- Shaoxing Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang, PR China
| | - Qinglong Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jiayi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Changchang Bo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China.
| |
Collapse
|
29
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
30
|
Zhu Y, He M, Qu L, Wang Y, Li C, Huang J, Chen Q, Yang C. Unique Visualization Growth Process of Long-Lived Room Temperature Phosphorescence in Polymer System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309081. [PMID: 38050934 DOI: 10.1002/smll.202309081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Recently, embedding organic phosphors into the polyvinyl alcohol (PVA) matrix has emerged as a convenient strategy to obtain efficient long-lived room temperature phosphorescence (RTP) via forming strong intermolecular hydrogen bonds with organic phosphors to minimize nonradiative relaxations. Regrettably, it is discovered that PVA is unable to trigger RTP emission when a novel functional phosphor THBE containing six extended biphenyl formaldehyde arms is doped into PVA matrix. Surprisingly, the excellent long-lived RTP emission can be easily obtained by doping THBE into PVA analogs, poly(vinyl alcohol-co-ethylene) (PVA-co-PE). The unique visualization growth process (i.e., white streak generation) of long-lived RTP is observed by UV light-driven aggregation of functional molecules THBE in PVA-co-PE matrix. The phosphorescent intensity of the luminescent film is enhanced by 55 times, from 729 to 40,785 a.u., and its phosphorescence lifetime is increased by 38 times, from 37.08 to 1415.41 ms. Due to the dynamically reversible RTP performance, as well as the permeability, flexibility, and wrinkle-free properties of the luminescent film, it can be utilized to create cutting-edge information storage devices.
Collapse
Affiliation(s)
- Ying Zhu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Meiyi He
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongkang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chen Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiayue Huang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qingao Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
31
|
Zheng H, Zhang Z, Cai S, An Z, Huang W. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311922. [PMID: 38270348 DOI: 10.1002/adma.202311922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Long-lived and highly efficient room temperature phosphorescence (RTP) materials are in high demand for practical applications in lighting and display, security signboards, and anti-counterfeiting. Achieving RTP in aqueous solutions, near-infrared (NIR) phosphorescence emission, and NIR-excited RTP are crucial for applications in bio-imaging, but these goals pose significant challenges. Supramolecular self-assembly provides an effective strategy to address the above problems. This review focuses on the recent advances in the enhancement of RTP via supramolecular self-assembly, covering four key aspects: small molecular self-assembly, cocrystals, the self-assembly of macrocyclic hosts and guests, and multi-stage supramolecular self-assembly. This review not only highlights progress in these areas but also underscores the prominent challenges associated with developing supramolecular RTP materials. The resulting strategies for the development of high-performance supramolecular RTP materials are discussed, aiming to satisfy the practical applications of RTP materials in biomedical science.
Collapse
Affiliation(s)
- Han Zheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
32
|
Guo D, Wang W, Zhang K, Chen J, Wang Y, Wang T, Hou W, Zhang Z, Huang H, Chi Z, Yang Z. Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state. Nat Commun 2024; 15:3598. [PMID: 38678049 PMCID: PMC11055858 DOI: 10.1038/s41467-024-47937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Organic room temperature phosphorescence (RTP) has significant potential in various applications of information storage, anti-counterfeiting, and bio-imaging. However, achieving robust organic RTP emission of the single-component system is challenging to overcome the restriction of the crystalline state or other rigid environments with cautious treatment. Herein, we report a single-component system with robust persistent RTP emission in various aggregated forms, such as crystal, fine powder, and even amorphous states. Our experimental data reveal that the vigorous RTP emissions rely on their tight dimers based on strong and large-overlap π-π interactions between polycyclic aromatic hydrocarbon (PAH) groups. The dimer structure can offer not only excitons in low energy levels for visible-light excited red long-lived RTP but also suppression of the nonradiative decays even in an amorphous state for good resistance of RTP to heat (up to 70 °C) or water. Furthermore, we demonstrate the water-dispersible nanoparticle with persistent RTP over 600 nm and a lifetime of 0.22 s for visible-light excited cellular and in-vivo imaging, prepared through the common microemulsion approach without overcaution for nanocrystal formation.
Collapse
Affiliation(s)
- Danman Guo
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wen Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kaimin Zhang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jinzheng Chen
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuyuan Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tianyi Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wangmeng Hou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhen Zhang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Huahua Huang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiyong Yang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming, 525000, P.R. China.
| |
Collapse
|
33
|
Cao Y, Wang D, Zhang Y, Li G, Gao C, Li W, Chen X, Chen X, Sun P, Dong Y, Cai Z, He Z. Multi-Functional Integration of Phosphor, Initiator, and Crosslinker for the Photo-Polymerization of Flexible Phosphorescent Polymer Gels. Angew Chem Int Ed Engl 2024; 63:e202401331. [PMID: 38456641 DOI: 10.1002/anie.202401331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
A general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole-based dialkene (BTD-HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD-HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent-phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film-shearing, roll coating process, and two/three-dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.
Collapse
Affiliation(s)
- Yanyan Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Gao
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Li
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoting Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaofei Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiyuan He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
34
|
Chen X, Zhu R, Zhang B, Zhang X, Cheng A, Liu H, Gao R, Zhang X, Chen B, Ye S, Jiang J, Zhang G. Rapid room-temperature phosphorescence chiral recognition of natural amino acids. Nat Commun 2024; 15:3314. [PMID: 38632229 PMCID: PMC11024135 DOI: 10.1038/s41467-024-47648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Aoyuan Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Ruiying Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230094, China.
| |
Collapse
|
35
|
He T, Pang X, Jiang A, Zhang J, Feng Z, Xu W, Song B, Cui M, He Y. Multi-colour room-temperature phosphorescence from fused-ring compounds for dynamic anti-counterfeiting applications. Chem Commun (Camb) 2024; 60:4060-4063. [PMID: 38502544 DOI: 10.1039/d4cc00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We present a facile strategy to achieve purely organic multi-colour room-temperature phosphorescence (RTP) films by doping typical fused-ring compounds into a poly(vinyl alcohol) matrix. Such RTP films demonstrate inherent RTP emission ranging from green to red with a long lifetime and high quantum yield (QY) (lifetime: ∼0.56 ms, QY: ∼35.4%). We further exploit such high-performance RTP films for dynamic information encryption.
Collapse
Affiliation(s)
- Tongyu He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Airui Jiang
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiawei Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Zhixia Feng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Wenxin Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Centre of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Chen Q, Qu L, Hou H, Huang J, Li C, Zhu Y, Wang Y, Chen X, Zhou Q, Yang Y, Yang C. Long lifetimes white afterglow in slightly crosslinked polymer systems. Nat Commun 2024; 15:2947. [PMID: 38580680 PMCID: PMC10997626 DOI: 10.1038/s41467-024-47378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Intrinsic polymer room-temperature phosphorescence (IPRTP) materials have attracted considerable attention for application in flexible electronics, information encryption, lighting displays, and other fields due to their excellent processabilities and luminescence properties. However, achieving multicolor long-lived luminescence, particularly white afterglow, in undoped polymers is challenging. Herein, we propose a strategy of covalently coupling different conjugated chromophores with poly(acrylic acid (AA)-AA-N-succinimide ester) (PAA-NHS) by a simple and rapid one-pot reaction to obtain pure polymers with long-lived RTPs of various colors. Among these polymers, the highest phosphorescence quantum yield of PAPHE reaches 14.7%. Furthermore, the afterglow colors of polymers can be modulated from blue to red by introducing three chromophores into them. Importantly, the acquired polymer TPAP-514 exhibits a white afterglow at room temperature with the chromaticity coordinates (0.33, 0.33) when the ratio of chromophores reaches a suitable value owing to the three-primary-color mechanism. Systematic studies prove that the emission comes from the superposition of different triplet excited states of the three components. Moreover, the potential applications of the obtained polymers in light-emitting diodes and dynamic anti-counterfeiting are explored. The proposed strategy provides a new idea for constructing intrinsic polymers with diverse white-light emission RTPs.
Collapse
Affiliation(s)
- Qingao Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui Hou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiayue Huang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chen Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ying Zhu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongkang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaohong Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
37
|
Huo M, Song SQ, Dai XY, Li FF, Hu YY, Liu Y. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour. Chem Sci 2024; 15:5163-5173. [PMID: 38577356 PMCID: PMC10988582 DOI: 10.1039/d4sc00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 μs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Shuang-Qi Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Fan-Fan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu-Yang Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
38
|
Zhang Y, Chen Y, Li J, Liu S, Liu Y. Mechanical Stretch α-Cyclodextrin Pseudopolyrotaxane Elastomer with Reversible Phosphorescence Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307777. [PMID: 38311575 PMCID: PMC11005743 DOI: 10.1002/advs.202307777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Polyethylene glycol chains in two terminals of the naphthalene functional group are threaded into α-cyclodextrin cavities to form the pseudopolyrotaxane (NPR), which not only effectively induces the phosphorescence of the naphthalene functional group by the cyclodextrin macrocycle confinement, but also provides interfacial hydrogen bonding assembly function between polyhydroxy groups of cyclodextrin and waterborne polyurethane (WPU) chains to construct elastomers. The introduction of NPR endows the elastomer with enhanced mechanical properties and excellent room temperature phosphorescent (RTP) emission (phosphorescence remains in water, acid, alkali, and organic solvents, even at 160 °C high temperatures). Especially, the reversible mechanically responsive room temperature phosphorescence behavior (phosphorescence intensity increased three times under 200% strain) can be observed in the mechanical stretch and recover process, owing to strain-induced microstructural changes further inhibiting the non-radiative transition and the vibration of NPR. Therefore, changing the phosphorescence behavior of supramolecular elastomers through mechanical stretching provides a new approach for supramolecular luminescent materials.
Collapse
Affiliation(s)
- Yi Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yong Chen
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Jian‐Qiu Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Song‐En Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
39
|
Qiu X, Wang Y, Leopold S, Lebedkin S, Schepers U, Kappes MM, Biedermann F, Bräse S. Modulating Aryl Azide Photolysis: Synthesis of a Room-Temperature Phosphorescent Carboline in Cucurbit[7]uril Host. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307318. [PMID: 38044287 DOI: 10.1002/smll.202307318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/28/2023] [Indexed: 12/05/2023]
Abstract
Cucurbit[7]uril (CB7), a supramolecular host, is employed to control the pathway of photolysis of an aryl azide in an aqueous medium. Normally, photolysis of aryl azides in bulk water culminates predominantly in the formation of azepine derivatives via intramolecular rearrangement. Remarkably, however, when this process unfolds within the protective confinement of the CB7 cavity, it results in a carboline derivative, as a consequence of a C─H amination reaction. The resulting carboline caged by CB7 reveals long-lived room temperature phosphorescence (RTP) in the solid state, with lifetimes extending up to 2.1 s. These findings underscore the potential of supramolecular hosts to modulate the photolysis of aryl azides and to facilitate novel phosphorescent materials.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Yichuan Wang
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Sonja Leopold
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse, 76131, Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
40
|
Xiao G, Ma YJ, Qi Z, Fang X, Chen T, Yan D. A flexible ligand and halogen engineering enable one phosphor-based full-color persistent luminescence in hybrid perovskitoids. Chem Sci 2024; 15:3625-3632. [PMID: 38455006 PMCID: PMC10915845 DOI: 10.1039/d3sc06845e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Color-tunable room temperature phosphorescent (RTP) materials have raised wide interest due to their potential application in the fields of encryption and anti-counterfeiting. Herein, a series of CdX2-organic hybrid perovskitoids, (H-apim)CdX3 and (apim)CdX2 (denoted as CdX-apim1 and CdX-apim2, apim = 1-(3-aminopropyl)imidazole, X = Cl, Br), were synthesized using apim with both rigid and flexible groups as ligands, which exhibit naked-eye detectable RTP with different durations and colors (from cyan to red) by virtue of different halogen atoms, coordination modes and the coplanar configuration of flexible groups. Interestingly, CdCl-apim1 and CdX-apim2 both exhibit excitation wavelength-dependent RTP properties, which can be attributed to the multiple excitation of imidazole/apim, the diverse interactions with halogen atoms, and aggregated state of imidazoles. Structural analysis and theoretical calculations confirm that the aminopropyl groups in CdCl-apim1 do not participate in luminescence, while those in CdCl-apim2 are involved in luminescence including both metal/halogen to ligand charge transfer and twisted intramolecular charge transfer. Furthermore, we demonstrate that these perovskitoids can be applied in multi-step anti-counterfeiting, information encryption and smart ink fields. This work not only develops a new type of perovskitoid with full-color persistent luminescence, but also provides new insight into the effect of flexible ligands and halogen engineering on the wide-range modulation of RTP properties.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
41
|
Gómez-González B, Basílio N, Vaz B, Pérez-Lorenzo M, García-Río L. Delving into the Variability of Supramolecular Affinity: Self-Ion Pairing as a Central Player in Aqueous Host-Guest Chemistry. Angew Chem Int Ed Engl 2024; 63:e202317553. [PMID: 38100517 DOI: 10.1002/anie.202317553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The determination of binding constants is a key matter in evaluating the strength of host-guest interactions. However, the profound impact of self-ion pairing on this parameter is often underrated in aqueous solution, leading in some cases to a misinterpretation of the true potential of supramolecular assemblies. In the present study, we aim to shed further light on this critical factor by exploring the concentration-dependent behavior of a multicharged pillararene in water. Our observations reveal an extraordinary 1-million-fold variability in the affinity of this macrocycle toward a given anion, showcasing the highly dynamic character of electrostatic interactions. We argue that these findings bring to the forefront the inherent determinism that underlies the estimation of affinity constants, a factor profoundly shaped by both the sensitivity of the instrumental technique in use and the intricacies of the experimental design itself. In terms of applications, these results may provide the opportunity to optimize the operational concentrations of multicharged hosts in different scenarios, aiming to achieve their maximum efficiency based on the intended application. Unlocking the potential of this hidden variability may pave the way for the creation of novel molecular materials with advanced functionalities.
Collapse
Affiliation(s)
- Borja Gómez-González
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Belén Vaz
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Luis García-Río
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Ren C, Wang Z, Ou H, Wang T, Zhao Z, Wei Y, Yuan H, Tan Y, Yuan WZ. Multi-Responsive Afterglows from Aqueous Processable Amorphous Polysaccharide Films. SMALL METHODS 2024; 8:e2300243. [PMID: 37491782 DOI: 10.1002/smtd.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based room-temperature phosphorescence (RTP) materials, especially polysaccharide-based RTP materials, earn sustained attention in the fields of anti-counterfeiting, data encryption, and optoelectronics owing to their green regeneration, flexibility, and transparency. However, those with both ultralong phosphorescence lifetime and excitation wavelength-dependent afterglow are rarely reported. Herein, a kind of amorphous RTP material with ultralong lifetime of up to 2.52 s is fabricated by covalently bonding sodium alginate (SA) with arylboronic acid in the aqueous phase. The resulting polymer film exhibits distinguished RTP performance with excitation-dependent emissions from cyan to green. Specifically, by co-doping with other fluorescent dyes, further regulation of the afterglow color from cyan to yellowish-green and near-white can be achieved through triplet-to-singlet Förster resonance energy transfer. In addition, the water-sensitive properties of hydrogen bonds endow the RTP property of SA-based materials with water/heat-responsive characteristics. On account of the color-tunable and stimuli-responsive afterglows, these smart materials are successfully applied in data encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Chunguang Ren
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hanlin Ou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Tianjie Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zhipeng Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yuting Wei
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| |
Collapse
|
43
|
Zhao H, Jia X, Zhang M, Zhu L. Construction of Carbon Dots@LiCl-polyacrylamide with Humidity-Induced Ultralong Room-Temperature Phosphorescence to Fluorescence and Rigid-to-Flexible Transition Behavior. Macromol Rapid Commun 2024; 45:e2300538. [PMID: 37877956 DOI: 10.1002/marc.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Indexed: 10/26/2023]
Abstract
The continuous advancement of luminescent materials has placed increasingly stringent requirements on dynamic color-tunable ultralong room-temperature phosphorescence (URTP) materials that can respond to external stimuli. Nevertheless, endowing URTP materials with stimuli-response-induced dynamic color tuning is a challenging task. This study introduces a carbon dots (CDs)@LiCl-polyacrylamide (PAM) polymer system that switches from URTP to fluorescence under humidity stimuli, accompanied by a transition from rigidity to flexibility. The obtained rigid CDs@LiCl-PAM exhibits ultralong green phosphorescence with a lifetime of 560 ms in the initial state. After absorbing moisture, it becomes flexible and its phosphorescence switches off. Moreover, the emission of the CDs@LiCl-PAM film depends on the excitation wavelength. This property can potentially used in multicolored luminescence applications and displays. Moreover, multicolor luminescent patterns can be constructed in situ using the water-absorption ability of the obtained thin film and the Förster resonance energy-transfer strategy. The proposed strategy is expected to promote the interdisciplinary development of intelligent information encryption, anti-counterfeiting, and smart flexible display materials.
Collapse
Affiliation(s)
- Huimin Zhao
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Zhengzhou, 450046, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Zhengzhou, 450046, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
44
|
Zhao Y, Yang J, Liang C, Wang Z, Zhang Y, Li G, Qu J, Wang X, Zhang Y, Sun P, Shi J, Tong B, Xie HY, Cai Z, Dong Y. Fused-Ring Pyrrole-Based Near-Infrared Emissive Organic RTP Material for Persistent Afterglow Bioimaging. Angew Chem Int Ed Engl 2024; 63:e202317431. [PMID: 38081786 DOI: 10.1002/anie.202317431] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Organic near-infrared room temperature phosphorescence (RTP) materials offer remarkable advantages in bioimaging due to their characteristic time scales and background noise elimination. However, developing near-infrared RTP materials for deep tissue imaging still faces challenges since the small band gap may increase the non-radiative decay, resulting in weak emission and short phosphorescence lifetime. In this study, fused-ring pyrrole-based structures were employed as the guest molecules for the construction of long wavelength emissive RTP materials. Compared to the decrease of the singlet energy level, the triplet energy level showed a more effectively decrease with the increase of the conjugation of the substituent groups. Moreover, the sufficient conjugation of fused ring structures in the guest molecule suppresses the non-radiative decay of triplet excitons. Therefore, a near-infrared RTP material (764 nm) was achieved for deep penetration bioimaging. Tumor cell membrane is used to coat RTP nanoparticles (NPs) to avoid decreasing the RTP performance compared to traditional coating by amphiphilic surfactants. RTP NPs with tumor-targeting properties show favorable phosphorescent properties, superior stability, and excellent biocompatibility. These NPs are applied for time-resolved luminescence imaging to eliminate background interference with excellent tissue penetration. This study provides a practical solution to prepare long-wavelength and long-lifetime organic RTP materials and their applications in bioimaging.
Collapse
Affiliation(s)
- Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianhui Yang
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhongjie Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yongfeng Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Gengchen Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xi Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, P. R. China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
45
|
Wang H, Liu H, Wang M, Hou J, Li Y, Wang Y, Zhao Y. Cucurbituril-based supramolecular host-guest complexes: single-crystal structures and dual-state fluorescence enhancement. Chem Sci 2024; 15:458-465. [PMID: 38179534 PMCID: PMC10762720 DOI: 10.1039/d3sc04813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Two supramolecular complexes were prepared using cucurbiturils [CBs] as mediators and a four-armed p-xylene derivative (M1) as a guest molecule. The single crystals of these two complexes were obtained and successfully analyzed by single-crystal X-ray diffraction (SCXRD). An unexpected and intriguing 1 : 2 self-assembly arrangement between M1 and CB[8] was notably uncovered, marking its first observation. These host-guest complexes exhibit distinctive photophysical properties, especially emission behaviors. Invaluable insights can be derived from these single-crystal structures. The precious single-crystal structures provide both precise structural information regarding the supramolecular complexes and a deeper understanding of the intricate mechanisms governing their photophysical properties.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese. Academy of Sciences Beijing 100190 P. R. China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
46
|
Sun W, Duan R, Dai X, Liu W, Li J, Gong Q, Duan G, Ge Y. Aromatic Hydrocarbon Based and Space Interactions Induced Color-tunable Single-component Organic Phosphorescence. Chem Asian J 2023:e202300899. [PMID: 38092700 DOI: 10.1002/asia.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Construction of new system and exploration of new approach are of great importance for the improvement of their photophysical properties to meet the growing various uses of phosphorescent materials. Triphenylmethane (TPM), composed only of carbon and hydrogen, exhibits excellent color tunable phosphorescence in air, with ultralong lifetime (836 ms), and wide color-tunable range (from cyan to green, then to yellow and finally to orange, 525 nm-616 nm). Through careful comparison with the single crystal diffraction structure of tetraphenylmethane (TTPM) and theoretical calculation analysis, we believe that various clusters formed through space interactions are crucial for color-tunable phosphorescence.
Collapse
Affiliation(s)
- Weitao Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Ruikang Duan
- Shanghai Fengxian Central Hospital, Shanghai, 201400, China
| | - Xianyin Dai
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Wei Liu
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Jinwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Qi Gong
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Guiyun Duan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| |
Collapse
|
47
|
Dai XY, Huo M, Liu Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat Rev Chem 2023; 7:854-874. [PMID: 37993737 DOI: 10.1038/s41570-023-00555-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor-acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.
Collapse
Affiliation(s)
- Xian-Yin Dai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Man Huo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
48
|
Xu L, Hu Y, Zhao D, Zhang W, Wang H. A Versatile Assembly Approach toward Multifunctional Supramolecular Poly(Ionic Liquid) Nanoporous Membranes in Water. Macromol Rapid Commun 2023; 44:e2300189. [PMID: 37248809 DOI: 10.1002/marc.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Hydrogen (H)-bonding-integration of multiple ingredients into supramolecular polyelectrolyte nanoporous membranes in water, thereby achieving tailor-made porous architectures, properties, and functionalities, remains one of the foremost challenges in materials chemistry due to the significantly opposing action of water molecules against H-bonding. Herein, a strategy is described that allows direct fusing of the functional attributes of small additives into water-involved hydrogen bonding assembled supramolecular poly(ionic liquid) (PIL) nanoporous membranes (SPILMs) under ambient conditions. It discloses that the pore size distributions and mechanical properties of SPILMs are rationally controlled by tuning the H-bonding interactions between small additives and homo-PIL. It demonstrates that, benefiting from the synergy of multiple noncovalent interactions, small dye additives/homo-PIL solutions can be utilized as versatile inks for yielding colorful light emitting films with robust underwater adhesion strength, excellent stretchability, and flexibility on diverse substrates, including both hydrophilic and hydrophobic surfaces. This system provides a general platform for integrating the functional attributes of a diverse variety of additives into SPILMs to create multifunctional and programmable materials in water.
Collapse
Affiliation(s)
- Luyao Xu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingyi Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
49
|
Ju CW, Wang XC, Li B, Ma Q, Shi Y, Zhang J, Xu Y, Peng Q, Zhao D. Evolution of organic phosphor through precision regulation of nonradiative decay. Proc Natl Acad Sci U S A 2023; 120:e2310883120. [PMID: 37934818 PMCID: PMC10655561 DOI: 10.1073/pnas.2310883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Xi-Chao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Qiushi Ma
- Department of Chemistry, Marquette University, Milwaukee, WI53233
| | - Yuhao Shi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Yuzhi Xu
- Department of Chemistry, New York University, New York, NY10003
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| |
Collapse
|
50
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|