1
|
Yang Z, Yu D, Gao F, Zhou D, Wu Y, Yang X, Chen J, Yang J, Shen M, Zhang Y, Wei L, Yan C. The Histone Lysine Demethylase KDM7A Contributes to Reward Memory via Fscn1-Induced Synaptic Plasticity in the Medial Prefrontal Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405352. [PMID: 39836528 PMCID: PMC11905110 DOI: 10.1002/advs.202405352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal. Subsequently, these results demonstrate that knockdown of Kdm7a in the mPFC do not affect the acquisition of morphine-induced CPP, but it attenuate memory consolidation. To further explore Kdm7a-mediated transcriptomic changes, this work employs Nanopore direct RNA sequencing. Transcriptome profiling unveils several gene expression alterations impacted by KDM7A, which are enriched in relevant neural function categories. Notably, this work identifies and validates fascin actin-bundling protein 1 (Fscn1) as a downstream molecular target. Knockdown of Fscn1 has a similar impact on CPP to Kdm7a, along with corresponding decrease of dendritic spine density and neuronal activity in the mPFC. Additionally, silencing Kdm7a decreases enrichment of H3K9me2 and H3K27me2 at the Fscn1 promoter region, suggesting that KDM7A may act as a crucial regulator of transcriptional responses to morphine-related reward memory via Fscn1.
Collapse
Affiliation(s)
- Zhuo‐jin Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Dong‐yu Yu
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Fei‐fei Gao
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Dan‐ya Zhou
- Xinxiang Key Laboratory of Forensic ToxicologySchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Ya‐nan Wu
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Xi‐xi Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Jie Chen
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Jing‐si Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Meng‐qing Shen
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Yu‐xiang Zhang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic ToxicologySchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Chun‐xia Yan
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| |
Collapse
|
2
|
Liang Y, Liu M, Liu B, Ziman B, Peng G, Mao Q, Wang X, Jiang L, Lin DC, Zheng Y. Comprehensive analysis of H3K27me3 LOCKs under different DNA methylation contexts reveal epigenetic redistribution in tumorigenesis. Epigenetics Chromatin 2025; 18:6. [PMID: 39833880 PMCID: PMC11748335 DOI: 10.1186/s13072-025-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Histone modification H3K27me3 plays a critical role in normal development and is associated with various diseases, including cancer. This modification forms large chromatin domains, known as Large Organized Chromatin Lysine Domains (LOCKs), which span several hundred kilobases. RESULT In this study, we identify and categorize H3K27me3 LOCKs in 109 normal human samples, distinguishing between long and short LOCKs. Our findings reveal that long LOCKs are predominantly associated with developmental processes, while short LOCKs are enriched in poised promoters and are most associated with low gene expression. Further analysis of LOCKs in different DNA methylation contexts shows that long LOCKs are primarily located in partially methylated domains (PMDs), particularly in short-PMDs, where they are most likely responsible for the low expressions of oncogenes. We observe that in cancer cell lines, including those from esophageal and breast cancer, long LOCKs shift from short-PMDs to intermediate-PMDs and long-PMDs. Notably, a significant subset of tumor-associated long LOCKs in intermediate- and long-PMDs exhibit reduced H3K9me3 levels, suggesting that H3K27me3 compensates for the loss of H3K9me3 in tumors. Additionally, we find that genes upregulated in tumors following the loss of short LOCKs are typically poised promoter genes in normal cells, and their transcription is regulated by the ETS1 transcription factor. CONCLUSION These results provide new insights into the role of H3K27me3 LOCKs in cancer and underscore their potential impact on epigenetic regulation and disease mechanisms.
Collapse
Affiliation(s)
- Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Xingzhe Wang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Lizhen Jiang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
3
|
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, Liang Y, Chen T, Luo X, Shi X, Ren J, Zheng Y. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer 2024; 6:zcad063. [PMID: 38213995 PMCID: PMC10782923 DOI: 10.1093/narcan/zcad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.
Collapse
Affiliation(s)
- Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Mohan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Tianjian Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
4
|
Gao X, Yi Y, Lv J, Li Y, Arulsamy K, Babu S, Bruno I, Zhang L, Cao Q, Chen K. Low RNA stability signifies strong expression regulatability of tumor suppressors. Nucleic Acids Res 2023; 51:11534-11548. [PMID: 37831104 PMCID: PMC10681714 DOI: 10.1093/nar/gkad838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
RNA expression of a gene is determined by not only transcriptional regulation, but also post-transcriptional regulation of RNA decay. The precise regulation of RNA stability in the cell plays an important role in normal development. Dysregulation of RNA stability can lead to diseases such as cancer. Here we found tumor suppressor RNAs tended to decay fast in normal cell types when compared with other RNAs. Consistent with a negative effect of m6A modification on RNA stability, we observed preferential deposition of m6A on tumor suppressor RNAs. Moreover, abundant m6A and fast decay of tumor suppressor RNAs both tended to be further enhanced in prostate cancer cells relative to normal prostate epithelial cells. Further, knockdown of m6A methyltransferase METTL3 and reader YTHDF2 in prostate cancer cells both posed stronger effect on tumor suppressor RNAs than on other RNAs. These results indicated a strong post transcriptional expression regulatability mediated by abundant m6A modification on tumor suppressor RNAs.
Collapse
Affiliation(s)
- Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Kulandaisamy Arulsamy
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Prostate Cancer Program, Dana-Farber Harvard cancer Center, Boston, MA 02115, USA
| |
Collapse
|
5
|
Li Y, Yi Y, Lv J, Gao X, Yu Y, Babu S, Bruno I, Zhao D, Xia B, Peng W, Zhu J, Chen H, Zhang L, Cao Q, Chen K. Low RNA stability signifies increased post-transcriptional regulation of cell identity genes. Nucleic Acids Res 2023; 51:6020-6038. [PMID: 37125636 PMCID: PMC10325912 DOI: 10.1093/nar/gkad300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Bo Xia
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
6
|
Wang X, Dai L, Liu Y, Li C, Fan D, Zhou Y, Li P, Kong Q, Su J. Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas. Epigenetics Chromatin 2023; 16:13. [PMID: 37118755 PMCID: PMC10142198 DOI: 10.1186/s13072-023-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yang Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
7
|
Shi Y, Huang G, Jiang F, Zhu J, Xu Q, Fang H, Lan S, Pan Z, Jian H, Li L, Zhang Y. Deciphering a mitochondria-related signature to supervise prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2022; 13:1070593. [PMID: 36544763 PMCID: PMC9761315 DOI: 10.3389/fimmu.2022.1070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major public health problem in humans. The imbalance of mitochondrial function has been discovered to be closely related to the development of cancer recently. However, the role of mitochondrial-related genes in HCC remains unclear. Methods The RNA-sequencing profiles and patient information of 365 samples were derived from the Cancer Genome Atlas (TCGA) dataset. The mitochondria-related prognostic model was established by univariate Cox regression analysis and LASSO Cox regression analysis. We further determined the differences in immunity and drug sensitivity between low- and high-risk groups. Validation data were obtained from the International Cancer Genome Consortium (ICGC) dataset of patients with HCC. The protein and mRNA expression of six mitochondria-related genes in tissues and cell lines was verified by immunohistochemistry and qRT-PCR. Results The six mitochondria-related gene signature was constructed for better prognosis forecasting and immunity, based on which patients were divided into high-risk and low-risk groups. The ROC curve, nomogram, and calibration curve exhibited admirable clinical predictive performance of the model. The risk score was associated with clinicopathological characteristics and proved to be an independent prognostic factor in patients with HCC. The above results were verified in the ICGC validation cohort. Compared with normal tissues and cell lines, the protein and mRNA expression of six mitochondria-related genes was upregulated in HCC tissues and cell lines. Conclusion The signature could be an independent factor that supervises the immunotherapy response of HCC patients and possess vital guidance value for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China,Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Qiyang Xu
- Department of General Surgery, the Fifth People’s Hospital of Fuyang City, Fuyang, Anhui, China
| | - Hanlu Fang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Lan
- The Second Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyuan Pan
- Hengyang Hospital affiliated of Hunan University of Chinese Medicine, Hengyang, Hunan, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China,*Correspondence: Li Li, ; Yewei Zhang,
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Li Li, ; Yewei Zhang,
| |
Collapse
|
8
|
Zhang S, Gong T, Nan Y, Feng R, Liu Z, Chen H. MAFB promotes the malignant phenotypes by IGFBP6 in esophageal squamous cell carcinomas. Exp Cell Res 2022; 416:113158. [PMID: 35430273 DOI: 10.1016/j.yexcr.2022.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant diseases in the world. Although the somatic alterations have been fully identified, there are still no targeted drugs at present. Our previous studies revealed that loss of grand H3K27me3 domains mediated transcriptional activation of a series of genes in ESCC. Among them, we focus on the investigation of MAFB, as its high expression is associated with a poor prognosis in ESCC. Functional assays show that knockdown of MAFB significantly suppresses cell growth, migration and invasion. Mechanistic investigation demonstrates that MAFB exerts its function by upregulating IGFBP6. Our findings suggest that MAFB may play a tumor-promoting role and may act as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabin Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Yi Y, Li Y, Li C, Wu L, Zhao D, Li F, Fazli L, Wang R, Wang L, Dong X, Zhao W, Chen K, Cao Q. Methylation-dependent and -independent roles of EZH2 synergize in CDCA8 activation in prostate cancer. Oncogene 2022; 41:1610-1621. [PMID: 35094010 PMCID: PMC9097394 DOI: 10.1038/s41388-022-02208-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Cell division cycle-associated 8 (CDCA8) is a component of chromosomal passenger complex (CPC) that participates in mitotic regulation. Although cancer-related CDCA8 hyperactivation has been widely observed, its molecular mechanism remains elusive. Here, we report that CDCA8 overexpression maintains tumorigenicity and is associated with poor clinical outcome in patients with prostate cancer (PCa). Notably, enhancer of zeste homolog 2 (EZH2) is identified to be responsible for CDCA8 activation in PCa. Genome-wide assays revealed that EZH2-induced H3K27 trimethylation represses let-7b expression and thus protects the let-7b-targeting CDCA8 transcripts. More importantly, EZH2 facilitates the self-activation of E2F1 by recruiting E2F1 to its own promoter region in a methylation-independent manner. The high level of E2F1 further promotes transcription of CDCA8 along with the other CPC subunits. Taken together, our study suggests that EZH2-mediated cell cycle regulation in PCa relies on both its methyltransferase and non-methyltransferase activities.
Collapse
Affiliation(s)
- Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Chao Li
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Longxiang Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Urology, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Fuxi Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Rui Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Long Wang
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Prostate Cancer Program, Dana-Farber Harvard Cancer Center, 450 Brookline Avenue, BP332A, Boston, MA, USA.
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Voeltzel T, Fossard G, Degaud M, Geistlich K, Gadot N, Jeanpierre S, Mikaelian I, Brevet M, Anginot A, Le Bousse-Kerdilès MC, Trichet V, Lefort S, Maguer-Satta V. A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomater Sci 2021; 10:485-498. [PMID: 34904143 DOI: 10.1039/d1bm01098k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow is a complex and dynamic microenvironment that provides essential cues to resident cells. We developed a standardized three-dimensional (3D) model to decipher mechanisms that control human cells during hematological and non-hematological processes. Our simple 3D-model is constituted of a biphasic calcium phosphate-based scaffold and human cell lines to ensure a high reproducibility. We obtained a minimal well-organized bone marrow-like structure in which various cell types and secreted extracellular matrix can be observed and characterized by in situ imaging or following viable cell retrieval. The complexity of the system can be increased and customized, with each cellular component being independently modulated according to the issue investigated. Introduction of pathological elements in this 3D-system accurately reproduced changes observed in patient bone marrow. Hence, we have developed a handy and flexible standardized microphysiological system that mimics human bone marrow, allowing histological analysis and functional assays on collected cells.
Collapse
Affiliation(s)
- Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Gaëlle Fossard
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, F-69495 Pierre Bénite, France
| | - Michaël Degaud
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, F-69495 Pierre Bénite, France
| | - Kevin Geistlich
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Research Pathology Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ivan Mikaelian
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France
| | - Marie Brevet
- Pathology Department, Hospices Civils de Lyon, Bron F-69500, France
| | - Adrienne Anginot
- UMR1197, Université Paris-Saclay, 94800 Villejuif, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | | | - Valérie Trichet
- INSERM, UMR 1238, PHYOS, Faculty of Medicine, University of Nantes, Nantes, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France. .,Centre Léon Bérard, Lyon, France
| |
Collapse
|
11
|
Yuan J, Jiang Q, Gong T, Fan D, Zhang J, Chen F, Zhu X, Wang X, Qiao Y, Chen H, Liu Z, Su J. Loss of grand histone H3 lysine 27 trimethylation domains mediated transcriptional activation in esophageal squamous cell carcinoma. NPJ Genom Med 2021; 6:65. [PMID: 34381055 PMCID: PMC8358006 DOI: 10.1038/s41525-021-00232-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Trimethylation of histone H3 lysine 27 trimethylation (H3K27me3) may be recruited by repressive Polycomb complexes to mediate gene silencing, which is critical for maintaining embryonic stem cell pluripotency and differentiation. However, the roles of aberrant H3K27me3 patterns in tumorigenesis are not fully understood. Here, we discovered that grand silencer domains (breadth > 50 kb) for H3K27me3 were significantly associated with epithelial cell differentiation and exhibited high gene essentiality and conservation in human esophageal epithelial cells. These grand H3K27me3 domains exhibited high modification signals involved in gene silencing, and preferentially occupied the entirety of topologically associating domains and interact with each other. We found that widespread loss of the grand H3K27me3 domains in of esophageal squamous cell carcinomas (ESCCs) were enriched in genes involved in epithelium and endothelium differentiation, which were significantly associated with overexpression with increase of active modifications of H3K4me3, H3K4me1, and H3K27ac marks, as well as DNA hypermethylation in the gene bodies. A total of 208 activated genes with loss of grand H3K27me3 domains in ESCC were identified, where the higher expression and mutation of T-box transcription factor 20 (TBX20) were associated with worse patients’ outcomes. Our results showed that knockdown of TBX20 may have led to a striking defect in esophageal cancer cell growth and carcinogenesis-related pathway, including cell cycle and homologous recombination. Together, our results reveal that loss of grand H3K27me3 domains represent a catalog of remarkable activating regulators involved in carcinogenesis.
Collapse
Affiliation(s)
- Jian Yuan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Qi Jiang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | | | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Fukun Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | | | | | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China. .,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China. .,Oujiang Laboratory, Wenzhou, China.
| |
Collapse
|