1
|
Lv X, Sun X, Gao Y, Song X, Hu X, Gong L, Han L, He M, Wei M. Targeting RNA splicing modulation: new perspectives for anticancer strategy? J Exp Clin Cancer Res 2025; 44:32. [PMID: 39885614 PMCID: PMC11781073 DOI: 10.1186/s13046-025-03279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
- Central Laboratory, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Yang Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Lang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China.
| |
Collapse
|
2
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Martínez-Lumbreras S, Morguet C, Sattler M. Dynamic interactions drive early spliceosome assembly. Curr Opin Struct Biol 2024; 88:102907. [PMID: 39168044 DOI: 10.1016/j.sbi.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Clara Morguet
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
5
|
Hluchý M, Blazek D. CDK11, a splicing-associated kinase regulating gene expression. Trends Cell Biol 2024:S0962-8924(24)00161-2. [PMID: 39245599 DOI: 10.1016/j.tcb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
The ability of a cell to properly express its genes depends on optimal transcription and splicing. RNA polymerase II (RNAPII) transcribes protein-coding genes and produces pre-mRNAs, which undergo, largely co-transcriptionally, intron excision by the spliceosome complex. Spliceosome activation is a major control step, leading to a catalytically active complex. Recent work has showed that cyclin-dependent kinase (CDK)11 regulates spliceosome activation via the phosphorylation of SF3B1, a core spliceosome component. Thus, CDK11 arises as a major coordinator of gene expression in metazoans due to its role in the rate-limiting step of pre-mRNA splicing. This review outlines the evolution of CDK11 and SF3B1 and their emerging roles in splicing regulation. It also discusses how CDK11 and its inhibition affect transcription and cell cycle progression.
Collapse
Affiliation(s)
- Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
6
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
7
|
Li A, Bouhss A, Clément MJ, Bauvais C, Taylor JP, Bollot G, Pastré D. Using the structural diversity of RNA: protein interfaces to selectively target RNA with small molecules in cells: methods and perspectives. Front Mol Biosci 2023; 10:1298441. [PMID: 38033386 PMCID: PMC10687564 DOI: 10.3389/fmolb.2023.1298441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.
Collapse
Affiliation(s)
- Aixiao Li
- Synsight, Genopole Entreprises, Evry, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | | | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| |
Collapse
|
8
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
9
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
10
|
Bonner EA, Lee SC. Therapeutic Targeting of RNA Splicing in Cancer. Genes (Basel) 2023; 14:1378. [PMID: 37510283 PMCID: PMC10379351 DOI: 10.3390/genes14071378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
RNA splicing is a key regulatory step in the proper control of gene expression. It is a highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists of protein and RNA components. The dysregulation of RNA splicing has been observed in many human pathologies ranging from neurodegenerative diseases to cancer. The recent identification of recurrent mutations in the core components of the spliceosome in hematologic malignancies has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor initiation and progression. We will also review current therapeutic modalities and highlight emerging technologies designed to target RNA splicing for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth A. Bonner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Yuan X, Howie KL, Kazemi Sabzvar M, Chinnaswamy K, Stuckey JA, Yang CY. Profiling the Binding Activities of Peptides and Inhibitors to the U2 Auxiliary Factor Homology Motif (UHM) Domains. ACS Med Chem Lett 2023; 14:450-457. [PMID: 37077390 PMCID: PMC10107908 DOI: 10.1021/acsmedchemlett.2c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.
Collapse
Affiliation(s)
- Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kathryn L. Howie
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mona Kazemi Sabzvar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | | | - Jeanne A. Stuckey
- Life
Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
12
|
Abstract
Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation, caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have been under development to treat multiple disorders. Although these approaches have promise, targeting the core spliceosome components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects. New research directions have been focused on targeting specific splicing factors for a more precise effect. In this Perspective, we will highlight several approaches for targeting splicing factors and their functions and suggest ways to improve their specificity.
Collapse
Affiliation(s)
- Ariel Bashari
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
13
|
Barraza SJ, Bhattacharyya A, Trotta CR, Woll MG. Targeting strategies for modulating pre-mRNA splicing with small molecules: Recent advances. Drug Discov Today 2023; 28:103431. [PMID: 36356786 DOI: 10.1016/j.drudis.2022.103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The concept of using small molecules to therapeutically modulate pre-mRNA splicing was validated with the US Food and Drug Administration (FDA) approval of Evrysdi® (risdiplam) in 2020. Since then, efforts have continued unabated toward the discovery of new splicing-modulating drugs. However, the drug development world has evolved in the 10 years since risdiplam precursors were first identified in high-throughput screening (HTS). Now, new mechanistic insights into RNA-processing pathways and regulatory networks afford increasingly feasible targeted approaches. In this review, organized into classes of biological target, we compile and summarize small molecules discovered, devised, and developed since 2020 to alter pre-mRNA splicing.
Collapse
Affiliation(s)
- Scott J Barraza
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA.
| | | | | | - Matthew G Woll
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA
| |
Collapse
|
14
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
15
|
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. NATURE CANCER 2022; 3:536-546. [PMID: 35624337 PMCID: PMC9551392 DOI: 10.1038/s43018-022-00384-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 05/15/2023]
Abstract
High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.
Collapse
Affiliation(s)
- Robert F Stanley
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Reprogramming RNA processing: an emerging therapeutic landscape. Trends Pharmacol Sci 2022; 43:437-454. [PMID: 35331569 DOI: 10.1016/j.tips.2022.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.
Collapse
|
18
|
Promoting spliceosome assembly for therapeutic intent. Trends Pharmacol Sci 2021; 42:981-983. [PMID: 34602305 DOI: 10.1016/j.tips.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022]
Abstract
RNA splicing, the process by which precursor mRNA (pre-mRNA) is processed to mature mRNA, is catalyzed by the spliceosome. Recently, Chatrikhi et al. identified pharmacologic means to perturb splicing by enhancing the spliceosome's binding to pre-mRNA. This represents a novel chemical target and mechanism for therapeutic modulation of splicing.
Collapse
|
19
|
Kobayashi A, Clément MJ, Craveur P, El Hage K, Salone JDM, Bollot G, Pastré D, Maucuer A. Identification of a small molecule splicing inhibitor targeting UHM domains. FEBS J 2021; 289:682-698. [PMID: 34520118 DOI: 10.1111/febs.16199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Splicing factor mutations are frequent in myeloid neoplasms, blood cancers, and solid tumors. Cancer cells harboring these mutations present a particular vulnerability to drugs that target splicing factors such as SF3b155 or CAPERα. Still, the arsenal of chemical probes that target the spliceosome is very limited. U2AF homology motifs (UHMs) are common protein interaction domains among splicing factors. They present a hydrophobic pocket ideally suited to anchor small molecules with the aim to inhibit protein-protein interaction. Here, we combined a virtual screening of a small molecules database and an in vitro competition assay and identified a small molecule, we named UHMCP1 that prevents the SF3b155/U2AF65 interaction. NMR analyses and molecular dynamics simulations confirmed the binding of this molecule in the hydrophobic pocket of the U2AF65 UHM domain. We further provide evidence that UHMCP1 impacts RNA splicing and cell viability and is therefore an interesting novel compound targeting an UHM domain with potential anticancer properties.
Collapse
Affiliation(s)
- Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France.,SYNSIGHT, Genopole Entreprises, Evry, France
| | | | | | - Krystel El Hage
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | | | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| |
Collapse
|
20
|
A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex. Cell Chem Biol 2021; 28:1145-1157.e6. [PMID: 33689684 PMCID: PMC8380659 DOI: 10.1016/j.chembiol.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Dysregulated pre-mRNA splicing is an emerging Achilles heel of cancers and myelodysplasias. To expand the currently limited portfolio of small-molecule drug leads, we screened for chemical modulators of the U2AF complex, which nucleates spliceosome assembly and is mutated in myelodysplasias. A hit compound specifically enhances RNA binding by a U2AF2 subunit. Remarkably, the compound inhibits splicing of representative substrates and stalls spliceosome assembly at the stage of U2AF function. Computational docking, together with structure-guided mutagenesis, indicates that the compound bridges the tandem U2AF2 RNA recognition motifs via hydrophobic and electrostatic moieties. Cells expressing a cancer-associated U2AF1 mutant are preferentially killed by treatment with the compound. Altogether, our results highlight the potential of trapping early spliceosome assembly as an effective pharmacological means to manipulate pre-mRNA splicing. By extension, we suggest that stabilizing assembly intermediates may offer a useful approach for small-molecule inhibition of macromolecular machines.
Collapse
|
21
|
Abstract
In this issue of Cell Chemical Biology, Chatrikhi et al. (2021) identify a small molecule that enhances U2AF2 association with RNA to block pre-mRNA splicing during early stages of spliceosome assembly. This provides a mechanism of splicing inhibition and a molecular tool for elucidating intron recognition and spliceosome assembly.
Collapse
Affiliation(s)
- Sierra L Love
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Training Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Graduate Training Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
23
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|