1
|
Okita H, Murayama K, Asanuma H. Chirality-Promoted Chemical Ligation and Reverse Transcription of Acyclic Threoninol Nucleic Acid. J Am Chem Soc 2025; 147:17967-17974. [PMID: 40245353 PMCID: PMC12123609 DOI: 10.1021/jacs.5c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The building blocks of current life on Earth are chiral compounds, such as 2'-deoxy-D-ribose of DNA and L-amino acids with homochirality, which play an important role in various biological reactions. We investigated the effect of chirality on the template-directed chemical synthesis of nucleic acids as a model for primitive replication of genetic materials in the absence of enzymes. The efficiency of the template-directed chemical ligation of two acyclic nucleic acids, achiral serinol nucleic acid (SNA) and chiral acyclic l-threoninol nucleic acid (L-aTNA), induced by N-cyanoimidazole and a divalent metal cation, was evaluated. The chemical ligation of SNA fragments on an SNA template was much slower than the ligation of L-aTNA fragments on an L-aTNA template. Examination of L-aTNA and SNA heteroligation and the effects of chimeric template strands revealed the crucial importance of L-aTNA chirality, which induces helical propagation and fixes the local conformation of the reactive phosphate group for effective chemical ligation. DNA and RNA templates also enhanced the ligation of SNA and L-aTNA fragments. "Reverse transcription" from template RNA to L-aTNA was also demonstrated. Our findings show that scaffold chirality is crucial for chemical replication and reverse transcription in XNA-based systems. Furthermore, the reverse transcription from RNA to L-aTNA will find applications in XNA-based in vitro selection, the creation of artificial life, and nanotechnologies.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| |
Collapse
|
2
|
Yamada H, Kimura Y, Abe H, Yamamoto J. Facile DNA chemical ligation under mild conditions enabled by 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP). Org Biomol Chem 2025; 23:4866-4872. [PMID: 40275858 DOI: 10.1039/d5ob00411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We report the chemical ligation of DNA using 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP). CDAP promoted DNA ligation without depurination or undesired side reactions to the nucleobase. Ligation of 3'-phosphate and 5'-hydroxyl termini was achieved at low temperatures with good yield. This study provides a novel method for the synthesis of artificial oligonucleotides.
Collapse
Affiliation(s)
- Hiroki Yamada
- Innovation Center, Research Division, Kyowa Kirin Co., Ltd, 3-6-6 Asahi, Machida, Tokyo 194-8533, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Junichiro Yamamoto
- Research Planning Department, Research Division, Kyowa Kirin Co., Ltd, 3-6-6 Asahi, Machida, Tokyo 194-8533, Japan.
| |
Collapse
|
3
|
Joshi S, Romanens P, Winssinger N. Sequencing of d/l-DNA and XNA by Templated-Synthesis. J Am Chem Soc 2025; 147:6288-6296. [PMID: 39930695 PMCID: PMC11848921 DOI: 10.1021/jacs.5c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Progress in oligonucleotide sequencing has transformed modern biology and medicine. Here we report a fast and efficient enzyme-free primer extension of PNA with reversible chain termination and its application to DNA and XNA sequencing. The approach leverages activated 4-mer PNAs that react in a templated ligation reaction at μM concentrations within minutes. We demonstrate that the fidelity of this enzyme-free primer extension benefits from reactions performed with a mixture of activated PNAs where every 4-mer has its self-complementary 4-mer. The reactions can be performed using the whole repertoire of 4-mers (256 permutations) in a parallelized manner. Using a primer in combination with its -1, -2, and -3 deletion allows for sequencing by MALDI analysis, using the increment in mass for each nucleobase assignment. Given the enzyme-free nature of this sequencing and the achiral nature of PNA, we further demonstrate that the technology can be used to sequence d- or l-DNA as well as LNA and PNA (XNA).
Collapse
Affiliation(s)
- Saurabh Joshi
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Romanens
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
5
|
Krishnamurthy K, Rajendran A, Nakata E, Morii T. Near Quantitative Ligation Results in Resistance of DNA Origami Against Nuclease and Cell Lysate. SMALL METHODS 2024; 8:e2300999. [PMID: 37736703 DOI: 10.1002/smtd.202300999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/23/2023]
Abstract
There have been limited efforts to ligate the staple nicks in DNA origami which is crucial for their stability against thermal and mechanical treatments, and chemical and biological environments. Here, two near quantitative ligation methods are demonstrated for the native backbone linkage at the nicks in origami: i) a cosolvent dimethyl sulfoxide (DMSO)-assisted enzymatic ligation and ii) enzyme-free chemical ligation by CNBr. Both methods achieved over 90% ligation in 2D origami, only CNBr-method resulted in ≈80% ligation in 3D origami, while the enzyme-alone yielded 31-55% (2D) or 22-36% (3D) ligation. Only CNBr-method worked efficiently for 3D origami. The CNBr-mediated reaction is completed within 5 min, while DMSO-method took overnight. Ligation by these methods improved the structural stability up to 30 °C, stability during the electrophoresis and subsequent extraction, and against nuclease and cell lysate. These methods are straightforward, non-tedious, and superior in terms of cost, reaction time, and efficiency.
Collapse
Affiliation(s)
| | - Arivazhagan Rajendran
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
6
|
Okita H, Kondo S, Murayama K, Asanuma H. Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid ( aTNA) for Effective Nonenzymatic Primer Extension. J Am Chem Soc 2023; 145:17872-17880. [PMID: 37466125 PMCID: PMC10436273 DOI: 10.1021/jacs.3c04979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 07/20/2023]
Abstract
Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shuto Kondo
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
8
|
Murayama K, Kashida H, Asanuma H. Methyl group configuration on acyclic threoninol nucleic acids ( aTNAs) impacts supramolecular properties. Org Biomol Chem 2022; 20:4115-4122. [PMID: 35274662 DOI: 10.1039/d2ob00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized acyclic allo-threoninol nucleic acids (allo-aTNAs), artificial xeno-nucleic acids (XNAs) that are diastereomers of acyclic threoninol nucleic acids (aTNAs), and have investigated their supramolecular properties. The allo-aTNAs formed homo-duplexes in an antiparallel manner but with lower thermal stability than DNA, whereas aTNAs formed extremely stable homo-duplexes. The allo-aTNAs formed duplexes with complementary aTNAs and serinol nucleic acid (SNA). The affinities of L-allo-aTNA were the highest for L-aTNA and the lowest for D-aTNA, with SNA being intermediate. The affinities of D-allo-aTNA were the reverse. Circular dichroism measurements revealed that L- and D-allo-aTNAs had weak right-handed and left-handed helicities, respectively. The weak helicity of allo-aTNAs likely explains the poor chiral discrimination of these XNAs, which is in contrast to aTNAs that have strong helical orthogonality. Energy-minimized structures of L-allo-aTNA/RNA and L-allo-aTNA/L-allo-aTNA indicated that the methyl group on the allo-aTNA strand is unfavourable for duplex formation. In contrast, the methyl group on L-aTNA likely stabilizes the duplex structure via hydrophobic effects and van der Waals interactions. Thus, the configuration of the methyl group on the XNA scaffold had an unexpectedly large impact on the hybridization ability and structure.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
9
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
10
|
Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun (Camb) 2022; 58:3993-4004. [DOI: 10.1039/d1cc05868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA and RNA have significance as a genetic materials, therapeutic potential, and supramolecular properties. Advances in nucleic acid chemistry have enabled large-scale synthesis of DNA and RNA oligonucleotides and oligomers...
Collapse
|
11
|
Freund N, Fürst MJLJ, Holliger P. New chemistries and enzymes for synthetic genetics. Curr Opin Biotechnol 2021; 74:129-136. [PMID: 34883451 DOI: 10.1016/j.copbio.2021.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Beyond the natural nucleic acids DNA and RNA, nucleic acid chemistry has unlocked a whole universe of modifications to their canonical chemical structure, which can in various ways modify and enhance nucleic acid function and utility for applications in biotechnology and medicine. Unlike the natural modifications of tRNA and rRNA or the epigenetic modifications in mRNA and genomic DNA, these altered chemistries are not found in nature and therefore these molecules are referred to as xeno-nucleic acids (XNAs). In this review we aim to focus specifically on recent progress in a subsection of this vast field-synthetic genetics-concerned with encoded synthesis, reverse transcription, and evolution of XNAs.
Collapse
Affiliation(s)
- Niklas Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Murayama K, Asanuma H. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers. Chembiochem 2021; 22:2507-2515. [PMID: 33998765 DOI: 10.1002/cbic.202100184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Xeno nucleic acids (XNAs) are analogues of DNA and RNA that have a non-ribose artificial scaffold. XNAs are possible prebiotic genetic carriers as well as alternative genetic systems in artificial life. In addition, XNA oligomers can be used as biological tools. Acyclic XNAs, which do not have cyclic scaffolds, are attractive due to facile their synthesis and remarkably high nuclease resistance. To maximize the performance of XNAs, a negatively charged backbone is preferable to provide sufficient water solubility; however, acyclic XNAs containing polyanionic backbones suffer from high entropy cost upon duplex formation, because of the high flexibility of the acyclic nature. Herein, we review the relationships between the structure and duplex hybridization properties of various acyclic XNA oligomers with polyanion backbones.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|