1
|
Zhou T, Tan Q, Jiang D, He L, Zhang M. Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis. Acc Chem Res 2025; 58:499-515. [PMID: 39823273 DOI: 10.1021/acs.accounts.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed. Among the homoenolate equivalents developed, cyclopropanol stands out due to its intriguing reactivities endowed by the highly strained cyclopropane. Upon activation by a metal, cyclopropyl alcohol is prone to undergo an endocyclic C(sp3)-C(sp3) bond cleavage to give a homoenolate intermediate or a β-keto radical intermediate, which sets the stage for a diverse range of transformations. This account outlines our recent progress in the development of homo-Mannich reaction of cyclopropanol and its applications in natural product total synthesis. This new methodology can be classified into two subtypes: 1) the homo-Mannich reaction of cyclopropanol with imines or iminium ions and 2) the homo-Mannich-type reaction of cyclopropanol with heteroarenes. Through different ways to generate imines or iminium ions, tandem or sequential reactions of C-H oxidation/homo-Mannich, Bischler-Napieralski/homo-Mannich, and asymmetric allylation/homo-Mannich have been developed, leading to the rapid assembly of core scaffolds of sarpagine, koumine, ibophyllidine, Aspidosperma, Melodinus, and Kopsia alkaloids. Besides the reactions with imines or iminium ions, cyclopropyl alcohol can undergo ring-opening addition to indole and pyrrole rings to deliver core scaffolds of schizozygane and indolizidine alkaloids. Based on these methodology advancements, we have accomplished the asymmetric synthesis of 29 alkaloids belonging to 8 families. In this Account, we present a complete picture of our works concerning synthetic design, method development, and applications in natural product total synthesis. It is anticipated that the development of new methodologies of cyclopropyl alcohol will find broad applications in the realm of natural product synthesis.
Collapse
Affiliation(s)
- Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Zhang X, Song Y, Li R, Sun Z. Application of the LADA Strategy for the Synthesis of Styrylalanine through Photocatalytic Addition to Alkenylboronic Acids. Org Lett 2024; 26:10299-10302. [PMID: 39582176 DOI: 10.1021/acs.orglett.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Unnatural amino acids (UAAs) are highly valuable building blocks in organic synthesis, pharmaceuticals, and material sciences. Previously, we developed the LADA strategy for the synthesis of UAAs. Herein, we further expanded the scope of this strategy to alkenylboronic acids. Interestingly, both photoinduced single-electron transfer (SET) and energy transfer (EnT) processes were involved in this reaction, and the E/Z ratio of the products could be changed upon reaction condition.
Collapse
Affiliation(s)
- Xue Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yang Song
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, People's Republic of China
| | - Ruining Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhankui Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Wang JC, Sun T, Zhang J, Chen Z, Du JQ, Kan JL, Dong YB. Construction of covalent organic frameworks via the Mannich reaction at room temperature for light-driven oxidative hydroxylation of arylboronic acids. Chem Sci 2024:d4sc04358h. [PMID: 39464613 PMCID: PMC11499953 DOI: 10.1039/d4sc04358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
An increasing variety of organic reactions have been developed for the synthesis of more structurally stable and multifunctional COFs. Here, we report a class of β-ketamine linked covalent organic frameworks that were constructed through the CeCl3-catalyzed multi-component Mannich reaction at room temperature. And the TAD-COF obtained based on this method could significantly promote the light-driven oxidative hydroxylation of arylboronic acids.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Ting Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
4
|
Chen H, Kim S, Ting CP. Total Synthesis of (±)-3-Thiaglutamate. Tetrahedron Lett 2024; 149:155246. [PMID: 39295961 PMCID: PMC11407705 DOI: 10.1016/j.tetlet.2024.155246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The total synthesis of (±)-3-thiaglutamate is reported. Central to our strategy is an thiol addition to an imine to form the thioaminal of the natural product. The resulting thioaminal product is then subjected to triflic acid global deprotection to produce 3-thiaglutamate as a triflate salt. This work constitutes the first total synthesis of 3-thiaglutamate and demonstrates that the hemithioaminal group in 3-thiaglutamate can be stabilized under acidic conditions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| | - Sohjeong Kim
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| | - Chi P Ting
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| |
Collapse
|
5
|
Hu L, Li R, Liu Y, Zhou J, Sun Z. Photocatalytic Synthesis of α-Ketonyl Glycosyl Compounds from Glycosyl Thiols and Silyl Enol Ethers. Org Lett 2024; 26:8188-8193. [PMID: 39297709 DOI: 10.1021/acs.orglett.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of C1-ketonyl glycosyl compounds featuring α-selectivity has seldom been reported. We herein devise a glycosyl radical-based approach to facilely access stereoenriched ketonyl glycosyl compounds via an Ir photoredox-catalyzed desulfurative addition to silyl enol ethers, using in situ-generated tetrafluoropyridinyl thioglycosides from glycosyl 1-thiols as radical precursors. This protocol features readily prepared starting materials, mild conditions, excellent functional group tolerance, satisfactory scale-up, and notable amenability to late-stage modification of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunqi Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junliang Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhankui Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Guo HM, Wang JJ, Xiong Y, Wu X. Visible-Light-Driven Multicomponent Reactions for the Versatile Synthesis of Thioamides by Radical Thiocarbamoylation. Angew Chem Int Ed Engl 2024; 63:e202409605. [PMID: 38975961 DOI: 10.1002/anie.202409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jia-Jin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Liu X, Liu Y, Gibson LD, Ge M, Olds D, Leshchev D, Bai J, Plonka AM, Halstenberg P, Zhong H, Ghose S, Lin CH, Zheng X, Xiao X, Lee WK, Dai S, Samolyuk GD, Bryantsev VS, Frenkel AI, Chen-Wiegart YCK. Exploring Cr and molten salt interfacial interactions for molten salt applications. Phys Chem Chem Phys 2024; 26:21342-21356. [PMID: 38829308 DOI: 10.1039/d4cp01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed. This work studies the transformation of metallic Cr in molten 50/50 mol% KCl-MgCl2via multi-modal in situ synchrotron X-ray nano-tomography, diffraction and spectroscopy combined with density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Notably, in addition to the dissolution of Cr in the molten salt to form porous structures, a δ-A15 Cr phase was found to gradually form as a result of the metal-salt interaction. This phase change of Cr is associated with a change in the coordination environment of Cr at the interface. DFT and AIMD simulations provide a basis for understanding the enhanced stability of δ-A15 Cr vs. bcc Cr, by revealing their competitive phase thermodynamics at elevated temperatures and probing the interfacial behavior of the molten salt at relevant facets. This study provides critical insights into the morphological and chemical evolution of metal-molten salt interfaces. The combination of multimodal synchrotron analysis and atomic simulation also offers an opportunity to explore a broader range of systems critical to energy applications.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Yang Liu
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Luke D Gibson
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mingyuan Ge
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Daniel Olds
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Denis Leshchev
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Jianming Bai
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Anna M Plonka
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Phillip Halstenberg
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Hui Zhong
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Sanjit Ghose
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Cheng-Hung Lin
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Xiaoyin Zheng
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Xianghui Xiao
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Wah-Keat Lee
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - German D Samolyuk
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Anatoly I Frenkel
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Yu-Chen Karen Chen-Wiegart
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
8
|
Hu X, Zhong K, Ruan Z. Tunable electrochemical diverse sulfurization of sulfoxonium ylides with disulfides. Chem Commun (Camb) 2024; 60:8573-8576. [PMID: 39045622 DOI: 10.1039/d4cc02479f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An electrochemical protocol for the synthesis of sulfursulfoxonium ylides and 1,3-dithioketals by reacting sulfoxonium ylides with disulfides has been developed under simple and mild conditions. By changing the solubility of the raw materials and the dielectric parameters of the electrolyte, sulfurization enabled a selective dehydrogenation of C-S and the construction of 1,3-dithioketals. The transformation is an ideal approach to prepare organosulfur reagents with a broad functional group tolerance as well as high selectivity, which leads to vicinal difunctionalized organosulfur compounds.
Collapse
Affiliation(s)
- Xinwei Hu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Kaihui Zhong
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zhixiong Ruan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| |
Collapse
|
9
|
Rahaman S, Sahay SS, Kumari A, Dey S. Multicomponent Cross-Dehydrogenative Coupling of Imidazo[1,2- a]pyridine: Access to Abnormal Mannich and Mannich-Type Reaction. J Org Chem 2024; 89:10773-10784. [PMID: 39017591 DOI: 10.1021/acs.joc.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study showcases successfully switchable approaches to accomplish the C3-aryl methylation and C3- amino methylation of privileged nitrogen-containing pharmaceutical compounds "imidazopyridines" with distinct amines, which surmounts the long-standing requirement for a superfluous directing group. These two transformations manifest pronounced regio- and chemo-divergent behavior, successfully demonstrating unprecedented multicomponent "abnormal Mannich and Mannich-type" reactions. The remarkable environmentally benign protocol has been efficiently extended to concise the synthesis and late-stage derivatization.
Collapse
Affiliation(s)
- Segufa Rahaman
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Suhag Singh Sahay
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Annu Kumari
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Swapan Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| |
Collapse
|
10
|
Liu Y, Zhou X, Li R, Sun Z. Photocatalytic Synthesis of γ,γ-Difluoroallylic Ketones and δ,δ-Difluoroallylic Ketones via a Desulfurative/Defluorinative Alkylation Process. Org Lett 2024; 26:6424-6427. [PMID: 39041637 DOI: 10.1021/acs.orglett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The gem-difluoroalkene moiety is frequently found in medicinal chemistry. From α-keton sulfides and thioic acids, we were able to develop a universal approach for the synthesis of γ,γ-difluoroallylic ketones and δ,δ-difluoroallylic ketones via a desulfurative/defluorinative alkylation process. We expect that this mild and efficient method will be complementary to other known strategies.
Collapse
Affiliation(s)
- Yunqi Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiyan Zhou
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Ruining Li
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Zhang X, Li R, Sun Z. Synthesis of Unsymmetrical 1,6-Dicarbonyl Compounds through Photocatalytic One-Pot Tandem Three-Component Reaction. Org Lett 2024; 26:2585-2589. [PMID: 38517195 DOI: 10.1021/acs.orglett.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Unsymmetrical 1,6-dicarbonyl compounds are useful building blocks in organic synthesis. However, the synthetic methods are limited. Herein we report a three-component one-pot reaction for the synthesis of unsymmetrical 1,6-diketones. This reaction utilizes sulfides as radical precursors and enol ethers as building blocks. It takes advantage of photocatalysis and Lewis acid catalysis. Its synthetic utility was demonstrated in the modification of biorelevant compounds.
Collapse
Affiliation(s)
- Xue Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruining Li
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
13
|
Zhang Z, Meng XJ, Cui FH, Tang HT, Wang YC, Huang GB, Pan YM. Electrochemically Promoted Three-Component Reaction to N-Sulfonyl Amidines. Org Lett 2024; 26:193-197. [PMID: 38147844 DOI: 10.1021/acs.orglett.3c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, a multicomponent reaction via the Mannich intermediate was developed using methanol, secondary amine, and sulfonamide as starting materials. This method uses methanol as a green C1 source. The substrate scope is wide, and the yield is good. The mechanistic study shows that methanol generates formaldehyde under electrochemical conditions, and sulfonyl amidine as a nucleophile reacts with Schiff base intermediates to form N-sulfonyl amidine in a single step.
Collapse
Affiliation(s)
- Zhang Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Xiu-Jin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fei-Hu Cui
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Guo-Bao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
14
|
Ma Y, Deng J, Gu J, Jiang D, Lv K, Ye X, Yao Q. Recent progress in photoinduced direct desulfurization of thiols. Org Biomol Chem 2023; 21:7873-7879. [PMID: 37750040 DOI: 10.1039/d3ob01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The reduction of mercaptans plays an important role in diverse areas such as protein synthesis, polymer science, environmental study, and pharmaceutical chemistry. Despite significant advancements in this area, particularly in light-induced transformations, review articles have rarely been reported on this topic. Thus, this review article emphasizes the direct photoinduced desulfurization and functionalization of thiols to alkanes or coupling products, with a focus on significant advancements made in the last decade. The progress is discussed according to the types of bonds formed from the cleavage of Csp3-SH bonds.
Collapse
Affiliation(s)
- Yuhong Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jinfei Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jianyu Gu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Dengbo Jiang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Kaizhuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
15
|
Jiang D, Tang P, Xiong H, Lei S, Zhang Y, Zhang C, He L, Qiu H, Zhang M. A Homo-Mannich Reaction Strategy Enables Collective Access to Ibophyllidine, Aspidosperma, Kopsia, and Melodinus Alkaloids. Angew Chem Int Ed Engl 2023; 62:e202307286. [PMID: 37490018 DOI: 10.1002/anie.202307286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
We report here a homo-Mannich reaction of cyclopropanol with an iminium ion, generated by an asymmetric allylic dearomatization of indole, to construct a tricyclic hydrocarbazole core, which is shared by a variety of monoterpenoid indole alkaloids across families. Through this approach, an all-carbon quaternary stereogenic center as well as an allyl and a ketone group were installed. Using this functionalized hydrocarbazole as the structural platform, D ring and E rings of different sizes (i.e., five-, six-, and seven-membered) were successively or simultaneously assembled, leading to a collective asymmetric synthesis of seven alkaloids belonging to the ibophyllidine, Aspidosperma, Kopsia, and Melodinus alkaloid families.
Collapse
Affiliation(s)
- Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Peng Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Hongbing Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Shuai Lei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yulian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Chongzhou Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| |
Collapse
|
16
|
Ahmed LR, Chuang CH, Lüder J, Yang HW, EL-Mahdy AFM. Direct Metal-Free Synthesis of Uracil- and Pentaazaphenalene-Functionalized Porous Organic Polymers via Quadruple Mannich Cyclization and Their Nucleobase Recognition Activities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lamiaa Reda Ahmed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Center for Theoretical and computational Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Mammadbayli EH, Ismayilova SV, Hajiyeva GA, Jafarova NA, Suleymanova EI. Synthesis and Antimicrobial Activity of Cyclohexane-Containing Mannich Bases Derived from Secondary Amines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Iftikhar R, Zahoor AF, Ahmad S, Haq AU, Naheed S. Revisiting the Synthesis of Betti Bases: Facile, One-pot, and Efficient Synthesis of Betti Bases Promoted by FeCl 3•6H 2O. Curr Org Synth 2022; 19:569-577. [PMID: 35086451 DOI: 10.2174/1570179419666220127144352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Betti bases are pharmaceutically and synthetically important scaffolds due to their diverse range of biological activities and applications in key synthetic transformations in organic synthesis. OBJECTIVE This work has been sought to contribute to the development, design, and implementation of an improved green methodology with higher atom economy and lower E-factor values for the synthesis of Betti bases. METHODS To realize our objectives, we screened out different catalysts and reaction conditions using one-pot multicomponent modified Mannich reaction/Betti reaction by employing 2-naphthol, benzaldehyde and pyrrolidine as model substrates. RESULTS The developed methodology afforded functionalized Betti bases in 60-100% yields via FeCl3•6H2O catalyzed one-pot multi-component Betti reaction under neat conditions at 110 °C (5-15 min) using several aromatic aldehydes and secondary amines. CONCLUSION A facile synthetic methodology with higher atom economy and lower E-factor values to synthesize Betti bases via FeCl3•6H2O catalyzed one-pot multicomponent Betti reaction of 2-naphthol, aromatic aldehydes, and secondary amines under neat conditions at 110 °C has been reported. The developed methodology offers various advantages, such as excellent yields (60-100%), short reaction time (5-15 min), wide substrate scope (12 examples), green reaction conditions, use of readily available catalyst, and easy purification (without column chromatography).
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000-Faisalabad, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad, Pakistan
| |
Collapse
|
19
|
Liu GX, Liang HC, Fu X, Tang J, Hu WH, Qiu H. Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of γ-Amino Acid Derivatives. Org Lett 2022; 24:4908-4913. [PMID: 35793070 DOI: 10.1021/acs.orglett.2c01751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A photoredox-catalyzed reaction of secondary amines, aldehydes, diazo compounds, and Hantzsch ester is reported, affording biologically active γ-amino acid derivatives in high yields. This one-pot process tolerates a broad range of functional groups and various drug molecules and biologically active compounds. Remarkably, a gram-scale reaction and diverse transformations of γ-amino acid derivatives were successfully performed, and the utility of the products is demonstrated in the synthesis of therapeutic agent pregabalin.
Collapse
Affiliation(s)
- Geng-Xin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao-Cheng Liang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Hao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Wan C, Yang D, Qin X, Xue Z, Guo X, Hou Z, Jiang C, Yin F, Wang R, Li Z. Flavin catalyzed desulfurization of peptides and proteins in aqueous media. Org Biomol Chem 2022; 20:4105-4109. [PMID: 35546316 DOI: 10.1039/d2ob00641c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic method has been established for the chemo-selective desulfurization of cysteinyl peptides and proteins in aqueous media. The derivatives of biocatalytic cofactors, flavins, were found to be efficient photosensitizers in a thiyl-radical-mediated desulfurization of Cys. The reaction was conducted in an ultrafast manner with both polypeptides and proteins.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Ziyi Xue
- College of chemistry & chemical engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Chenran Jiang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Feng Yin
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Rui Wang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China. .,Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| |
Collapse
|
21
|
Hu L, Li R, Deng W, Sun Z. Visible-light induced green synthesis of γ-deuterated carbonyl compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Guo HM, He BQ, Wu X. Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols. Org Lett 2022; 24:3199-3204. [PMID: 35467887 DOI: 10.1021/acs.orglett.2c00889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this report, we identify xanthate salts as a unique class of visible-light-excitable alkyl radical precursors that act simultaneously as strong photoreductants and alkyl radical sources. Upon direct photoexcitation of xanthate anions, efficient deoxygenative alkenylation and alkylation of a wide range of primary, secondary, and tertiary alcohols have been achieved via a one-pot protocol, avoiding any photocatalysts. This method exhibits a broad substrate scope and good functional group tolerance, enabling late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Hf(OTf) 4-Catalyzed Three-Component Synthesis of N-Carbamate-Protected β-Amino Ketones. Molecules 2022; 27:molecules27031122. [PMID: 35164390 PMCID: PMC8840004 DOI: 10.3390/molecules27031122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hafnium(IV) triflate (Hf(OTf)4) has been identified as a potent catalyst for the direct three-component synthesis of β-carbamate ketones. This new method, featuring a low catalyst loading, fast reaction rate, and solvent-free conditions, provided facile access to a diversity of carbamate-protected Mannich bases. A mechanistic investigation indicated that the three-component reaction proceeds via sequential aldol condensation and aza-Michael addition, but not the Mannich-type pathway.
Collapse
|
24
|
Liu H, Yang H, Zhu K, Peng F, Guo L, Qi H. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection. MATERIALS HORIZONS 2022; 9:815-824. [PMID: 34908090 DOI: 10.1039/d1mh01783g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excessive exposure to ultraviolet (UV) light is harmful to human health. However, the traditional preparation of anti-UV films through the doping of UV absorbers leads to unstable products. Chemical modification of polyvinyl alcohol (PVA) to fabricate functional derivatives expand the application of these materials. Herein, a 1,4-dihydropyridine (DHP) fluorescent ring with a conjugated structure as a strong UV-absorber group was introduced onto a polyvinyl alcohol acetoacetate (PVAA) film to improve its UV-blocking performance. Firstly, PVAA was prepared via transesterification using tert-butyl acetoacetate (t-BAA). Then, the Hantzsch reaction was carried out on the surface of the PVAA film at room temperature. The resulting film showed high transparency, bright fluorescence emission, good mechanical properties, and outstanding stability. The introduction of the hydrophobic carbon chain reduced the hydrophilicity and swelling capacity of the PVAA film. In addition, the conjugated structure endowed the fluorescent film with excellent UV-blocking performance, where almost 100% UVA and UVB spectra could be shielded. The UV-blocking properties of the prepared films were persistent when they were exposed to UV irradiation, solvents, and subjected to thermal treatment. This work presents a facile and environmentally-friendly strategy by which to fabricate a multifunctional PVA-based film, which holds great potential for application in the anti-counterfeiting and UV-blocking fields.
Collapse
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hongying Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
25
|
Muthumanickam S, Thennila M, Yuvaraj P, Lingam KAP, Selvakumar K. An Efficient Synthesis of Heterogeneous and Hard Bound Ti
IV
‐MCM‐41 Catalyzed Mannich Bases and π‐Conjugated Imines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Thennila
- Department of Physics Sethu Institute of Technology Virudhunagar 626115 . Tamilnadu India
| | - Paneerselvam Yuvaraj
- CSIR-North East Institute of Science & Technology Branch Laboratory Lamphelpat Imphal Manipur 795004 India
| | | | | |
Collapse
|
26
|
Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. Site-Selective α-C-H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:18952-18959. [PMID: 34738467 DOI: 10.1021/jacs.1c07144] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trialkylamines are widely found in naturally occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and preclinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective α-C(sp3)-H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery, and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between α-amino C(sp3)-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3)-C(sp3) bond with the more-crowded α-amino radical, with the overall selectivity guided by the Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C-C bonds from a diverse set of trialkylamines with high levels of site selectivity and preparative utility. Simple correlation of site selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, hold potential to streamline complex trialkylamine synthesis and accelerate small-molecule drug discovery.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | | | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Shen Y, Rovis T. Late-Stage N-Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis. J Am Chem Soc 2021; 143:16364-16369. [PMID: 34590864 PMCID: PMC8862118 DOI: 10.1021/jacs.1c08157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diversity and wide availability of trialkylamines render them ideal sources for rapid construction of complex amine architectures. Herein, we report that a nickel/photoredox dual catalysis strategy affects site-selective α-arylation of various trialkylamines. Our catalytic system shows exclusive N-Me selectivity with a wide range of trialkylamines under mild conditions, even in the context of late-stage arylation of pharmaceutical compounds bearing this common structural motif. Mechanistic studies indicate the unconventional behavior of Ni catalyst upon intercepting the α-amino radicals, in which only the primary α-amino radical undergoes a successful cross-coupling process.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nat Commun 2021; 12:5365. [PMID: 34508098 PMCID: PMC8433232 DOI: 10.1038/s41467-021-25702-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The delivery of alkyl radicals through photocatalytic deoxygenation of primary alcohols under mild conditions is a so far unmet challenge. In this report, we present a one-pot strategy for deoxygenative Giese reaction of alcohols with electron-deficient alkenes, by using xanthate salts as alcohol-activating groups for radical generation under visible-light photoredox conditions in the presence of triphenylphosphine. The convenient generation of xanthate salts and high reactivity of sequential C–S/C–O bond homolytic cleavage enable efficient deoxygenation of primary, secondary and tertiary alcohols with diverse functionality and structure to generate the corresponding alkyl radicals, including methyl radical. Moreover, chemoselective radical monodeoxygenation of diols is achieved via selective formation of xanthate salts. The generation of alkyl radicals through deoxygenation of abundant alcohols via photoredox catalysis is of interest. In this study, the authors report a one-pot strategy for visible-light-promoted photoredox coupling of alcohols with electron-deficient alkenes, assisted by carbon disulfide and triphenylphosphine.
Collapse
|
29
|
Dong Y, Li R, Zhou J, Sun Z. Synthesis of Unsymmetrical 1,4-Dicarbonyl Compounds by Photocatalytic Oxidative Radical Additions. Org Lett 2021; 23:6387-6390. [PMID: 34339208 DOI: 10.1021/acs.orglett.1c02208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report a photocatalytic oxidative radical addition reaction for the synthesis of unsymmetrical 1,4-dicarbonyl compounds. This reaction utilizes a desulfurization process to generate electrophilic radicals, which add to α-halogenated alkenes and undergo further oxidation to deliver 1,4-dicarbonyl compounds. This mild and highly efficient method provides a valuable alternative to known strategies.
Collapse
Affiliation(s)
- Ya Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Junliang Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|