1
|
Studying past sea level change is key to understanding ongoing and future sea level rise. Nat Commun 2025; 16:3540. [PMID: 40229282 PMCID: PMC11997112 DOI: 10.1038/s41467-025-58814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
|
2
|
Hijma MP, Bradley SL, Cohen KM, van der Wal W, Barlow NLM, Blank B, Frechen M, Hennekam R, van Heteren S, Kiden P, Mavritsakis A, Meijninger BML, Reichart GJ, Reinhardt L, Rijsdijk KF, Vink A, Busschers FS. Global sea-level rise in the early Holocene revealed from North Sea peats. Nature 2025; 639:652-657. [PMID: 40108319 PMCID: PMC11922766 DOI: 10.1038/s41586-025-08769-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Rates of relative sea-level rise during the final stage of the last deglaciation, the early Holocene, are key to understanding future ice melt and sea-level change under a warming climate1. Data about these rates are scarce2, and this limits insight into the relative contributions of the North American and Antarctic ice sheets to global sea-level rise during the early Holocene. Here we present an early Holocene sea-level curve based on 88 sea-level data points (13.7-6.2 thousand years ago (ka)) from the North Sea (Doggerland3,4). After removing the pattern of regional glacial isostatic adjustment caused by the melting of the Eurasian Ice Sheet, the residual sea-level signal highlights two phases of accelerated sea-level rise. Meltwater sourced from the North American and Antarctic ice sheets drove these two phases, peaking around 10.3 ka and 8.3 ka with rates between 8 mm yr-1 and 9 mm yr-1. Our results also show that global mean sea-level rise between 11 ka and 3 ka amounted to 37.7 m (2σ range, 29.3-42.2 m), reconciling the mismatch that existed between estimates of global mean sea-level rise based on ice-sheet reconstructions and previously limited early Holocene sea-level data. With its broad spatiotemporal coverage, the North Sea dataset provides critical constraints on the patterns and rates of the late-stage deglaciation of the North American and Antarctic ice sheets, improving our understanding of the Earth-system response to climate change.
Collapse
Affiliation(s)
- Marc P Hijma
- Department of Subsurface Systems and Technologies, Deltares, Utrecht, The Netherlands.
- Department of Soil Geography and Landscape, Wageningen University and Research, Wageningen, The Netherlands.
| | - Sarah L Bradley
- School of Geography and Planning, University of Sheffield, Sheffield, UK
| | - Kim M Cohen
- Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Wouter van der Wal
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Bas Blank
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Manfred Frechen
- Department of Geochronology, LIAG Institute for Applied Geophysics, Hannover, Germany
| | - Rick Hennekam
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), 't Horntje, The Netherlands
| | - Sytze van Heteren
- TNO - Geological Survey of the Netherlands, Utrecht, The Netherlands
| | - Patrick Kiden
- TNO - Geological Survey of the Netherlands, Utrecht, The Netherlands
| | - Antonis Mavritsakis
- Department of Safe and Resilient Infrastructure, Deltares, Delft, The Netherlands
| | | | - Gert-Jan Reichart
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), 't Horntje, The Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lutz Reinhardt
- Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany
| | - Kenneth F Rijsdijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemiek Vink
- Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany
| | - Freek S Busschers
- TNO - Geological Survey of the Netherlands, Utrecht, The Netherlands
| |
Collapse
|
3
|
Nekola JC, Divíšek J, Horsák M. The ghost of ice ages past: Impact of Last Glacial Maximum landscapes on modern biodiversity. iScience 2024; 27:111272. [PMID: 39628579 PMCID: PMC11613197 DOI: 10.1016/j.isci.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas. Because appropriate modern climate occurs for these species throughout the Holarctic, with no clear barriers being present-especially for such efficient passive dispersers-the current >90% turnover observed between Eurasian and North American species pools appears at least in part related to the LGM landscape. Understanding current and predicting potential future biodiversity patterns thus requires consideration of the landscape template across at least 15,000 years time scales.
Collapse
Affiliation(s)
- Jeffrey C. Nekola
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Michal Horsák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
4
|
An Z, Zhou W, Zhang Z, Zhang X, Liu Z, Sun Y, Clemens SC, Wu L, Zhao J, Shi Z, Ma X, Yan H, Li G, Cai Y, Yu J, Sun Y, Li S, Zhang Y, Stepanek C, Lohmann G, Dong G, Cheng H, Liu Y, Jin Z, Li T, Hao Y, Lei J, Cai W. Mid-Pleistocene climate transition triggered by Antarctic Ice Sheet growth. Science 2024; 385:560-565. [PMID: 39088600 DOI: 10.1126/science.abn4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/06/2023] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
Despite extensive investigation, the nature and causes of the Mid-Pleistocene Transition remain enigmatic. In this work, we assess its linkage to asynchronous development of bipolar ice sheets by synthesizing Pleistocene mid- to high-latitude proxy records linked to hemispheric ice sheet evolution. Our results indicate substantial growth of the Antarctic Ice Sheets (AISs) at 2.0 to 1.25 million years ago, preceding the rapid expansion of Northern Hemisphere Ice Sheets after ~1.25 million years ago. Proxy-model comparisons suggest that AIS and associated Southern Ocean sea ice expansion can induce northern high-latitude cooling and enhanced moisture transport to the Northern Hemisphere, thus triggering the Mid-Pleistocene Transition. The dynamic processes involved are crucial for assessing modern global warming that is already inducing asynchronous bipolar melting of ice sheets.
Collapse
Affiliation(s)
- Zhisheng An
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing 100875, China
| | - Weijian Zhou
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing 100875, China
| | - Zeke Zhang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Earth and Planetary Sciences, Nanjing University, Nanjing 210023, China
| | - Xu Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Zhonghui Liu
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Youbin Sun
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Steven C Clemens
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Lixin Wu
- Laoshan Laboratory, Qingdao 266000, China
- Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
| | - Jiaju Zhao
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhengguo Shi
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaolin Ma
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hong Yan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gaojun Li
- Department of Earth and Planetary Sciences, Nanjing University, Nanjing 210023, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jimin Yu
- Laoshan Laboratory, Qingdao 266000, China
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Yuchen Sun
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Siqi Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu'ao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Christian Stepanek
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Gerrit Lohmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Guocheng Dong
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hai Cheng
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Liu
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zhangdong Jin
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Li
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yifei Hao
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jing Lei
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Wenju Cai
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Laoshan Laboratory, Qingdao 266000, China
- Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Masoum A, Nerger L, Willeit M, Ganopolski A, Lohmann G. Paleoclimate data assimilation with CLIMBER-X: An ensemble Kalman filter for the last deglaciation. PLoS One 2024; 19:e0300138. [PMID: 38573935 PMCID: PMC10994341 DOI: 10.1371/journal.pone.0300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Using the climate model CLIMBER-X, we present an efficient method for assimilating the temporal evolution of surface temperatures for the last deglaciation covering the period 22000 to 6500 years before the present. The data assimilation methodology combines the data and the underlying dynamical principles governing the climate system to provide a state estimate of the system, which is better than that which could be obtained using just the data or the model alone. In applying an ensemble Kalman filter approach, we make use of the advances in the parallel data assimilation framework (PDAF), which provides parallel data assimilation functionality with a relatively small increase in computation time. We find that the data assimilation solution depends strongly on the background evolution of the decaying ice sheets rather than the assimilated temperatures. Two different ice sheet reconstructions result in a different deglacial meltwater history, affecting the large-scale ocean circulation and, consequently, the surface temperature. We find that the influence of data assimilation is more pronounced on regional scales than on the global mean. In particular, data assimilation has a stronger effect during millennial warming and cooling phases, such as the Bølling-Allerød and Younger Dryas, especially at high latitudes with heterogeneous temperature patterns. Our approach is a step toward a comprehensive paleo-reanalysis on multi-millennial time scales, including incorporating available paleoclimate data and accounting for their uncertainties in representing regional climates.
Collapse
Affiliation(s)
- Ahmadreza Masoum
- Section Paleoclimate Dynamics, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Lars Nerger
- Section Paleoclimate Dynamics, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Matteo Willeit
- Department of Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Andrey Ganopolski
- Department of Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Gerrit Lohmann
- Section Paleoclimate Dynamics, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Held F, Cheng H, Edwards RL, Tüysüz O, Koç K, Fleitmann D. Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye. Nat Commun 2024; 15:1183. [PMID: 38331936 PMCID: PMC10853552 DOI: 10.1038/s41467-024-45507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The last glacial period is characterized by abrupt climate oscillations, also known as Dansgaard-Oeschger (D-O) cycles. However, D-O cycles remain poorly documented in climate proxy records covering the penultimate glacial period. Here we present highly resolved and precisely dated speleothem time series from Sofular Cave in northern Türkiye to provide clear evidence for D-O cycles during Marine Isotope Stage (MIS) 6 as well as MIS 2-4. D-O cycles are most clearly expressed in the Sofular carbon isotope time series, which correlate inversely with regional sea surface temperature (SST) records from the Black Sea. The pacing of D-O cycles is almost twice as long during MIS 6 compared to MIS 2-4, and could be related to a weaker Atlantic Meridional Overturning Circulation (AMOC) and a different mean climate during MIS 6 compared to MIS 2-4, leading most likely to a higher threshold for the occurrence of D-O cycles.
Collapse
Affiliation(s)
- F Held
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland.
| | - H Cheng
- Institute of Global Environmental Change, Xi'an Jiaotong University, 710054, Xi'an, China
| | - R L Edwards
- Department of Earth and Environmental Sciences, University of Minnesota, 55455, Minneapolis, USA
| | - O Tüysüz
- Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469, Istanbul, Türkiye
| | - K Koç
- Department of Geological Engineering, Akdeniz University, 07058, Antalya, Türkiye
| | - D Fleitmann
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Ro S, Park J, Yoo H, Han C, Lee A, Lee Y, Kim M, Han Y, Svensson A, Shin J, Ro CU, Hong S. Millennial-scale variability of Greenland dust provenance during the last glacial maximum as determined by single particle analysis. Sci Rep 2024; 14:2040. [PMID: 38263283 PMCID: PMC10805741 DOI: 10.1038/s41598-024-52546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Greenland ice core records exhibited 100-fold higher dust concentrations during the Last Glacial Maximum (LGM) than during the Holocene, and dust input temporal variability corresponded to different climate states in the LGM. While East Asian deserts, the Sahara, and European loess have been suggested as the potential source areas (PSAs) for Greenland LGM dust, millennial-scale variability in their relative contributions within the LGM remains poorly constrained. Here, we present the morphological, mineralogical, and geochemical characteristics of insoluble microparticles to constrain the provenance of dust in Greenland NEEM ice core samples covering cold Greenland Stadials (GS)-2.1a to GS-3 (~ 14.7 to 27.1 kyr ago) in the LGM. The analysis was conducted on individual particles in microdroplet samples by scanning electron microscopy with energy dispersive X-ray spectroscopy and Raman microspectroscopy. We found that the kaolinite-to-chlorite (K/C) ratios and chemical index of alteration (CIA) values were substantially higher (K/C: 1.4 ± 0.7, CIA: 74.7 ± 2.9) during GS-2.1a to 2.1c than during GS-3 (K/C: 0.5 ± 0.1, CIA: 65.8 ± 2.8). Our records revealed a significant increase in Saharan dust contributions from GS-2.1a to GS-2.1c and that the Gobi Desert and/or European loess were potential source(s) during GS-3. This conclusion is further supported by distinctly different carbon contents in particles corresponding to GS-2.1 and GS-3. These results are consistent with previous estimates of proportional dust source contributions obtained using a mixing model based on Pb and Sr isotopic compositions in NEEM LGM ice and indicate millennial-scale changes in Greenland dust provenance that are probably linked to large-scale atmospheric circulation variabilities during the LGM.
Collapse
Affiliation(s)
- Seokhyun Ro
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Division of Glacial Environment Research, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Jonghyeon Park
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Marine Environment Research Department, Ara Consulting and Technology, 30 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Hanjin Yoo
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Particle Pollution Research and Management Center, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Changhee Han
- Department of Water Environmental Safety Management, Korea Water Resources Corporation, 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Ahhyung Lee
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Unit of Frontier Exploration, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Yoojin Lee
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Minjeong Kim
- Division of Glacial Environment Research, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Yeongcheol Han
- Division of Glacial Environment Research, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Anders Svensson
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Julian 10 Maries Vej 30, 2100, Copenhagen, Denmark
| | - Jinhwa Shin
- Division of Glacial Environment Research, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Chul-Un Ro
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
- Particle Pollution Research and Management Center, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea.
| | - Sungmin Hong
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
9
|
Kandel AW, Sommer C, Kanaeva Z, Bolus M, Bruch AA, Groth C, Haidle MN, Hertler C, Heß J, Malina M, Märker M, Hochschild V, Mosbrugger V, Schrenk F, Conard NJ. The ROCEEH Out of Africa Database (ROAD): A large-scale research database serves as an indispensable tool for human evolutionary studies. PLoS One 2023; 18:e0289513. [PMID: 37527270 PMCID: PMC10393170 DOI: 10.1371/journal.pone.0289513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Large scale databases are critical for helping scientists decipher long-term patterns in human evolution. This paper describes the conception and development of such a research database and illustrates how big data can be harnessed to formulate new ideas about the past. The Role of Culture in Early Expansions of Humans (ROCEEH) is a transdisciplinary research center whose aim is to study the origins of culture and the multifaceted aspects of human expansions across Africa and Eurasia over the last three million years. To support its research, the ROCEEH team developed an online tool named the ROCEEH Out of Africa Database (ROAD) and implemented its web-based applications. ROAD integrates geographical data as well as archaeological, paleoanthropological, paleontological and paleobotanical content within a robust chronological framework. In fact, a unique feature of ROAD is its ability to dynamically link scientific data both spatially and temporally, thereby allowing its reuse in ways that were not originally conceived. The data stem from published sources spanning the last 150 years, including those generated by the research team. Descriptions of these data rely on the development of a standardized vocabulary and profit from online explanations of each table and attribute. By synthesizing legacy data, ROAD facilitates the reuse of heritage data in novel ways. Database queries yield structured information in a variety of interoperable formats. By visualizing data on maps, users can explore this vast dataset and develop their own theories. By downloading data, users can conduct further quantitative analyses, for example with Geographic Information Systems, modeling programs and artificial intelligence. In this paper, we demonstrate the innovative nature of ROAD and show how it helps scientists studying human evolution to access datasets from different fields, thereby connecting the social and natural sciences. Because it permits the reuse of "old" data in new ways, ROAD is now an indispensable tool for researchers of human evolution and paleogeography.
Collapse
Affiliation(s)
- Andrew W Kandel
- The Role of Culture in Early Expansions of Humans, Heidelberg Academy of Sciences and Humanities, Tübingen, Germany
| | - Christian Sommer
- The Role of Culture in Early Expansions of Humans, Heidelberg Academy of Sciences and Humanities, Tübingen, Germany
| | - Zara Kanaeva
- The Role of Culture in Early Expansions of Humans, Heidelberg Academy of Sciences and Humanities, Tübingen, Germany
| | - Michael Bolus
- The Role of Culture in Early Expansions of Humans, Heidelberg Academy of Sciences and Humanities, Tübingen, Germany
- Department of Geosciences, Working Group Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | - Angela A Bruch
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Claudia Groth
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Miriam N Haidle
- Department of Geosciences, Working Group Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Christine Hertler
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Julia Heß
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Maria Malina
- The Role of Culture in Early Expansions of Humans, Heidelberg Academy of Sciences and Humanities, Tübingen, Germany
| | - Michael Märker
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Working Group on "Soil Erosion and Feedbacks", Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Hochschild
- Institute of Geography, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Volker Mosbrugger
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Friedemann Schrenk
- The Role of Culture in Early Expansions of Humans, Senckenberg Forschungsinstitut, Heidelberg Academy of Sciences and Humanities, Frankfurt/Main, Germany
| | - Nicholas J Conard
- Department of Geosciences, Working Group Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Kaya S, Kabasakal B, Erdoğan A. Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations. BIOLOGY 2023; 12:biology12030401. [PMID: 36979093 PMCID: PMC10045126 DOI: 10.3390/biology12030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Türkiye is considered an important evolutionary area for Chukar partridge (Alectoris chukar), since it is both a potential ancestral area and a diversification center for the species. Using 2 mitochondrial (Cty-b and D-loop) and 13 polymorphic microsatellite markers, we investigated the geographic genetic structure of A. chukar populations to determine how past climatic fluctuations and human activities have shaped the gene pool of this species in Türkiye. Our results indicate, firstly, that only A. chukar of the genus Alectoris is present in Türkiye (Anatolia and Thrace), with no natural or artificial gene flow from congenerics. Secondly, the geographic genetic structure of the species in Türkiye has been shaped by topographic heterogeneity, Pleistocene climatic fluctuations, and artificial transport by humans. Third, there appears to be three genetic clusters: Thracian, Eastern, and Western. Fourth, the post-LGM demographic expansion of the Eastern and Western populations has formed a hybrid zone in Central Anatolia (~8 kyBP). Fifth, the rate of China clade-B contamination in Türkiye is about 8% in mtDNA and about 12% in nuDNA, with the Southeastern Anatolian population having the highest contamination. Sixth, the Thracian population was the most genetically distinct, with the lowest genetic diversity and highest level of inbreeding and no China clad-B contamination. These results can contribute to the conservation regarding A. chukar populations, especially the Thracian population.
Collapse
Affiliation(s)
- Sarp Kaya
- First and Emergency Aid Programme, Department of Medical Services and Techniques, Vocational School of Burdur Health Services, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey
| | - Bekir Kabasakal
- Department of Biology, Akdeniz University, Antalya 07058, Turkey
- Anesthesia Programme, Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence:
| | - Ali Erdoğan
- Department of Biology, Akdeniz University, Antalya 07058, Turkey
| |
Collapse
|
11
|
Ice and ocean constraints on early human migrations into North America along the Pacific coast. Proc Natl Acad Sci U S A 2023; 120:e2208738120. [PMID: 36745804 PMCID: PMC9963817 DOI: 10.1073/pnas.2208738120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.
Collapse
|
12
|
Seltzer AM, Blard PH, Sherwood SC, Kageyama M. Terrestrial amplification of past, present, and future climate change. SCIENCE ADVANCES 2023; 9:eadf8119. [PMID: 36753551 PMCID: PMC9908018 DOI: 10.1126/sciadv.adf8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Terrestrial amplification (TA) of land warming relative to oceans is apparent in recent climatic observations. TA results from land-sea coupling of moisture and heat and is therefore important for predicting future warming and water availability. However, the theoretical basis for TA has never been tested outside the short instrumental period, and the spatial pattern and amplitude of TA remain uncertain. Here, we investigate TA during the Last Glacial Maximum (LGM; ~20 thousand years) in the low latitudes, where the theory is most applicable. We find remarkable consistency between paleotemperature proxies, theory, and climate model simulations of both LGM and future climates. Paleoclimate data thus provide crucial new support for TA, refining the range of future low-latitude, low-elevation TA to [Formula: see text] (95% confidence interval), i.e., land warming ~40% more than oceans. The observed data model theory agreement helps reconcile LGM marine and terrestrial paleotemperature proxies, with implications for equilibrium climate sensitivity.
Collapse
Affiliation(s)
- Alan M. Seltzer
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Pierre-Henri Blard
- Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Steven C. Sherwood
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Masa Kageyama
- Laboratoire des Sciences du Climat et de l’Environnement/Institut Pierre-Simon Laplace (LSCE/IPSL), UMR CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Hoffecker JF, Elias SA, Scott GR, O'Rourke DH, Hlusko LJ, Potapova O, Pitulko V, Pavlova E, Bourgeon L, Vachula RS. Beringia and the peopling of the Western Hemisphere. Proc Biol Sci 2023; 290:20222246. [PMID: 36629115 PMCID: PMC9832545 DOI: 10.1098/rspb.2022.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Did Beringian environments represent an ecological barrier to humans until less than 15 000 years ago or was access to the Americas controlled by the spatial-temporal distribution of North American ice sheets? Beringian environments varied with respect to climate and biota, especially in the two major areas of exposed continental shelf. The East Siberian Arctic Shelf ('Great Arctic Plain' (GAP)) supported a dry steppe-tundra biome inhabited by a diverse large-mammal community, while the southern Bering-Chukchi Platform ('Bering Land Bridge' (BLB)) supported mesic tundra and probably a lower large-mammal biomass. A human population with west Eurasian roots occupied the GAP before the Last Glacial Maximum (LGM) and may have accessed mid-latitude North America via an interior ice-free corridor. Re-opening of the corridor less than 14 000 years ago indicates that the primary ancestors of living First Peoples, who already had spread widely in the Americas at this time, probably dispersed from the NW Pacific coast. A genetic 'arctic signal' in non-arctic First Peoples suggests that their parent population inhabited the GAP during the LGM, before their split from the former. We infer a shift from GAP terrestrial to a subarctic maritime economy on the southern BLB coast before dispersal in the Americas from the NW Pacific coast.
Collapse
Affiliation(s)
- John F. Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA,Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Scott A. Elias
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
| | - G. Richard Scott
- Department of Anthropology, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Dennis H. O'Rourke
- Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Leslea J. Hlusko
- Human Evolution Research Center, University of California-Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Olga Potapova
- Pleistocene Park Foundation, Philadelphia, PA 19006, USA,Department of Mammoth Fauna Studies, Academy of Sciences of Sakha, Yakutsk, Russia,The Mammoth Site of Hot Springs, Hot Springs, SD 57747, USA
| | - Vladimir Pitulko
- Institute of the History of Material Culture, Russian Academy of Sciences, Dvortsovaya nab., 18, 191186 St Petersburg, Russia,Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, 3, Universitetskaya nab., St Petersburg 199034, Russian Federation
| | - Elena Pavlova
- Arctic and Antarctic Research Institute, Russian Federal Service for Hydrometeorology and Environmental Monitoring, 38 Bering Street, 199397 St Petersburg, Russia
| | - Lauriane Bourgeon
- Kansas Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, KS 66047, USA
| | - Richard S. Vachula
- Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, AL 36849-5305, USA
| |
Collapse
|
14
|
Abstract
The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by > 60 m, an uncertainty comparable to the sea-level equivalent of the contemporary Antarctic Ice Sheet. Here, we constrain sea level prior to the LGM by reconstructing the flooding history of the shallow Bering Strait since 46 ka. Using a geochemical proxy of Pacific nutrient input to the Arctic Ocean, we find that the Bering Strait was flooded from the beginning of our records at 46 ka until [Formula: see text] ka. To match this flooding history, our sea-level model requires an ice history in which over 50% of the LGM's global peak ice volume grew after 46 ka. This finding implies that global ice volume and climate were not linearly coupled during the last ice age, with implications for the controls on each. Moreover, our results shorten the time window between the opening of the Bering Land Bridge and the arrival of humans in the Americas.
Collapse
|
15
|
O'Dea A, Flantua SGA, Leray M, Lueders-Dumont JA, Titcomb MC. Pleistocene sea level changes and crocodile population histories on the Isthmus of Panama: A comment on Avila-Cervantes et al. (2020). Evolution 2022; 76:2778-2783. [PMID: 36161455 DOI: 10.1111/evo.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
Avila-Cervantes et al. proposed that glacial-interglacial sea level changes played an important role in the evolutionary and demographic histories of the crocodile Crocodylus acutus on the Isthmus of Panama. However, the study used erroneous sea level proxy data that produced flawed paleogeographic reconstructions. We present new paleogeographic reconstructions and review the timing of, and proposed mechanisms behind, the demographic events estimated by Avila-Cervantes et al.. With the data currently available, we find little evidence to support the hypothesis that sea level changes drove population demographic events in crocodiles on the Isthmus. Alternative hypotheses, including changing climate and habitat suitability, are equally valid and should be considered along with well-supported sea level models.
Collapse
Affiliation(s)
- Aaron O'Dea
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.,Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Jessica A Lueders-Dumont
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.,Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Max C Titcomb
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.,Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
16
|
Sea ice fluctuations in the Baffin Bay and the Labrador Sea during glacial abrupt climate changes. Proc Natl Acad Sci U S A 2022; 119:e2203468119. [PMID: 36279448 PMCID: PMC9636944 DOI: 10.1073/pnas.2203468119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea ice decline in the North Atlantic and Nordic Seas has been proposed to contribute to the repeated abrupt atmospheric warmings recorded in Greenland ice cores during the last glacial period, known as Dansgaard-Oeschger (D-O) events. However, the understanding of how sea ice changes were coupled with abrupt climate changes during D-O events has remained incomplete due to a lack of suitable high-resolution sea ice proxy records from northwestern North Atlantic regions. Here, we present a subdecadal-scale bromine enrichment (Br
enr
) record from the NEEM ice core (Northwest Greenland) and sediment core biomarker records to reconstruct the variability of seasonal sea ice in the Baffin Bay and Labrador Sea over a suite of D-O events between 34 and 42 ka. Our results reveal repeated shifts between stable, multiyear sea ice (MYSI) conditions during cold stadials and unstable, seasonal sea ice conditions during warmer interstadials. The shift from stadial to interstadial sea ice conditions occurred rapidly and synchronously with the atmospheric warming over Greenland, while the amplitude of high-frequency sea ice fluctuations increased through interstadials. Our findings suggest that the rapid replacement of widespread MYSI with seasonal sea ice amplified the abrupt climate warming over the course of D-O events and highlight the role of feedbacks associated with late-interstadial seasonal sea ice expansion in driving the North Atlantic ocean–climate system back to stadial conditions.
Collapse
|
17
|
Reply to: Towards solving the missing ice problem and the importance of rigorous model data comparisons. Nat Commun 2022; 13:6264. [PMID: 36280673 PMCID: PMC9592598 DOI: 10.1038/s41467-022-33954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
|
18
|
Towards solving the missing ice problem and the importance of rigorous model data comparisons. Nat Commun 2022; 13:6261. [PMID: 36280672 PMCID: PMC9592606 DOI: 10.1038/s41467-022-33952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
|
19
|
Edwards GH, Blackburn T, Piccione G, Tulaczyk S, Miller GH, Sikes C. Terrestrial evidence for ocean forcing of Heinrich events and subglacial hydrologic connectivity of the Laurentide Ice Sheet. SCIENCE ADVANCES 2022; 8:eabp9329. [PMID: 36260662 PMCID: PMC9581489 DOI: 10.1126/sciadv.abp9329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
During the last glacial period, the Laurentide Ice Sheet (LIS) underwent episodes of rapid iceberg discharge, recorded in ocean sediments as "Heinrich events" (HEs). Two competing models attempt to describe the stimulus for HEs via either internal ice sheet oscillations or external ocean-climate system forcing. We present a terrestrial record of HEs from the northeastern LIS that strongly supports ocean-climate forcing. Subglacial carbonate precipitates from Baffin Island record episodes of subglacial melting coincident with the three most recent HEs, resulting from acceleration of nearby marine-terminating ice streams. Synchronized ice stream acceleration over Baffin Island and Hudson Strait is inconsistent with internal ice sheet oscillations alone and indicates a shared ocean-climate stimulus to coordinate these different glaciological systems. Isotopic compositions of these precipitates record widespread subglacial groundwater connectivity beneath the LIS. Extensive basal melting and flushing of these aquifers during the last HE may have been a harbinger for terminal deglaciation.
Collapse
Affiliation(s)
- Graham H. Edwards
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Terrence Blackburn
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gavin Piccione
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Slawek Tulaczyk
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gifford H. Miller
- Institute of Arctic and Alpine Research and the Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Cosmo Sikes
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Peltier WR, Wu PPC, Argus DF, Li T, Velay-Vitow J. Glacial isostatic adjustment: physical models and observational constraints. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:096801. [PMID: 35820343 DOI: 10.1088/1361-6633/ac805b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
By far the most prescient insights into the interior structure of the planet have been provided on the basis of elastic wave seismology. Analysis of the travel times of shear or compression wave phases excited by individual earthquakes, or through analysis of the elastic gravitational free oscillations that individual earthquakes of sufficiently large magnitude may excite, has been the central focus of Earth physics research for more than a century. Unfortunately, data provide no information that is directly relevant to understanding the solid state 'flow' of the polycrystalline outer 'mantle' shell of the planet that is involved in the thermally driven convective circulation that is responsible for powering the 'drift' of the continents and which controls the rate of planetary cooling on long timescales. For this reason, there has been an increasing focus on the understanding of physical phenomenology that is unambiguously associated with mantle flow processes that are distinct from those directly associated with the convective circulation itself. This paper reviews the past many decades of work that has been invested in understanding the most important of such processes, namely that which has come to be referred to as 'glacial isostatic adjustment' (GIA). This process concerns the response of the planet to the loading and unloading of the high latitude continents by the massive accumulations of glacial ice that have occurred with almost metronomic regularity over the most recent million years of Earth history. Forced by the impact of gravitationaln-body effects on the geometry of Earth's orbit around the Sun through the impact upon the terrestrial regime of received solar insolation, these surface mass loads on the continents have left indelible records of their occurrence in the 'Earth system' consisting of the oceans, continents, and the great polar ice sheets on Greenland and Antarctica themselves. Although this ice-age phenomenology has been clearly recognized since early in the last century, it was for over 50 years considered to be no more than an interesting curiosity, the understanding of which remained on the periphery of the theoretical physics of the Earth. This was the case in part because no globally applicable theory was available that could be applied to rigorously interpret the observations. Equally important to understanding the scientific lethargy that held back the understanding of this phenomenon involving mantle flow processes was the lack of appreciation of the wide range of observations that were in fact related to GIA physics. This paper is devoted to a review of the global theories of the GIA process that have since been developed as a means of interpreting the extensive variety of observations that are now recognized as being involved in the response of the planet to the loading and unloading of its surface by glacial ice. The paper will also provide examples of the further analyses of Earth physics and climate related processes that applications of the modern theoretical structures have enabled.
Collapse
Affiliation(s)
| | | | - Donald F Argus
- Jet Propulsion Laboratory, Caltech, United States of America
| | - Tanghua Li
- Earth Observatory of Singapore, Nanyang Technological University, Singapore
| | | |
Collapse
|
21
|
Nota K, Klaminder J, Milesi P, Bindler R, Nobile A, van Steijn T, Bertilsson S, Svensson B, Hirota SK, Matsuo A, Gunnarsson U, Seppä H, Väliranta MM, Wohlfarth B, Suyama Y, Parducci L. Norway spruce postglacial recolonization of Fennoscandia. Nat Commun 2022; 13:1333. [PMID: 35288569 PMCID: PMC8921311 DOI: 10.1038/s41467-022-28976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.
Collapse
Affiliation(s)
- Kevin Nota
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Scilifelab, Uppsala, Sweden
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Alessandro Nobile
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Tamara van Steijn
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Brita Svensson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Ayumi Matsuo
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Urban Gunnarsson
- Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Heikki Seppä
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Minna M Väliranta
- Environmental Change Research Unit (ECRU), Ecosystems, Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Barbara Wohlfarth
- Department of Geological Sciences, Stockholm University, and Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
22
|
Thermochronologic constraints on the origin of the Great Unconformity. Proc Natl Acad Sci U S A 2022; 119:2118682119. [PMID: 35078936 PMCID: PMC8812566 DOI: 10.1073/pnas.2118682119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
The Great Unconformity involves a common gap of hundreds of millions to billions of years in the geologic record. The cause of this missing time has long eluded explanation, but recently two opposing hypotheses claim either a glacial or a plate tectonic origin in the Neoproterozoic. We provide thermochronologic evidence of rock cooling and multiple kilometers of exhumation in the Cryogenian Period in support of a glacial origin for erosion contributing to the composite basement nonconformity found across the North American interior. The broad synchronicity of this cooling signal at the continental scale can only be readily explained by glacial denudation. The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation averaging 3 to 5 km during Cryogenian (717 to 635 Ma) snowball Earth glaciations or, alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1,000 to 540 Ma) due to plate tectonic reorganization from supercontinent assembly and breakup. To test these hypotheses, the temporal patterns of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium- to low-temperature thermochronology and geologic information. We present inverse time–temperature simulations within a Bayesian modeling framework that record a consistent signal of relatively rapid, high-magnitude cooling of ∼120 to 200 °C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ∼3 to 5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents.
Collapse
|
23
|
Yang H, Krebs-Kanzow U, Kleiner T, Sidorenko D, Rodehacke CB, Shi X, Gierz P, Niu L, Gowan EJ, Hinck S, Liu X, Stap LB, Lohmann G. Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet. PLoS One 2022; 17:e0259816. [PMID: 35051173 PMCID: PMC8776332 DOI: 10.1371/journal.pone.0259816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Using transient climate forcing based on simulations from the Alfred Wegener Institute Earth System Model (AWI-ESM), we simulate the evolution of the Greenland Ice Sheet (GrIS) from the last interglacial (125 ka, kiloyear before present) to 2100 AD with the Parallel Ice Sheet Model (PISM). The impact of paleoclimate, especially Holocene climate, on the present and future evolution of the GrIS is explored. Our simulations of the past show close agreement with reconstructions with respect to the recent timing of the peaks in ice volume and the climate of Greenland. The maximum and minimum ice volume at around 18-17 ka and 6-5 ka lag the respective extremes in climate by several thousand years, implying that the ice volume response of the GrIS strongly lags climatic changes. Given that Greenland's climate was getting colder from the Holocene Thermal Maximum (i.e., 8 ka) to the Pre-Industrial era, our simulation implies that the GrIS experienced growth from the mid-Holocene to the industrial era. Due to this background trend, the GrIS still gains mass until the second half of the 20th century, even though anthropogenic warming begins around 1850 AD. This is also in agreement with observational evidence showing mass loss of the GrIS does not begin earlier than the late 20th century. Our results highlight that the present evolution of the GrIS is not only controlled by the recent climate changes, but is also affected by paleoclimate, especially the relatively warm Holocene climate. We propose that the GrIS was not in equilibrium throughout the entire Holocene and that the slow response to Holocene climate needs to be represented in ice sheet simulations in order to predict ice mass loss, and therefore sea level rise, accurately.
Collapse
Affiliation(s)
- Hu Yang
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Uta Krebs-Kanzow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Thomas Kleiner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Dmitry Sidorenko
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christian Bernd Rodehacke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Danish Meteorological Institute, Copenhagen, Denmark
| | - Xiaoxu Shi
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Paul Gierz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Lu Niu
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Evan J. Gowan
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Department of Earth and Environmental Sciences, Kumamoto University, Kumamoto, Japan
| | - Sebastian Hinck
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Xingxing Liu
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Lennert B. Stap
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gerrit Lohmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
24
|
Naylor S, Wickert AD, Edmonds DA, Yanites BJ. Landscape evolution under the southern Laurentide Ice Sheet. SCIENCE ADVANCES 2021; 7:eabj2938. [PMID: 34818050 PMCID: PMC8612676 DOI: 10.1126/sciadv.abj2938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Subglacial landscapes, revealed in regions of recent ice-sheet retreat, provide a window into ice-sheet dynamics and interactions with evolving subglacial topography. Here, we document landscape evolution beneath the southern Laurentide Ice Sheet of North America since the end of the Pliocene, 2.6 million years (Ma) ago, by reconstructing the isostatically adjusted preglacial surface and modern bedrock topography at 250 m horizontal resolution. We use flow routing to reconstruct drainage networks and river longitudinal profiles, revealing the pattern and extent of their glacially forced reorganization. The overall mean Quaternary (2.6 Ma ago to present) erosion rate is 27 m/Ma, rising within ice-streaming corridors to 35 m/Ma (and locally reaching 400 m/Ma) and falling to 22 m/Ma in non–ice-streaming regions. Our results suggest that subglacial erosion was sufficient to lower the southern Laurentide Ice Sheet into warmer environments, thereby enhancing ablation and reducing ice-sheet extent over time.
Collapse
Affiliation(s)
- Shawn Naylor
- Center for Geospatial Data Analysis and Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47405, USA
| | - Andrew D. Wickert
- Department of Earth and Environmental Sciences and Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas A. Edmonds
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Brian J. Yanites
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|