1
|
Xu S, Yang R, Yang Y, Zhang Y. Shape-morphing bioelectronic devices. MATERIALS HORIZONS 2025. [PMID: 40391509 DOI: 10.1039/d5mh00453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Shape-morphing bioelectronic devices, which can actively transform their geometric configurations in response to external stimuli (e.g., light, heat, electricity, and magnetic fields), have enabled many unique applications in different areas, ranging from human-machine interfaces to biomedical applications. These devices can not only realize in vivo deformations to execute specific tasks, form conformal contacts with target organs for real-time monitoring, and dynamically reshape their structures to adjust functional properties, but also assist users in daily activities through physical interactions. In this review, we provide a comprehensive overview of recent advances in shape-morphing bioelectronic devices, covering their fundamental working principles, representative deformation modes, and advanced manufacturing methodologies. Then, a broad range of practical applications of shape-morphing bioelectronics are summarized, including electromagnetic devices, optoelectronic devices, biological devices, biomedical devices, and haptic interfaces. Finally, we discuss key challenges and emerging opportunities in this rapidly evolving field, providing insights into future research directions and potential breakthroughs.
Collapse
Affiliation(s)
- Shiwei Xu
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Ruoxi Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Youzhou Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Yihui Zhang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
2
|
Feng S, Tang T, Park J, Kumar AS, Li X, Yang S. 3D Printing-Threading of Gold Nanoplatelets for Enhanced Optical Wavevector and Spontaneous Emission. NANO LETTERS 2025. [PMID: 40338668 DOI: 10.1021/acs.nanolett.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Three-dimensional (3D) printing has emerged as a powerful technology for rapidly prototyping optical materials and components. However, controlling fundamental optical parameters in printed materials remains a significant challenge due to the difficulty of tailoring the internal structures, particularly at the nanoscale. Here we demonstrate the 3D printing-threading of gold nanoplatelets within printing media via digital light processing (DLP). The printed nanoplatelet-resin (PNR) composites exhibit intrinsic optical wavevector (k) dispersion tailoring before and after nanoplatelet threading states. By exploiting nanoplasmonic chain coupling theory, we observed enhanced k in threaded PNR with isofrequency contour tailored from isotropic to elliptical, which further leads to spontaneous emission enhancement of rhodamine dye molecules when coated. The study not only expands the capabilities in accessing the fundamental optical parameters in 3D printed materials but also opens up a new avenue for the development of innovative optical materials with tailored properties.
Collapse
Affiliation(s)
- Shuai Feng
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
| | - Tengteng Tang
- Aerospace and Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
| | - JaeWoo Park
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
| | - Abhishek Saji Kumar
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
| | - Xiangjia Li
- Aerospace and Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University (ASU), Tempe, Arizona 85287, United States
- Center for Photonics Innovation, Arizona State University (ASU), Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University (ASU), Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Zhang X, Sun H, Li Y, Hao J, Liang Q, Zhang Y, Wang Y, Li X, Zhang X, Ma H, Li J. Tunable structural colors based on grayscale lithography and conformal coating of VO 2. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1123-1133. [PMID: 40290278 PMCID: PMC12019934 DOI: 10.1515/nanoph-2024-0546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 04/30/2025]
Abstract
Structural colors generated by optical micro-/nanostructures offer a notable advantage over traditional chemical pigments, including higher purity, greater brightness, resistance to fading, and enhanced environmental friendliness. However, achieving dynamically switchable color displays with high performances and without resorting to complex nanofabrication methods remain a challenge. Here, we present a simple method using grayscale lithography and conformal coating to create Salisbury screen (SS) cavities with variable resonant wavelengths, enabling the formation of tunable colorful patterns. The dynamic color display is achieved through the phase change of vanadium dioxide (VO2) nanostructures under electrothermal effects. At a low actuation voltage of 1.4 V, high performances of color switching such as high sensitivity, fast speed, high repeatability, and wide-view angle are achieved. The tunable structural colors, featuring a simple preparation process and high-speed switching, represent a promising alternative for applications such as thermal sensors, security information encryption, and dynamic full-color displays.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Yuan Li
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing100124, China
| | - Jianhua Hao
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing100124, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Yang Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing100124, China
| | - He Ma
- Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
5
|
Zhang X, Zhang L, Zhu J, Qin T, Huang H, Xiang B, Liu H, Xiong Q. Ultrafast chirality-dependent dynamics from helicity-resolved transient absorption spectroscopy. NANOSCALE 2025; 17:4175-4194. [PMID: 39815723 DOI: 10.1039/d4nr03682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing. Despite these advancements, the fundamental mechanisms underlying the generation, propagation, and amplification of chirality in low-dimensional chiral materials and architectures remain largely unexplored. To tackle these challenges, we focus on employing ultrafast spectroscopy to investigate the dynamics of chirality evolution, with the aim of attaining a more profound understanding of the microscopic mechanisms governing chirality generation and amplification. This review thus provides a comprehensive overview of the chiral micro-/nano-materials, including two-dimensional transition metal dichalcogenides (TMDs), chiral halide perovskites, and chiral metasurfaces, with a particular emphasis on the physical mechanism. This review further explores the advancements made by ultrafast chiral spectroscopy research, thereby paving the way for innovative devices in chiral photonics and optoelectronics.
Collapse
Affiliation(s)
- Xiu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Junzhi Zhu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Tingxiao Qin
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Haiyun Huang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Baixu Xiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, P.R. China
| |
Collapse
|
6
|
Luo H, Liu L, Zhang J, Ye Q, Hu Y, Lu F. Tunable bound states in the continuum with loss compatibility. OPTICS EXPRESS 2025; 33:1703-1723. [PMID: 39876338 DOI: 10.1364/oe.547894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Dynamic control of bound states in the continuum (BICs) is usually achieved by engineering structural geometries of lossless optical systems, leading to a passive nature for most current BIC devices. Introducing materials with tunable permittivity, i.e., refractive index and loss, may offer a new degree of freedom in designing reconfigurable BIC metadevices with active functionalities. However, achieving loss-accompanied or loss-driven BIC manipulation while preserving its ultrahigh Q factor is extremely challenging. Here, we report a loss-compatible BIC manipulation mechanism based on far-field interference in a mirror-assisted photonic crystal slab, wherein the loss of tunable material not only harmoniously coexists with ultrahigh Q factor, but also serves as a pivotal joystick of BIC dynamics in momentum space. By modulating loss and refractive index of tunable material through the amorphous-crystalline phase transition, simulation results show the active switching of topological charge for BICs, as well as the multidimensional control of chiroptical effect for quasi-BICs, including steerable response/emission direction and chirality continuum with far-field ellipticity ranging from -0.944 to +0.943. Our findings suggest a distinct route to construct BIC metadevices with active functionalities and foster deeper exploration of intrinsic loss applications within the ultrahigh-Q photonic system.
Collapse
|
7
|
Yu X, Chen L, Liu Q, Liu X, Qiu Z, Zhang X, Zhu M, Cheng Y. Mechanically Twisting-Induced Top-Down Chirality Transfer for Tunable Full-Color Circularly Polarized Luminescent Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412778. [PMID: 39630003 PMCID: PMC11775519 DOI: 10.1002/advs.202412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Circularly polarized luminescence (CPL) materials with rich optical information are highly attractive for optical display, information storage, and encryption. Although previous investigations have shown that external force fields can induce CPL activity in nonchiral systems, the unique role of macroscopic external forces in inducing CPL has not been demonstrated at the level of molecule or molecular aggregate. Here, a canonical example of CPL generation by mechanical twisting in an achiral system consisting of a polymer matrix with embedded fluorescent molecules is presented. By carefully adjusting the twisting parameters in time and space, in conjunction with circular dichroism (CD), CPL, and 2D wide-angle X-ray scattering (2D WAXS) studies, a twisting-induced top-down chiral transfer mechanism derived from the molecular-level asymmetric rearrangement of fluorescent units is elucidated within polymers under external torsional forces. This top-down chiral transfer provides a simple, scalable, and versatile mechanical twisting strategy for the fabrication of CPL materials, allowing for fabricating full-color and handedness-tunable CPL fibers, where the macroscopic twist direction determines the CPL handedness. Moreover, the weavability of CPL fibers greatly extend their applications in anti-counterfeit encryption, as demonstrated by using embroidery techniques to design multilevel encryption patterns.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
8
|
Wu J, Sun H, Zhou G. True Random Number Generator Based on Chaotic Oscillation of a Tunable Double-Well MEMS Resonator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403755. [PMID: 39246217 DOI: 10.1002/smll.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Chaotic systems have aroused interest across various scientific disciplines such as physics, biology, chemistry, and meteorology. The deterministic but unpredictable nature of a chaotic system is an ideal feature for random number generation. Microelectromechanical systems (MEMS) are a promising technology that effectively harnesses chaos, offering advantages such as a compact footprint, scalability, and low power consumption. This paper presents a true random number generator (TRNG) based on a double-well MEMS resonator integrated with an actuator and position sensor. The potential energy landscape of the proposed MEMS resonator is actively tunable with a direct current voltage. Experimental demonstrations of tunable bistability and chaotic resonance are reported in this paper. A chaotic time sequence is generated through piezoresistive sensing of the position of the MEMS resonator once it is driven into the chaotic regime. Subsequently, the randomness of the bit sequence, achieved by applying the exclusive or function to a digital chaotic sequence and its delayed differential is confirmed to meet the National Institute of Standards and Technology specifications. Moreover, the throughput and energy efficiency of the proposed MEMS-based TRNG can be adjusted from 50 kb s-1 and 0.44 pJ per bit at a low energy barrier to 167 kb s-1 and 6.74 pJ per bit at a high energy barrier by changing the MEMS device's potential well. The tunability of the proposed double-well MEMS resonator not only offers continuous adjustments in the energy efficiency of TNRG but also unveils vast and diverse research opportunities in analog computing, encryption, and secure communications.
Collapse
Affiliation(s)
- Junhui Wu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Haoyang Sun
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Guangya Zhou
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
9
|
Shu Z, Liang H, Chen L, Liu Q, Zeng P, Zhou Y, Wang Q, Fan F, Zhou Y, Chen Y, Feng B, Duan H. Reliable fabrication of 3D freestanding nanostructures via all dry stacking of incompatible photoresist. NANOTECHNOLOGY 2024; 36:025301. [PMID: 39422553 DOI: 10.1088/1361-6528/ad8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Three-dimensional (3D) free-standing nanostructures based on electron-beam lithography (EBL) have potential applications in many fields with extremely high patterning resolution and design flexibility with direct writing. In numerous EBL processes designed for the creation of 3D structures, the multilayer resist system is pivotal due to its adaptability in design. Nevertheless, the compatibility of solvents between different layers of resists often restricts the variety of feasible multilayer combinations. This paper introduces an innovative approach to address the bottleneck issue by presenting a novel concept of multilayer resist dry stacking, which is facilitated by a near-zero adhesion strategy. The poly(methyl methacrylate) (PMMA) film is stacked onto the hydrogen silsesquioxane (HSQ) resist using a dry peel and release technique, effectively circumventing the issue of HSQ solubilization by PMMA solvents typically encountered during conventional spin-coating procedures. Simultaneously, a dry lift-off technique can be implemented by eschewing the use of organic solvents during the wet process. This pioneering method enables the fabrication of high-resolution 3D free-standing plasmonic nanostructures and intricate 3D free-standing nanostructures. Finally, this study presents a compelling proof of concept, showcasing the integration of 3D free-standing nanostructures, fabricated via the described technique, into the realm of Fabry-Perot cavity resonators, thereby highlighting their potential for practical applications. This approach is a promising candidate for arbitrary 3D free-standing nanostructure fabrication, which has potential applications in nanoplasmonics, nanoelectronics, and nanophotonics.
Collapse
Affiliation(s)
- Zhiwen Shu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Huikang Liang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Lei Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Qing Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Quan Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Fu Fan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Yu Zhou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Yiqin Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Bo Feng
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, People's Republic of China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
10
|
Zhang G, Lyu X, Qin Y, Li Y, Fan Z, Meng X, Cheng Y, Cao Z, Xu Y, Sun D, Gao Y, Gong Q, Lyu G. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2024; 13:275. [PMID: 39327415 PMCID: PMC11427471 DOI: 10.1038/s41377-024-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied, integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures, achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination, distinct near-field modes are excited, resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials, structures, and spectral ranges, presenting a novel avenue for achieving high-performance monolithic CPL detection.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yulu Qin
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xianghan Meng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yuqing Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.
| | - Zini Cao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yixuan Xu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Guowei Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China.
| |
Collapse
|
11
|
Fu P, Xu Z, Zhou T, Li H, Wu J, Dai Q, Li Y. Reconfigurable metamaterial processing units that solve arbitrary linear calculus equations. Nat Commun 2024; 15:6258. [PMID: 39048558 PMCID: PMC11269748 DOI: 10.1038/s41467-024-50483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Calculus equations serve as fundamental frameworks in mathematics, enabling describing an extensive range of natural phenomena and scientific principles, such as thermodynamics and electromagnetics. Analog computing with electromagnetic waves presents an intriguing opportunity to solve calculus equations with unparalleled speed, while facing an inevitable tradeoff in computing density and equation reconfigurability. Here, we propose a reconfigurable metamaterial processing unit (MPU) that solves arbitrary linear calculus equations at a very fast speed. Subwavelength kernels based on inverse-designed pixel metamaterials are used to perform calculus operations on time-domain signals. In addition, feedback mechanisms and reconfigurable components are used to formulate and solve calculus equations with different orders and coefficients. A prototype of this MPU with a compact planar size of 0.93λ0×0.93λ0 (λ0 is the free-space wavelength) is constructed and evaluated in microwave frequencies. Experimental results demonstrate the MPU's ability to successfully solve arbitrary linear calculus equations. With the merits of compactness, easy integration, reconfigurability, and reusability, the proposed MPU provides a potential route for integrated analog computing with high speed of signal processing.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Zimeng Xu
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Tiankuang Zhou
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Department of Automation, Tsinghua University, Beijing, China
| | - Hao Li
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
| | - Yue Li
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Sha X, Du K, Zeng Y, Lai F, Yin J, Zhang H, Song B, Han J, Xiao S, Kivshar Y, Song Q. Chirality tuning and reversing with resonant phase-change metasurfaces. SCIENCE ADVANCES 2024; 10:eadn9017. [PMID: 38787955 PMCID: PMC11122676 DOI: 10.1126/sciadv.adn9017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Dynamic control of circular dichroism in photonic structures is critically important for compact spectrometers, stereoscopic displays, and information processing exploiting multiple degrees of freedom. Metasurfaces can help miniaturize chiral devices but only produce static and limited chiral responses. While external stimuli can tune resonances, their modulations are often weak, and reversing continuously the sign of circular dichroism is extremely challenging. Here, we demonstrate the dynamically tunable chiral response of resonant metasurfaces supporting chiral bound states in the continuum combining them with phase-change materials. Phase transition between amorphous and crystalline phases allows for control of chiral response and varies chirality rapidly from -0.947 to +0.958 backward and forward via the chirality continuum. Our demonstrations underpin the rapid development of chiral photonics and its applications.
Collapse
Affiliation(s)
- Xinbo Sha
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Fangxing Lai
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jun Yin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Hanxu Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Quantum Science Center of Guangdong-Hong Kong-Macan Greater Bay Area, Shenzhen 518055, P. R. China
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| |
Collapse
|
13
|
Zhao Y. The 'hot' chiral optical effects. Proc Natl Acad Sci U S A 2024; 121:e2405452121. [PMID: 38709937 PMCID: PMC11098129 DOI: 10.1073/pnas.2405452121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Affiliation(s)
- Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
14
|
Kim J, Moon D, Kim H, van der Zande AM, Lee GH. Ultrathin and Deformable Graphene Etch Mask for Fabrication of 3D Microstructures. ACS NANO 2024; 18:12325-12332. [PMID: 38686926 DOI: 10.1021/acsnano.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Three-dimensional (3D) microfabrication techniques play a crucial role across various research fields. These techniques enable the creation of functional 3D structures on the microscale, unlocking possibilities for diverse applications. However, conventional fabrication methods have limits in producing complex 3D structures, which require numerous fabrication steps that increase the costs. Graphene is an atomically thin material known for its deformability and impermeability to small gases and molecules, including reactive gases like XeF2. These features make graphene a potential candidate as an etch mask for 3D microfabrication. Here, we report the fabrication of various 3D microstructures using graphene etch masks directly grown and patterned on a Si substrate. The patterned graphene deforms and wraps the etched structures, allowing for the fabrication of complicated 3D microstructures, such as mushroom-like and step-like microstructures. As a practical demonstration of the graphene etch mask, we fabricate an omniphobic surface of reentrant 3D structures on a Si substrate. Our work provides a method for fabricating complex 3D microstructures using a graphene etch mask, contributing to advancements in etching and fabrication processes.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Donghoon Moon
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
15
|
Li C, Pan R, Gu C, Guo H, Li J. Reconfigurable Micro/Nano-Optical Devices Based on Phase Transitions: From Materials, Mechanisms to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306344. [PMID: 38489745 PMCID: PMC11132080 DOI: 10.1002/advs.202306344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/10/2024] [Indexed: 03/17/2024]
Abstract
In recent years, numerous efforts have been devoted to exploring innovative micro/nano-optical devices (MNODs) with reconfigurable functionality, which is highly significant because of the progressively increasing requirements for next-generation photonic systems. Fortunately, phase change materials (PCMs) provide an extremely competitive pathway to achieve this goal. The phase transitions induce significant changes to materials in optical, electrical properties or shapes, triggering great research interests in applying PCMs to reconfigurable micro/nano-optical devices (RMNODs). More specifically, the PCMs-based RMNODs can interact with incident light in on-demand or adaptive manners and thus realize unique functions. In this review, RMNODs based on phase transitions are systematically summarized and comprehensively overviewed from materials, phase change mechanisms to applications. The reconfigurable optical devices consisting of three kinds of typical PCMs are emphatically introduced, including chalcogenides, transition metal oxides, and shape memory alloys, highlighting the reversible state switch and dramatic contrast of optical responses along with designated utilities generated by phase transition. Finally, a comprehensive summary of the whole content is given, discussing the challenge and outlooking the potential development of the PCMs-based RMNODs in the future.
Collapse
Affiliation(s)
- Chensheng Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruhao Pan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haiming Guo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
16
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Kim AS, Goswami A, Taghinejad M, Cai W. Phototransformation of achiral metasurfaces into handedness-selectable transient chiral media. Proc Natl Acad Sci U S A 2024; 121:e2318713121. [PMID: 38498706 PMCID: PMC10990111 DOI: 10.1073/pnas.2318713121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light-matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform-a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity.
Collapse
Affiliation(s)
- Andrew S. Kim
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Anjan Goswami
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Mohammad Taghinejad
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Wenshan Cai
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
18
|
Yin P, Li B, Hong J, Jing H, Li B, Liu H, Chen X, Lu Y, Shao J. Design Criteria for Architected Materials with Programmable Mechanical Properties Within Theoretical Limit Ranges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307279. [PMID: 38084485 PMCID: PMC10916576 DOI: 10.1002/advs.202307279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Architected materials comprising periodic arrangements of cells have attracted considerable interest in various fields because of their unconventional properties and versatile functionality. Although some better properties may be exhibited when this homogeneous layout is broken, most such studies rely on a fixed material geometry, which limits the design space for material properties. Here, combining heterogeneous and homogeneous assembly of cells to generate tunable geometries, a hierarchically architected material (HAM) capable of significantly enhancing mechanical properties is proposed. Guided by the theoretical model and 745 752 simulation cases, generic design criteria are introduced, including dual screening for unique mechanical properties and careful assembly of specific spatial layouts, to identify the geometry of materials with extreme properties. Such criteria facilitate the potential for unprecedented properties such as Young's modulus at the theoretical limit and tunable positive and negative Poisson's ratios in an ultra-large range. Therefore, this study opens a new paradigm for materials with extreme mechanical properties.
Collapse
Affiliation(s)
- Peng Yin
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Baotong Li
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jun Hong
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Hui Jing
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Bang Li
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Honglei Liu
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoming Chen
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Yang Lu
- Department of Mechanical EngineeringThe University of Hong KongPokfulamHong KongSAR999077China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| |
Collapse
|
19
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Zhao Y, Liang Q, Li S, Chen Y, Liu X, Sun H, Wang C, Ji CY, Li J, Wang Y. Thermal Emission Manipulation Enabled by Nano-Kirigami Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305171. [PMID: 37705130 DOI: 10.1002/smll.202305171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Indexed: 09/15/2023]
Abstract
The nano-kirigami metasurfaces have controllable 3D geometric parameters and dynamic transformation functions and therefore provide a strong spectral regulation capability of thermal emission. Here, the authors propose and demonstrate a dynamic and multifunctional thermal emitter based on deformable nano-kirigami structures, which can be actuated by electronic bias or mechanical compression. Selective emittance and the variation of radiation intensity/wavelength are achieved by adjusting the geometric shape and the transformation of the structures. Particularly, a thermal management device based on a composite structure of nano-kirigami and polydimethylsiloxane (PDMS) thin film is developed, which can dynamically switch the state of cooling and heating by simply pressing the device. The proposed thermal emitter designs with strong regulation capability and multiple dynamic adjustment strategies are desirable for energy and sensing applications and inspire further development of infrared emitters.
Collapse
Affiliation(s)
- Yinghao Zhao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Sufan Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yingying Chen
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
21
|
Memon AW, Malengier B, Van Torre P, Langenhove LV. A Lattice-Hinge-Design-Based Stretchable Textile Microstrip Patch Antenna for Wireless Strain Sensing at 2.45 GHz. SENSORS (BASEL, SWITZERLAND) 2023; 23:8946. [PMID: 37960644 PMCID: PMC10650037 DOI: 10.3390/s23218946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The manuscript presents a novel approach to designing and fabricating a stretchable patch antenna designed for strain sensing and the wireless communication of sensing data at the same time. The challenge lies in combining flexible and stretchable textile materials with different physical morphologies, which can hinder the adhesion among multiple layers when stacked up, resisting the overall stretchability of the antenna. The proposed antenna design overcomes this challenge by incorporating a lattice hinge pattern into the non-stretchable conductive e-textile, transforming it into a stretchable structure. The innovative design includes longitudinal cuts inserted in both the patch and the ground plane of the antenna, allowing it to stretch along in the perpendicular direction. Implementing the lattice hinge pattern over the conductive layers of the proposed patch antenna, in combination with a 2 mm thick Polydimethylsiloxane (PDMS) substrate, achieves a maximum of 25% stretchability compared to its counterpart antenna without a lattice hinge design. The stretchable textile antenna resonates around a frequency of 2.45 GHz and exhibits a linear resonant frequency shift when strained up to 25%. This characteristic makes it suitable for use as a strain sensor. Additionally, the lattice hinge design enhances the conformability and flexibility of the antenna compared to that of a solid patch antenna. The realized antenna gains in the E and H-plane are measured as 2.21 dBi and 2.34 dBi, respectively. Overall, the presented design offers a simple and effective solution for fabricating a stretchable textile patch antenna for normal use or as a sensing element, opening up possibilities for applications in the communication and sensing fields.
Collapse
Affiliation(s)
- Abdul Wahab Memon
- Centre of Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Ghent, Belgium; (B.M.); (L.V.L.)
- Department of Textile Engineering, Mehran University of Engineering & Technology, Jamshoro 76020, Pakistan
| | - Benny Malengier
- Centre of Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Ghent, Belgium; (B.M.); (L.V.L.)
| | - Patrick Van Torre
- Department of Information Technology, Faculty of Engineering and Architecture Imec-IDLab, Ghent University, 9052 Ghent, Belgium;
| | - Lieva Van Langenhove
- Centre of Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Ghent, Belgium; (B.M.); (L.V.L.)
| |
Collapse
|
22
|
Cheng TH, Yang W, Liu Z, Feng HY, Qin J, Ma Y, Li S, Bi L, Luo F. Enhanced Faraday rotation by a Fano resonance in substrate-free three-dimensional magnetoplasmonic structures. NANOSCALE 2023; 15:15583-15589. [PMID: 37697961 DOI: 10.1039/d3nr02737f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Three-dimensional magnetoplasmonic nanostructures possess more novel and richer optical and magneto-optical (MO) behaviors compared with planar nanostructures, and exhibit attractive potential applications in micro-nano non-reciprocal photonic devices. However, fabrication of three-dimensional magnetoplasmonic nanostructures is difficult using the usual nanofabrication methods. This work constructs three-dimensional substrate-free Au/Co/Au structures prepared using focused ion beam (FIB) technology. In the three-dimensional split-ring structure, with y-polarized light normal incidence, a three-dimensional coupling current is formed between the vertical split-ring and the bottom square hole, which causes excitation of the Fano resonance. The Fano resonance causes a significant enhancement of the local magnetic field, resulting in a larger Faraday rotation (FR). The resonance also brings about a sign reversal of FR, which is related to the direction of the Lorentz force on electrons. Similar effects also exist in the three-dimensional nanopillar structure and the three-dimensional nanoring structure in the simulation results. Due to the high flexibility of FIB machining, the height and shape of the three-dimensional split-ring can be arbitrarily changed, which means the FR intensity and the position of the FR null point are tunable. The designed three-dimensional structures provide a new route to regulate the Faraday effect, and broaden the possibilities for the design and construction of MO devices.
Collapse
Affiliation(s)
- Tong-Huai Cheng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Weihao Yang
- National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hua Yu Feng
- School of Microelectronics, Shandong University, Ji'nan 250100, China.
| | - Jun Qin
- National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yifei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shicheng Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lei Bi
- National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
24
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
25
|
Song J, Liu B, Shan X, Wang F, Zhong X. Multi-functional dual-path self-aligned polarization interference lithography. OPTICS EXPRESS 2023; 31:17629-17644. [PMID: 37381492 DOI: 10.1364/oe.489049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 06/30/2023]
Abstract
Manufacturing sharp features is one of the most desired requirements for lithography. Here, we demonstrate a dual-path self-aligned polarization interference lithography (Dp-SAP IL) for fabricating periodic nanostructures, featuring high-steepness and high-uniformization. Meanwhile, it can manufacture quasicrystals with adjustable rotation symmetry. We reveal the change of the non-orthogonality degree under different polarization states and incident angles. We find that incident light's transverse electric (TE) wave results in high interference contrast at arbitrary incident angles, with a minimum contrast of 0.9328, that is, realizing the self-alignment of the polarization state of incident light and reflected light. We experimentally demonstrate this approach by fabricating a series of diffraction gratings with periods ranging from 238.3 nm to 851.6 nm. The steepness of each grating is greater than 85 degrees. Different from the traditional interference lithography system, Dp-SAP IL realizes a structure color using two mutually perpendicular and non-interference paths. One path is for the photolithography of patterns onto the sample, and the other path is for generating nanostructures on the patterns. Our technique showcases the feasibility of obtaining high contrast interference fringes by simply tuning the polarization, with the potential for cost-effective manufacturing of nanostructures such as quasicrystals and structure color.
Collapse
|
26
|
Santonocito A, Patrizi B, Toci G. Recent Advances in Tunable Metasurfaces and Their Application in Optics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101633. [PMID: 37242049 DOI: 10.3390/nano13101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Metasurfaces can be opportunely and specifically designed to manipulate electromagnetic wavefronts. In recent years, a large variety of metasurface-based optical devices such as planar lenses, beam deflectors, polarization converters, and so on have been designed and fabricated. Of particular interest are tunable metasurfaces, which allow the modulation of the optical response of a metasurface; for instance, the variation in the focal length of a converging metalens. Response tunability can be achieved through external sources that modify the permittivity of the materials constituting the nanoatoms, the substrate, or both. The modulation sources can be classified into electromagnetic fields, thermal sources, mechanical stressors, and electrical bias. Beside this, we will consider optical modulation and multiple approach tuning strategies. A great variety of tunable materials have been used in metasurface engineering, such as transparent conductive oxides, ferroelectrics, phase change materials, liquid crystals, and semiconductors. The possibility of tuning the optical properties of these metamaterials is very important for several applications spanning from basic optics to applied optics for communications, depth sensing, holographic displays, and biochemical sensors. In this review, we summarize the recent progress on electro-optical magnetic, mechanical, and thermal tuning of metasurfaces actually fabricated and experimentally tested in recent years. At the end of the review, a short section on possible future perspectives and applications is included.
Collapse
Affiliation(s)
- Alberto Santonocito
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Barbara Patrizi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Guido Toci
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
Liu X, Zhang X, Dong W, Liang Q, Ji CY, Li J. Broadband and high-efficiency polarization conversion with a nano-kirigami based metasurface. Sci Rep 2023; 13:7454. [PMID: 37156806 PMCID: PMC10167358 DOI: 10.1038/s41598-023-34590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Nano-kirigami metasurfaces have attracted increasing attention due to their ease of three-dimension (3D) nanofabrication, versatile shape transformations, appealing manipulation capabilities and rich potential applications in nanophotonic devices. Through adding an out-of-plane degree of freedom to the double split-ring resonators (DSRR) by using nano-kirigami method, in this work we demonstrate the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength band. Specifically, when the two-dimensional DSRR precursors are transformed into 3D counterparts, a polarization conversion ratio (PCR) of more than 90% is realized in wide spectral range from 1160 to 2030 nm. Furthermore, we demonstrate that the high-performance and broadband PCR can be readily tailored by deliberately deforming the vertical displacement or adjusting the structural parameters. Finally, as a proof-of-concept demonstration, the proposal is successfully verified by adopting the nano-kirigami fabrication method. The studied nano-kirigami based polymorphic DSRR mimic a sequence of discrete bulk optical components with multifunction, thereby eliminating the need for their mutual alignment and opening new possibilities.
Collapse
Affiliation(s)
- Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaochen Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
28
|
Du C, Wang Y, Kang Z. Auxetic Kirigami Metamaterials upon Large Stretching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19190-19198. [PMID: 37026970 DOI: 10.1021/acsami.3c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Auxetic kirigami metamaterials (KMs) attain negative Poisson's ratios with periodic slender cuts on thin sheets. The existing thin auxetic KMs forfeit auxeticity under large tensions because their auxeticity mainly arises from in-plane deformation, but out-of-plane buckling could arise to cause large deviations, and thicker KMs would suffer from stress failure. This paper proposes a novel family of KMs that can realize and retain auxeticity for up to 0.50 applied strains by fully exploiting out-of-plane buckling in the design model. Numerical and experimental results show that the designed KMs possess unique properties that are not exhibited by existing KMs, including a wide range of negative Poisson's ratios with designable variation modes under different applied strains, sheet thickness-insensitive auxeticity, and excellent shape recoverability. A potential application is exemplified with a scenario that they are designed as a stretchable display without image distortions under large tensions. The proposed auxetic KMs open new opportunities for the design of specific functional devices in areas of compliant robotics, bio-medical devices, and flexible electronics.
Collapse
Affiliation(s)
- Chen Du
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yiqiang Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Liu X, Liang Q, Zhang X, Ji CY, Li J. Nano-kirigami enabled chiral nano-cilia with enhanced circular dichroism at visible wavelengths. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1459-1468. [PMID: 39634589 PMCID: PMC11502046 DOI: 10.1515/nanoph-2022-0543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2024]
Abstract
Nano-kirigami method enables rich diversity of structural geometries that significantly broaden the functionalities of optical micro/nano-devices. However, the methodologies of various nano-kirigami are still limited and as a result, the chiral nano-kirigami structure has yet been pushed to the limit for operation at visible wavelength region. Here, the merits of the various nano-kirigami strategies are comprehensively explored and bio-inspired nano-cilia metasurface with enhanced circular dichroism at visible wavelengths is demonstrated. The stereo chiral nano-cilia metasurface is designed with three-fold rotational symmetry, which exhibits tuneable chiroptical responses when the nano-cilia are deformed to form strong chiral light-matter interactions. By employing electron-beam lithography (EBL) and focused ion beam (FIB) lithography, on-chip nano-cilia metasurfaces are experimentally realized in near-infrared wavelengths region and at visible wavelengths, respectively, successfully validating the giant circular dichroism revealed in simulations. Our work is useful to broaden the existing platform of micro/nano-scale manufacturing and could provide an effective method for the realization of versatile bioinspired nanostructures with profound chiroptical responses.
Collapse
Affiliation(s)
- Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Xiaochen Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
30
|
Hu XL, Li F, Chen GH, Tang LY, Liu WJ. High-performance plasmonic polymer modulators through mode hybridization and electro-thermomechanical effects. OPTICS LETTERS 2023; 48:964-967. [PMID: 36790986 DOI: 10.1364/ol.482028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
In this work, an electro-optical polymer modulator with double-layered gold nanostrips, a polymer nanograting, and a metal substrate is proposed and designed. Interestingly, mode hybridization between the Fabry-Pérot (F-P) and anti-bonding modes is formed, and strongly depends on the nanograting size, which can be controllably modulated by an injection current. The simulation and calculation results show that the temperature sensitivity and large structural sensitivity for the polymer modulator could remain constant during the current-tuning process, and a near-zero reflectance and a low linewidth of 13.8 nm in the red region corresponding to a high quality (Q) factor of 51 is achieved. In addition, a large redshift of 60.7 nm and a super-high modulation depth of 424 are obtained at only 8 µA.
Collapse
|
31
|
Huang J, Huang G, Zhao Z, Wang C, Cui J, Song E, Mei Y. Nanomembrane-assembled nanophotonics and optoelectronics: from materials to applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:093001. [PMID: 36560918 DOI: 10.1088/1361-648x/acabf3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhe Zhao
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Chao Wang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
32
|
Li M, Hu G, Chen X, Qiu CW, Chen H, Wang Z. Topologically reconfigurable magnetic polaritons. SCIENCE ADVANCES 2022; 8:eadd6660. [PMID: 36525502 PMCID: PMC9757744 DOI: 10.1126/sciadv.add6660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/15/2022] [Indexed: 05/20/2023]
Abstract
Hyperbolic polaritons in extremely anisotropic materials have attracted intensive attention due to their exotic optical features. Recent advances in optical materials reveal unprecedented dispersion engineering of polaritons, resulting in twistronics for photons, canalized phonon polaritons, shear polaritons, and tunable topological polaritons. However, the on-demand reconfigurability of polaritons, especially with magnetic anisotropic dispersions, is restricted by weak natural magnetic anisotropy and hence remains largely unexplored. Here, we show how origami fused with artificial magnetism unveils a versatile pathway to topologically reconfigure magnetic polaritons. We experimentally demonstrate that the three-dimensional origami deformation allows to reconfigure hyperbolic or elliptic topology of polariton dispersion and modulate group velocity. With group velocity transitioning from positive to negative directions, we further report reconfigurable origami polariton circuitry in which the polariton propagation and phase distribution can be tailored. Our findings provide alternative perspectives on on-chip polaritonics, with potential applications in energy transfer, sensing, and information transport.
Collapse
Affiliation(s)
- Min Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Guangwei Hu
- Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuan Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Cheng-Wei Qiu
- Engineering, National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, 215000 Suzhou, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| | - Zuojia Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| |
Collapse
|
33
|
He H, Cen M, Wang J, Xu Y, Liu J, Cai W, Kong D, Li K, Luo D, Cao T, Liu YJ. Plasmonic Chiral Metasurface-Induced Upconverted Circularly Polarized Luminescence from Achiral Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53981-53989. [PMID: 36378812 DOI: 10.1021/acsami.2c13267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chirality induction, transfer, and manipulation have aroused great interest in achiral nanomaterials. Here, we demonstrate strong upconverted circularly polarized luminescence from achiral core-shell upconversion nanoparticles (UCNPs) via a plasmonic chiral metasurface-induced optical chirality transfer. The Yb3+-sensitized core-shell UCNPs with good dispersity exhibit intense upconversion luminescence of Tm3+ and Nd3+ through the energy transfer process. By spin-coating the core-shell UCNPs on this chiral metasurface, strong enhancement and circular polarization modulation of upconversion luminescence can be achieved due to resonant coupling between surface plasmons and upconversion nanoparticles. In the UCNPs-on-metasurface composite, a significant upconversion luminescence enhancement can be achieved with a maximum enhancement factor of 32.63 at 878 nm and an overall enhancement factor of 11.61. The luminescence dissymmetry factor of the induced upconverted circularly polarized luminescence can reach 0.95 at the emission wavelength of 895 nm. The UCNPs-on-metasurface composite yields efficient modulation for the emission intensity and polarization of UCNPs, paving new pathways to many potential applications in imaging, sensing, and anticounterfeiting fields.
Collapse
Affiliation(s)
- Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Harbin Institute of Technology, Harbin 150001, China
| | - Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Dalian University of Technology, Dalian 116024, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Xu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tun Cao
- Dalian University of Technology, Dalian 116024, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Zhang L, Gao K, Lu F, Xu L, Rahmani M, Sun L, Gao F, Zhang W, Mei T. Visible-Band Chiroptical Meta-devices with Phase-Change Adjusted Optical Chirality. NANO LETTERS 2022; 22:7628-7635. [PMID: 36112094 DOI: 10.1021/acs.nanolett.2c02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-cost large-area chirality meta-devices (CMDs) with adjustable optical chirality are of great interest for polarization-sensitive imaging, stereoscopic display, enantioselectivity analysis, and catalysis. Currently, CMDs with adjusted chiroptical responses in the mid-infrared to terahertz band have been demonstrated by exploiting photocarriers of silicon, pressure, and phase-change of GSTs but are still absent in the visible band, which in turn limits the development of chiral nanophotonic devices. Herein, by employing a phase-change material (Sb2S3), we present a protocol for the fabrication of wafer-scale visible-band enantiomeric CMDs with handedness, spectral, and polarization adjustability. As measured by circular dichroism, the chirality signs of CMDs enantiomers can be adjusted with Sb2S3 from amorphous to crystalline, and the chirality resonance wavelength can also be adjusted. Our results suggest a new type of meta-devices with adjustable chiroptical responses that may potentially enable a wide range of chirality nanophotonic applications including highly sensitive sensing and surface-enhanced nanospectroscopy.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Kun Gao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fanfan Lu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Xu
- Advanced Optics & Photonics Laboratory, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Mohsen Rahmani
- Advanced Optics & Photonics Laboratory, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Lixun Sun
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Feng Gao
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300457, China
| | - Wending Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ting Mei
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
35
|
Fan K, Averitt RD, Padilla WJ. Active and tunable nanophotonic metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3769-3803. [PMID: 39635159 PMCID: PMC11501849 DOI: 10.1515/nanoph-2022-0188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2024]
Abstract
Metamaterials enable subwavelength tailoring of light-matter interactions, driving fundamental discoveries which fuel novel applications in areas ranging from compressed sensing to quantum engineering. Importantly, the metallic and dielectric resonators from which static metamaterials are comprised present an open architecture amenable to materials integration. Thus, incorporating responsive materials such as semiconductors, liquid crystals, phase-change materials, or quantum materials (e.g., superconductors, 2D materials, etc.) imbue metamaterials with dynamic properties, facilitating the development of active and tunable devices harboring enhanced or even entirely novel electromagnetic functionality. Ultimately, active control derives from the ability to craft the local electromagnetic fields; accomplished using a host of external stimuli to modify the electronic or optical properties of the responsive materials embedded into the active regions of the subwavelength resonators. We provide a broad overview of this frontier area of metamaterials research, introducing fundamental concepts and presenting control strategies that include electronic, optical, mechanical, thermal, and magnetic stimuli. The examples presented range from microwave to visible wavelengths, utilizing a wide range of materials to realize spatial light modulators, effective nonlinear media, on-demand optics, and polarimetric imaging as but a few examples. Often, active and tunable nanophotonic metamaterials yield an emergent electromagnetic response that is more than the sum of the parts, providing reconfigurable or real-time control of the amplitude, phase, wavevector, polarization, and frequency of light. The examples to date are impressive, setting the stage for future advances that are likely to impact holography, beyond 5G communications, imaging, and quantum sensing and transduction.
Collapse
Affiliation(s)
- Kebin Fan
- School of Electronic Science and Engineering, Nanjing University, Nanjing210023, China
| | | | - Willie J. Padilla
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708, USA
| |
Collapse
|
36
|
Active multiband varifocal metalenses based on orbital angular momentum division multiplexing. Nat Commun 2022; 13:4292. [PMID: 35879316 PMCID: PMC9314414 DOI: 10.1038/s41467-022-32044-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/14/2022] [Indexed: 11/14/2022] Open
Abstract
Metalenses as miniature flat lenses exhibit a substantial potential in replacing traditional optical component. Although the metalenses have been intensively explored, their functions are limited by poor active ability, narrow operating band and small depth of field (DOF). Here, we show a dielectric metalens consisting of TiO2 nanofins array with ultrahigh aspect ratio to realize active multiband varifocal function. Regulating the orbital angular momentum (OAM) by the phase assignment covering the 2π range, its focal lengths can be switched from 5 mm to 35 mm. This active optical multiplexing uses the physical properties of OAM channels to selectively address and decode the vortex beams. The multiband capability and large DOFs with conversion efficiency of 49% for this metalens are validated for both 532 nm and 633 nm, and the incidence wavelength can further change the focal lengths. This non-mechanical tunable metalens demonstrates the possibility of active varifocal metalenses. A dielectric metalens consisting of ultrahigh aspect ratio TiO2 nanofins array is demonstrated to realize active multiband varifocal functionality. By regulating the orbital angular momentum, the focal length can be switched from 5 mm to 35 mm with large DOFs.
Collapse
|
37
|
Ji CY, Li X, Chen S, Liu X, Han Y, Hong X, Liang Q, Liu J, Li J. Recent progress on artificial propeller chirality and related circular dichroism engineering. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Ma L, Liu Y, Han C, Movsesyan A, Li P, Li H, Tang P, Yuan Y, Jiang S, Ni W, Yan H, Govorov AO, Wang ZM, Lan X. DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations. NANO LETTERS 2022; 22:4784-4791. [PMID: 35649094 DOI: 10.1021/acs.nanolett.2c01047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A significant challenge exists in obtaining chiral nanostructures that are amenable to both solution-phase self-assembly and solid-phase preservation, which enable the observation of unveiled optical responses impacted by the dynamic or static conformation and the incident excitations. Here, to meet this demand, we employed DNA origami technology to create quasi-planar chiral satellite-core nanoparticle superstructures with an intermediate geometry between the monolayer and the double layer. We disentangled the complex chiral mechanisms, which include planar chirality, 3D chirality, and induced chirality transfer, through combined theoretical studies and thorough experimental measurements of both solution- and solid-phase samples. Two distinct states of optical responses were demonstrated by the dynamic and static conformations, involving a split or nonsplit circular dichroism (CD) line shape. More importantly, our study on chiral nanoparticle superstructures on a substrate featuring both a dominant 2D geometry and a defined 3D represents a great leap toward the realization of colloidal chiral metasurfaces.
Collapse
Affiliation(s)
- Li Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cong Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Artur Movsesyan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pan Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongqing Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
39
|
Zhang T, Wang H, Xia X, Yan N, Sha X, Huang J, Watanabe K, Taniguchi T, Zhu M, Wang L, Gao J, Liang X, Qin C, Xiao L, Sun D, Zhang J, Han Z, Li X. A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. LIGHT, SCIENCE & APPLICATIONS 2022; 11:48. [PMID: 35232973 PMCID: PMC8888553 DOI: 10.1038/s41377-022-00734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.
Collapse
Affiliation(s)
- Tongyao Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Hanwen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, China
| | - Xiuxin Xia
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, China
| | - Ning Yan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xuanzhe Sha
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Jinqiang Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Lei Wang
- The Key Laboratory of Science and Technology on Silicon Devices, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiantou Gao
- The Key Laboratory of Science and Technology on Silicon Devices, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- The University of Chinese Academy of Sciences, Beijing, 100029, China.
| | - Xilong Liang
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China
| | - Chengbing Qin
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.
| | - Liantuan Xiao
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China
| | - Dongming Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, China
| | - Jing Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoxi Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
40
|
Abstract
Active control of strong chiroptical responses in metasurfaces can offer new opportunities for optical polarization engineering. Plasmonic active chiral metasurfaces have been investigated before, but their tunable chiroptical responses is limited due to inherent loss of plasmonic resonances, thus stimulating research in low loss active dielectric chiral metasurfaces. Among diverse tuning methods, electrically tunable dielectric chiral metasurfaces are promising thanks to their potential for on-chip integration. Here, we experimentally demonstrate nano-electromechanically tunable dielectric chiral metasurfaces with reflective circular dichroism (CD). We show a difference between absolute reflection under circulary polarized incident light with orthogonal polarization of over 0.85 in simulation and over 0.45 experimentally. The devices enable continuous control of CD by induced electrostatic forces from 0.45 to 0.01 with an electrical bias of 3V. This work highlights the potential of nano-electromechanically tunable metasurfaces for scalable optical polarization modulators.
Collapse
Affiliation(s)
- Hyounghan Kwon
- T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Andrei Faraon
- T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Han Y, Chen S, Ji C, Liu X, Wang Y, Liu J, Li J. Reprogrammable optical metasurfaces by electromechanical reconfiguration. OPTICS EXPRESS 2021; 29:30751-30760. [PMID: 34614795 DOI: 10.1364/oe.434321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Metasurfaces, with artificially designed ultrathin and compact optical elements, enable versatile manipulation of the amplitude, phase, and polarization of light waves. While most of the metasurfaces are static and passive, here we propose a reprogrammable metasurface based on the state-of-art electromechanical nano-kirigami, which allows for independent manipulation of pixels at visible wavelengths through mechanical deformation of the nanostructures. By incorporating electrostatic forces between the top suspended gold nano-architectures and bottom silicon substrate, out-of-plane deformation of each pixel and the associated phase retardation are independently controlled by applying single voltage to variable pixels or exerting programmable voltage distribution on identical pixels. As a proof-of-concept demonstration, the metasurfaces are digitally controlled and a series of tunable metasurface holograms such as 3D dynamic display and ultrathin planar lenses are achieved at visible wavelengths. The proposed electromechanical metasurface provides a new methodology to explore versatile reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as hologram, 3D displays, data storage, spatial light modulations, and information processing.
Collapse
|
42
|
Han Y, Chen S, Ji C, Liu X, Wang Y, Liu J, Li J. Reprogrammable optical metasurfaces by electromechanical reconfiguration. OPTICS EXPRESS 2021; 29:30751-30760. [PMID: 34614795 DOI: 10.1364/ome.438996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 05/25/2023]
Abstract
Metasurfaces, with artificially designed ultrathin and compact optical elements, enable versatile manipulation of the amplitude, phase, and polarization of light waves. While most of the metasurfaces are static and passive, here we propose a reprogrammable metasurface based on the state-of-art electromechanical nano-kirigami, which allows for independent manipulation of pixels at visible wavelengths through mechanical deformation of the nanostructures. By incorporating electrostatic forces between the top suspended gold nano-architectures and bottom silicon substrate, out-of-plane deformation of each pixel and the associated phase retardation are independently controlled by applying single voltage to variable pixels or exerting programmable voltage distribution on identical pixels. As a proof-of-concept demonstration, the metasurfaces are digitally controlled and a series of tunable metasurface holograms such as 3D dynamic display and ultrathin planar lenses are achieved at visible wavelengths. The proposed electromechanical metasurface provides a new methodology to explore versatile reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as hologram, 3D displays, data storage, spatial light modulations, and information processing.
Collapse
|
43
|
Lai X, Peng J, Cheng Q, Tomsia AP, Zhao G, Liu L, Zou G, Song Y, Jiang L, Li M. Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angew Chem Int Ed Engl 2021; 60:14307-14312. [PMID: 33793046 DOI: 10.1002/anie.202103045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Bioinspired dynamic structural color has great potential for use in dynamic displays, sensors, cryptography, and camouflage. However, it is quite rare for artificial structural color devices to withstand thousands of cycles. Male hummingbird's crowns and gorgets are brightly colored, demonstrating frequent color switching that is induced by regulating the orientation of the feathers through movement of skin or joints. Inspired by this unique structural color modulation, we demonstrate a flexible, mechanically triggered color switchable sheet based on a photonic crystal (PhC)-coated polydimethylsiloxane (PDMS) kirigami (PhC-PDMS kirigami) made by laser cutting. Finite element modeling (FEM) simulation reveals that the thickness of PDMS kirigami and the chamfer at the incision induced by laser cutting both dominate the out-of-plane deformation through in-plane stretching. The bioinspired PhC-PDMS kirigami shows precisely programmable structural color and keeps the color very well after recycling over 10 000 times. This bioinspired PhC-PDMS kirigami also shows excellent viewability even in bright sunlight, high readability, robust functionality, technical flexibility, and mechanical durability, which are readily exploitable for applications, such as chromic mechanical monitors for the sports industry or for medical applications, wearable camouflage, and security systems.
Collapse
Affiliation(s)
- Xintao Lai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100191, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingsong Peng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, BUAA-UOW Joint Research Centre, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, BUAA-UOW Joint Research Centre, Beihang University, Beijing, 100191, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Antoni P Tomsia
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, BUAA-UOW Joint Research Centre, Beihang University, Beijing, 100191, China
| | - Guanlei Zhao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100191, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, BUAA-UOW Joint Research Centre, Beihang University, Beijing, 100191, China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100191, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Materials Processing and Mold, (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, China
| |
Collapse
|
44
|
Lai X, Peng J, Cheng Q, Tomsia AP, Zhao G, Liu L, Zou G, Song Y, Jiang L, Li M. Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xintao Lai
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100191 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jingsong Peng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering BUAA-UOW Joint Research Centre Beihang University Beijing 100191 China
| | - Qunfeng Cheng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering BUAA-UOW Joint Research Centre Beihang University Beijing 100191 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Antoni P. Tomsia
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering BUAA-UOW Joint Research Centre Beihang University Beijing 100191 China
| | - Guanlei Zhao
- Department of Mechanical Engineering State Key Laboratory of Tribology Tsinghua University Beijing 100084 China
| | - Lei Liu
- Department of Mechanical Engineering State Key Laboratory of Tribology Tsinghua University Beijing 100084 China
| | - Guisheng Zou
- Department of Mechanical Engineering State Key Laboratory of Tribology Tsinghua University Beijing 100084 China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100191 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering BUAA-UOW Joint Research Centre Beihang University Beijing 100191 China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100191 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University) Ministry of Education Zhengzhou 450002 China
| |
Collapse
|