1
|
Scrivener CL, Teed JA, Silson EH. Visual imagery of familiar people and places in category selective cortex. Neurosci Conscious 2025; 2025:niaf006. [PMID: 40241880 PMCID: PMC12003044 DOI: 10.1093/nc/niaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/03/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Visual imagery is a dynamic process recruiting a network of brain regions. We used electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) fusion to investigate the dynamics of category selective imagery in medial parietal cortex (MPC), ventral temporal cortex (VTC), and primary visual cortex (V1). Subjects attended separate EEG and fMRI sessions where they created mental images of personally familiar people and place stimuli. The fMRI contrast comparing people and place imagery replicated previous findings of category-selectivity in the medial parietal cortex. In addition, greater activity for places was found in the ventral and lateral place memory areas, the frontal eye fields, the inferior temporal sulcus, and the intraparietal sulcus. In contrast, greater activity for people was found in the fusiform face area and the right posterior superior temporal sulcus. Using multivariate decoding analysis in fMRI, we could decode individual stimuli within the preferred category in VTC. A more complex pattern emerged in MPC, which represented information that was not restricted to the preferred category. We were also able to decode category and individual stimuli in the EEG data. EEG-fMRI fusion indicated similar timings in MPC and VTC activity during imagery. However, in the VTC, fusion was higher in place selective regions during an early time window, and higher in face selective regions in a later time window. In contrast, fusion correlations in V1 occurred later during the imagery period, possibly reflecting the top-down progression of mental imagery from category-selective regions to primary visual cortex.
Collapse
Affiliation(s)
- Catriona L Scrivener
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Jessica A Teed
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Edward H Silson
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. Cognition 2025; 257:106058. [PMID: 39827755 DOI: 10.1016/j.cognition.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
The 'different-body/different-concepts hypothesis' central to some embodiment theories proposes that the sensory capacities of our bodies shape the cognitive and neural basis of our concepts. We tested this hypothesis by comparing behavioral semantic similarity judgments and neural signatures (fMRI) of 'visual' categories ('living things,' or animals, e.g., tiger, and light events, e.g., sparkle) across congenitally blind (n = 21) and sighted (n = 22) adults. Words referring to 'visual' entities/nouns and events/verbs (animals and light events) were compared to less vision-dependent categories from the same grammatical class (animal vs. place nouns, light vs. sound, mouth, and hand verbs). Within-category semantic similarity judgments about animals (e.g., sparrow vs. finch) were partially different across groups, consistent with the idea that sighted people rely on visually learned information to make such judgments about animals. However, robust neural specialization for living things in temporoparietal semantic networks, including in the precuneus, was observed in blind and sighted people alike. For light events, which are directly accessible only through vision, behavioral judgments were indistinguishable across groups. Neural responses to light events were also similar across groups: in both blind and sighted people, the left middle temporal gyrus (LMTG+) responded more to event concepts, including light events, compared to entity concepts. Multivariate patterns of neural activity in LMTG+ distinguished among different event types, including light events vs. other event types. In sum, we find that neural signatures of concepts previously attributed to visual experience do not require vision. Across a wide range of semantic types, conceptual representations develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany.
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Yoon HK, Jung Y, Persichetti AS, Dilks DD. A scene-selective region in the superior parietal lobule for visually guided navigation. Cereb Cortex 2025; 35:bhaf082. [PMID: 40264261 PMCID: PMC12014905 DOI: 10.1093/cercor/bhaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Growing evidence indicates that the occipital place area (OPA) is involved in "visually guided navigation." Here, we propose that a recently uncovered scene-selective region in the superior parietal lobule is also involved in visually guided navigation. First, using functional magnetic resonance imaging (fMRI), we found that the superior parietal lobule (SPL) responds significantly more to scene stimuli than to face and object stimuli across two sets of stimuli (i.e. dynamic and static), confirming its scene selectivity. Second, we found that the SPL, like the OPA, processes two kinds of information necessary for visually guided navigation: first-person perspective motion and sense (left/right) information in scenes. Third, resting-state fMRI data revealed that SPL is preferentially connected to OPA, compared to other scene-selective regions, indicating that SPL and OPA are part of the same system. Fourth, analysis of previously published fMRI data showed that SPL, like OPA, responds significantly more while participants perform a visually guided navigation task compared to both a scene categorization task and a baseline task, further supporting our hypothesis in an independent dataset. Taken together, these findings indicate the existence of a new scene-selective region for visually guided navigation and raise interesting questions about the precise role that SPL, compared to OPA, may play within visually guided navigation.
Collapse
Affiliation(s)
- Hee Kyung Yoon
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, United States
| | - Yaelan Jung
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, United States
| | - Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel D Dilks
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, United States
| |
Collapse
|
4
|
Jiao L, Ma M, He P, Geng X, Liu X, Liu F, Ma W, Yang S, Hou B, Tang X. Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5921-5941. [PMID: 38809737 DOI: 10.1109/tnnls.2024.3401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The progress of brain cognition and learning mechanisms has provided new inspiration for the next generation of artificial intelligence (AI) and provided the biological basis for the establishment of new models and methods. Brain science can effectively improve the intelligence of existing models and systems. Compared with other reviews, this article provides a comprehensive review of brain-inspired deep learning algorithms for learning, perception, and cognition from microscopic, mesoscopic, macroscopic, and super-macroscopic perspectives. First, this article introduces the brain cognition mechanism. Then, it summarizes the existing studies on brain-inspired learning and modeling from the perspectives of neural structure, cognitive module, learning mechanism, and behavioral characteristics. Next, this article introduces the potential learning directions of brain-inspired learning from four aspects: perception, cognition, understanding, and decision-making. Finally, the top-ten open problems that brain-inspired learning, perception, and cognition currently face are summarized, and the next generation of AI technology has been prospected. This work intends to provide a quick overview of the research on brain-inspired AI algorithms and to motivate future research by illuminating the latest developments in brain science.
Collapse
|
5
|
Xie W, Wardle SG, Langbein J, Fruchet O, Baumhauer M, Phan A, Tong AP, Japee S, Inati SK, Baker CI, Zaghloul KA. The role of the parahippocampal cortex in memory consolidation for scenes. Learn Mem 2025; 32:a054053. [PMID: 40316419 PMCID: PMC12052091 DOI: 10.1101/lm.054053.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/06/2025] [Indexed: 05/04/2025]
Abstract
Classic models propose that forming lasting visual memories involves coordinated interactions between visually selective neocortical structures and the hippocampus during memory consolidation. However, the precise role of visually selective neocortical structures in memory consolidation remains elusive, given their potential contributions spanning from initial perceptual encoding to subsequent memory reactivation. We capitalized on a unique opportunity, involving direct recording from the posterior parahippocampus and its subsequent resection in a neurological patient, to investigate the impact of scene-selective neocortical lesions on visual memory consolidation. First, with intracranial EEG, we confirmed the functional relevance of the patient's resected tissues in representing a specific visual category, in this case, scene images. Subsequently, we identified disruption of memory for scenes relative to faces and objects during the participant's postoperative visit. This finding prompted a comprehensive analysis of visual memory across different visual categories in this participant, as well as an examination of similar functions in other neurological patients with intact parahippocampi and a cohort of online participants. Through these within- and between-participant comparisons, we identified greater time-dependent reduction in visual memory for scene images following the resection of the posterior parahippocampus. Importantly, these changes in memory retention could not be attributed to a general reduction in initial memory encoding following neocortical lesions. Our findings, therefore, suggest that reactivating scene-selective neocortical areas is essential for converting transient visual perceptual experiences into lasting long-term scene memories.
Collapse
Affiliation(s)
- Weizhen Xie
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Neurosurgery, University of Maryland, Baltimore, Maryland 21201, USA
| | - Susan G Wardle
- Laboratory of Brain and Cognition, NIMH, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland, Baltimore, Maryland 21201, USA
| | - Oceane Fruchet
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Molly Baumhauer
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Audrey Phan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ai Phuong Tong
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shruti Japee
- Laboratory of Brain and Cognition, NIMH, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, NIMH, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Steel A, Prasad D, Garcia BD, Robertson CE. Relating scene memory and perception activity to functional properties, networks, and landmarks of posterior cerebral cortex - a probabilistic atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631538. [PMID: 39829755 PMCID: PMC11741410 DOI: 10.1101/2025.01.06.631538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Adaptive behavior in complex environments requires integrating visual perception with memory of our spatial environment. Recent work has implicated three brain areas in posterior cerebral cortex - the place memory areas (PMAs) that are anterior to the three visual scene perception areas (SPAs) - in this function. However, PMAs' relationship to the broader cortical hierarchy remains unclear due to limited group-level characterization. Here, we examined the PMA and SPA locations across three fMRI datasets (44 participants, 29 female). SPAs were identified using a standard visual localizer where participants viewed scenes versus faces. PMAs were identified by contrasting activity when participants recalled personally familiar places versus familiar faces (Datasets 1-2) or places versus multiple categories (familiar faces, bodies, and objects, and famous faces; Dataset 3). Across datasets, the PMAs were located anterior to the SPAs on the ventral and lateral cortical surfaces. The anterior displacement between PMAs and SPAs was highly reproducible. Compared to public atlases, the PMAs fell at the boundary between externally-oriented networks (dorsal attention) and internally-oriented networks (default mode). Additionally, while SPAs overlapped with retinotopic maps, the PMAs were consistently located anterior to mapped visual cortex. These results establish the anatomical position of the PMAs at inflection points along the cortical hierarchy between unimodal sensory and transmodal, apical regions, which informs broader theories of how the brain integrates perception and memory for scenes. We have released probabilistic parcels of these regions to facilitate future research into their roles in spatial cognition.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychology, University of Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois
| | | | - Brenda D. Garcia
- University of California San Diego Medical School, University of California San Diego
| | | |
Collapse
|
7
|
Wang G, Chen L, Cichy RM, Kaiser D. Enhanced and idiosyncratic neural representations of personally typical scenes. Proc Biol Sci 2025; 292:20250272. [PMID: 40132631 PMCID: PMC11936675 DOI: 10.1098/rspb.2025.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Previous research shows that the typicality of visual scenes (i.e. if they are good examples of a category) determines how easily they can be perceived and represented in the brain. However, the unique visual diets individuals are exposed to across their lifetimes should sculpt very personal notions of typicality. Here, we thus investigated whether scenes that are more typical to individual observers are more accurately perceived and represented in the brain. We used drawings to enable participants to describe typical scenes (e.g. a kitchen) and converted these drawings into three-dimensional renders. These renders were used as stimuli in a scene categorization task, during which we recorded electroencephalography (EEG). In line with previous findings, categorization was most accurate for renders resembling the typical scene drawings of individual participants. Our EEG analyses reveal two critical insights on how these individual differences emerge on the neural level. First, personally typical scenes yielded enhanced neural representations from around 200 ms after onset. Second, personally typical scenes were represented in idiosyncratic ways, with reduced dependence on high-level visual features. We interpret these findings in a predictive processing framework, where individual differences in internal models of scene categories formed through experience shape visual analysis in idiosyncratic ways.
Collapse
Affiliation(s)
- Gongting Wang
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Lixiang Chen
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Daniel Kaiser
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
- Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-Universität Gießen, Philipps-Universität Marburg and Technische Universität Darmstadt, Marburg, Germany
| |
Collapse
|
8
|
Malladi SN, Skerswetat J, Schmidt ME, Tootell RBH, Gaier ED, Bex PJ, Hunter DG, Nasr S. Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults. Front Neurosci 2025; 19:1527148. [PMID: 40092070 PMCID: PMC11907652 DOI: 10.3389/fnins.2025.1527148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Amblyopia is a developmental disorder associated with reduced performance in visually guided tasks, including binocular navigation within natural environments. To help understand the underlying neurological disorder, we used fMRI to test the impact of amblyopia on the functional organization of scene-selective cortical areas, including the posterior intraparietal gyrus scene-selective (PIGS) area, a recently discovered region that responds selectively to ego-motion within naturalistic environments. Methods Nineteen amblyopic adults (10 females) and thirty age-matched controls (15 females) participated in this study. Amblyopic participants spanned a wide range of amblyopia severity, based on their interocular visual acuity difference and stereoacuity. The visual function questionnaire (VFQ-39) was used to assess the participants' perception of their visual capabilities. Results Compared to controls, we found weaker scene-selective activity within the PIGS area in amblyopic individuals. By contrast, the level of scene-selective activity across the occipital place area (OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC) remained comparable between amblyopic and control participants. The participants' scores on "general vision" (VFQ-39 subscale) correlated with the level of scene-selective activity in PIGS. Discussion These results provide novel and direct evidence for the impact of amblyopia on scene processing within the human brain, thus enabling future studies to potentially link these changes across the spectrum of documented disabilities in amblyopia.
Collapse
Affiliation(s)
- Sarala N. Malladi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jan Skerswetat
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Marianna E. Schmidt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Roger B. H. Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston’s Children Hospital, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter J. Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - David G. Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Anderson NL, Salvo JJ, Smallwood J, Braga RM. Distinct distributed brain networks dissociate self-generated mental states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640604. [PMID: 40060698 PMCID: PMC11888405 DOI: 10.1101/2025.02.27.640604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Human cognition relies on two modes: a perceptually-coupled mode where mental states are driven by sensory input and a perceptually-decoupled mode featuring self-generated mental content. Past work suggests that imagined states are supported by the reinstatement of activity in sensory cortex, but transmodal systems within the canonical default network are also implicated in mind-wandering, recollection, and imagining the future. We identified brain systems supporting self-generated states using precision fMRI. Participants imagined different scenarios in the scanner, then rated their mental states on several properties using multi-dimensional experience sampling. We found that thinking involving scenes evoked activity within or near the default network, while imagining speech evoked activity within or near the language network. Imagining-related regions overlapped with activity evoked by viewing scenes or listening to speech, respectively; however, this overlap was predominantly within transmodal association networks, rather than adjacent unimodal sensory networks. The results suggest that different association networks support imagined states that are high in visual or auditory vividness.
Collapse
Affiliation(s)
- Nathan L. Anderson
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Joseph J. Salvo
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| | | | - Rodrigo M. Braga
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
- Department of Psychology, Northwestern University
| |
Collapse
|
10
|
Peer M, Epstein RA. Cognitive maps for hierarchical spaces in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636580. [PMID: 39974987 PMCID: PMC11838598 DOI: 10.1101/2025.02.05.636580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Many of the environments that we navigate through every day are hierarchically organized-they consist of spaces nested within other spaces. How do our mind/brains represent such environments? To address this question, we familiarized participants with a virtual environment consisting of a building within a courtyard, with objects distributed throughout the courtyard and building interior. We then scanned them with fMRI while they performed a memory task that required them to think about spatial relationships within and across the subspaces. Behavioral responses were less accurate and response times were longer on trials requiring integration across the subspaces compared to trials not requiring integration. fMRI response differences between integration and non-integration trials were observed in scene-responsive and medial temporal lobe brain regions, which were correlated the behavioral integration effects in retrosplenial complex, occipital place area, and hippocampus. Multivoxel pattern analyses provided additional evidence for representations in these brain regions that reflected the hierarchical organization of the environment. These results indicate that people form cognitive maps of nested spaces by dividing them into subspaces and using an active cognitive process to integrate the subspaces. Similar mechanisms might be used to support hierarchical coding in memory more broadly.
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania, Philadelphia PA, 19104, USA
| | - Russell A. Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
11
|
Watson DM, Andrews TJ. Functional Connectivity of the Scene Processing Network at Rest Does Not Reliably Predict Human Behavior on Scene Processing Tasks. eNeuro 2025; 12:ENEURO.0375-24.2024. [PMID: 39890456 PMCID: PMC11820959 DOI: 10.1523/eneuro.0375-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 02/03/2025] Open
Abstract
The perception of scenes is associated with processing in a network of scene-selective regions in the human brain. Prior research has identified a posterior-anterior bias within this network. Posterior scene regions exhibit preferential connectivity with early visual and posterior parietal regions, indicating a role in representing egocentric visual features. In contrast, anterior scene regions demonstrate stronger connectivity with frontoparietal control and default mode networks, suggesting a role in mnemonic processing of locations. Despite these findings, evidence linking connectivity in these regions to cognitive scene processing remains limited. In this preregistered study, we obtained cognitive behavioral measures alongside resting-state fMRI data from a large-scale public dataset to investigate interindividual variation in scene processing abilities relative to the functional connectivity of the scene network. Our results revealed substantial individual differences in scene recognition, spatial memory, and navigational abilities. Resting-state functional connectivity reproduced the posterior-anterior bias within the scene network. However, contrary to our preregistered hypothesis, we did not observe any consistent associations between interindividual variation in this connectivity and behavioral performance. These findings highlight the need for further research to clarify the role of these connections in scene processing, potentially through assessments of functional connectivity during scene-relevant tasks or in naturalistic conditions.
Collapse
Affiliation(s)
- David M Watson
- Department of Psychology and York Neuroimaging Centre, University of York, York YO10 5DD, United Kingdom
| | - Timothy J Andrews
- Department of Psychology and York Neuroimaging Centre, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Guo J, Pratt J, Walther DB. No evidence for a privileged role of global ensemble statistics in rapid scene perception: A registered replication attempt. Atten Percept Psychophys 2025; 87:685-697. [PMID: 39658730 DOI: 10.3758/s13414-024-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
The nature of visual processes underlying scene perception remains a hotly debated topic. According to one view, scene and object perception rely on similar neural mechanisms, and their processing pathways are tightly interlinked. According to another, scene gist might follow a separate pathway, relying primarily on global image properties. Recently, this latter idea has been supported with a set of experiments using content priming as a probe into scene and object perception (Brady et al. Journal of Experimental Psychology: Human Perception and Performance, 43, 1160-1176, 2017). The experiments have shown that preserving only structureless global ensemble texture information in the images of scenes could support rapid scene perception; however, preserving the same information in the images of objects failed to support object perception. We were intrigued by these results, since they are at odds with findings showing that scene content is primarily carried by the explicit encoding of scene structure as represented, for instance, by contours and their properties. In an attempt to reconcile these results, we attempted to replicate the experiments. In our replication experiment, we failed to find any evidence for a privileged use of texture information for scene as opposed to object primes. We conclude that there is no sufficient evidence for any fundamental differences in the processing pathways for object and scene perception: both rely on structural features that describe spatial relationships between constituent parts as well as texture information. To address this issue in the most rigorous manner possible, we here present the results of both a pilot experiment and a pre-registered replication attempt.
Collapse
Affiliation(s)
- Jiongtian Guo
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Jay Pratt
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
13
|
Han LT, Epstein RA. Distinct mechanisms for panoramic and landmark-based view integration in human scene-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634774. [PMID: 39896651 PMCID: PMC11785239 DOI: 10.1101/2025.01.24.634774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
To encode a cognitive map of an environment, a navigating agent must be able to integrate across disparate perceptual views corresponding to the same place. There are two ways that this can be done. First, the agent might integrate across the panorama of views obtainable at a single vantage point. Second, they might integrate across views of a distal location containing a landmark that is visible from multiple vantage points. Guided by previous work, we tested the hypothesis that these two viewpoint-integration processes would be mediated by different neuroanatomical substrates. Male and female human participants were familiarized with a route through a virtual city, along which they closely viewed 24 storefronts that were pairwise associated, either by being located on different buildings directly across the street from each other (same-panorama condition) or by being located on different sides of the same building facing different streets (same-landmark condition). They were then scanned with fMRI while viewing the storefronts in isolation and performing a spatial memory task. Multivoxel pattern analysis revealed a functional distinction between two scene-selective regions: the retrosplenial complex (RSC) showed a significant association effect for same-panorama storefronts, whereas the parahippocampal place area (PPA) showed a significant association effect for same-landmark storefronts. Panoramic association effects were also observed in several other dorsal-stream regions within the medial and lateral parietal lobe. These results demonstrate the existence of two neural mechanisms for integrating across views to represent places as either the observer's location (same panorama) or the observed location (same landmark).
Collapse
Affiliation(s)
- Linfeng Tony Han
- Department of Psychology, University of Pennsylvania 3710 Hamilton Walk, Philadelphia PA, 19104, USA
| | - Russell A. Epstein
- Department of Psychology, University of Pennsylvania 3710 Hamilton Walk, Philadelphia PA, 19104, USA
| |
Collapse
|
14
|
Gonzalez Alam TRJ, Krieger-Redwood K, Varga D, Gao Z, Horner AJ, Hartley T, Thiebaut de Schotten M, Sliwinska M, Pitcher D, Margulies DS, Smallwood J, Jefferies E. A double dissociation between semantic and spatial cognition in visual to default network pathways. eLife 2025; 13:RP94902. [PMID: 39841127 PMCID: PMC11753780 DOI: 10.7554/elife.94902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to fronto-temporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.
Collapse
Affiliation(s)
- Tirso RJ Gonzalez Alam
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UKYorkUnited Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Dominika Varga
- Sussex Neuroscience, School of Psychology, University of SussexBrighton and HoveUnited States
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine StanfordStanfordUnited Kingdom
| | - Aidan J Horner
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Tom Hartley
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Michel Thiebaut de Schotten
- University of Bordeaux, CNRS, CEA, IMNBordeauxFrance
- Brain Connectivity and Behaviour Laboratory, Sorbonne UniversitiesParisFrance
| | - Magdalena Sliwinska
- Department of Psychology, Liverpool John Moores UniversityLiverpoolUnited Kingdom
| | - David Pitcher
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de ParisParisFrance
| | | | - Elizabeth Jefferies
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| |
Collapse
|
15
|
Kidder A, Silson EH, Nau M, Baker CI. Distributed Cortical Regions for the Recall of People, Places, and Objects. eNeuro 2025; 12:ENEURO.0496-24.2024. [PMID: 39746804 PMCID: PMC11735654 DOI: 10.1523/eneuro.0496-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
The human medial parietal cortex (MPC) is recruited during multiple cognitive processes. Previously, we demonstrated regions specific to recall of people or places and proposed that the functional organization of MPC mirrors the category selectivity defining the medial-lateral axis of the ventral-temporal cortex (VTC). However, prior work considered recall of people and places only, and VTC also shows object selectivity sandwiched between face- and scene-selective regions. Here, we tested a strong prediction of our proposal: like VTC, MPC should show a region specifically recruited during object recall, and its relative cortical position should mirror the one of VTC. While responses during people and place recall showed a striking replication of prior findings, we did not observe any evidence for object-recall effects within MPC, which differentiates it from the spatial organization in VTC. Importantly, beyond MPC, robust recall effects were observed for people, places, and objects on the lateral surface of the brain. Place-recall effects were present in the angular gyrus, frontal eye fields, and peripheral portions of the early visual cortex, whereas people recall selectively drove response in the right posterior superior temporal sulcus. Object-recall effects were largely restricted to a region posterior to the left somatosensory cortex, in the vicinity of the supramarginal gyrus. Taken together, these data demonstrate that while there are distributed regions active during recall of people, places, and objects, the functional organization of MPC does not mirror the medial-lateral axis of VTC but reflects only the most salient features of that axis-namely, representations of people and places.
Collapse
Affiliation(s)
- Alexis Kidder
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| | - Edward H Silson
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Matthias Nau
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| |
Collapse
|
16
|
Baker C, Kravitz D. Insights from the Evolving Model of Two Cortical Visual Pathways. J Cogn Neurosci 2024; 36:2568-2579. [PMID: 38820560 PMCID: PMC11602006 DOI: 10.1162/jocn_a_02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The two cortical visual pathways framework has had a profound influence on theories and empirical studies of the visual system for over 40 years. By grounding physiological responses and behavior in neuroanatomy, the framework provided a critical guide for understanding vision. Although the framework has evolved over time, as our understanding of the physiology and neuroanatomy expanded, cortical visual processing is still often conceptualized as two separate pathways emerging from the primary visual cortex that support distinct behaviors ("what" vs. "where/how"). Here, we take a historical perspective and review the continuing evolution of the framework, discussing key and often overlooked insights. Rather than a functional and neuroanatomical bifurcation into two independent serial, hierarchical pathways, the current evidence points to two highly recurrent heterarchies with heterogeneous connections to cortical regions and subcortical structures that flexibly support a wide variety of behaviors. Although many of the simplifying assumptions of the framework are belied by the evidence gathered since its initial proposal, the core insight of grounding function and behavior in neuroanatomy remains fundamental. Given this perspective, we highlight critical open questions and the need for a better understanding of neuroanatomy, particularly in the human.
Collapse
Affiliation(s)
| | - Dwight Kravitz
- The George Washington University
- National Science Foundation
| |
Collapse
|
17
|
Steel A, Angeli PA, Silson EH, Robertson CE. Retinotopic coding organizes the interaction between internally and externally oriented brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615084. [PMID: 39386717 PMCID: PMC11463438 DOI: 10.1101/2024.09.25.615084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The human brain seamlessly integrates internally generated thoughts with incoming sensory information, yet the networks supporting internal (default network, DN) and external (dorsal attention network, dATN) processing are traditionally viewed as antagonistic. This raises a crucial question: how does the brain integrate information between these seemingly opposed systems? Here, using precision neuroimaging methods, we show that these internal/external networks are not as dissociated as traditionally thought. Using densely-sampled 7T fMRI data, we defined individualized whole-brain networks from participants at rest and calculated the retinotopic preferences of individual voxels within these networks during an visual mapping task. We show that while the overall network activity between the DN and dATN is independent at rest, considering a latent retinotopic code reveals a complex, voxel-scale interaction stratified by visual responsiveness. Specifically, the interaction between the DN and dATN at rest is structured at the voxel-level by each voxel's retinotopic preferences, such that the spontaneous activity of voxels preferring similar visual field locations is more anti-correlated than that of voxels preferring different visual field locations. Further, this retinotopic scaffold integrates with the domain-specific preferences of subregions within these networks, enabling efficient, parallel processing of retinotopic and domain-specific information. Thus, DN and dATN are not independent at rest: voxel-scale interaction between these networks preserves and encodes information in both positive and negative BOLD responses, even in the absence of visual input or task demands. These findings suggest that retinotopic coding may serve as a fundamental organizing principle for brain-wide communication, providing a new framework for understanding how the brain balances and integrates internal cognition with external perception.
Collapse
Affiliation(s)
- Adam Steel
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, Dartmouth College, Hanover, NH, USA
- Lead contact
| | - Peter A. Angeli
- Department of Psychology, Dartmouth College, Hanover, NH, USA
| | - Edward H. Silson
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
18
|
Tarder-Stoll H, Baldassano C, Aly M. The brain hierarchically represents the past and future during multistep anticipation. Nat Commun 2024; 15:9094. [PMID: 39438448 PMCID: PMC11496687 DOI: 10.1038/s41467-024-53293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Memory for temporal structure enables both planning of future events and retrospection of past events. We investigated how the brain flexibly represents extended temporal sequences into the past and future during anticipation. Participants learned sequences of environments in immersive virtual reality. Pairs of sequences had the same environments in a different order, enabling context-specific learning. During fMRI, participants anticipated upcoming environments multiple steps into the future in a given sequence. Temporal structure was represented in the hippocampus and across higher-order visual regions (1) bidirectionally, with graded representations into the past and future and (2) hierarchically, with further events into the past and future represented in successively more anterior brain regions. In hippocampus, these bidirectional representations were context-specific, and suppression of far-away environments predicted response time costs in anticipation. Together, this work sheds light on how we flexibly represent sequential structure to enable planning over multiple timescales.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University, New York, USA.
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.
| | | | - Mariam Aly
- Department of Psychology, Columbia University, New York, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Megla E, Prasad D, Bainbridge WA. The Neural Underpinnings of Aphantasia: A Case Study of Identical Twins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614521. [PMID: 39386622 PMCID: PMC11463508 DOI: 10.1101/2024.09.23.614521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Aphantasia is a condition characterized by reduced voluntary mental imagery. As this lack of mental imagery disrupts visual memory, understanding the nature of this condition can provide important insight into memory, perception, and imagery. Here, we leveraged the power of case studies to better characterize this condition by running a pair of identical twins, one with aphantasia and one without, through mental imagery tasks in an fMRI scanner. We identified objective, neural measures of aphantasia, finding less visual information in their memories which may be due to lower connectivity between frontoparietal and occipitotemporal lobes of the brain. However, despite this difference, we surprisingly found more visual information in the aphantasic twin's memory than anticipated, suggesting that aphantasia is a spectrum rather than a discrete condition.
Collapse
Affiliation(s)
- Emma Megla
- Department of Psychology, University of Chicago, Chicago, IL
| | - Deepasri Prasad
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - Wilma A. Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| |
Collapse
|
20
|
Tarder-Stoll H, Baldassano C, Aly M. The brain hierarchically represents the past and future during multistep anticipation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550399. [PMID: 37546761 PMCID: PMC10402095 DOI: 10.1101/2023.07.24.550399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Memory for temporal structure enables both planning of future events and retrospection of past events. We investigated how the brain flexibly represents extended temporal sequences into the past and future during anticipation. Participants learned sequences of environments in immersive virtual reality. Pairs of sequences had the same environments in a different order, enabling context-specific learning. During fMRI, participants anticipated upcoming environments multiple steps into the future in a given sequence. Temporal structure was represented in the hippocampus and across higher-order visual regions (1) bidirectionally, with graded representations into the past and future and (2) hierarchically, with further events into the past and future represented in successively more anterior brain regions. In hippocampus, these bidirectional representations were context-specific, and suppression of far-away environments predicted response time costs in anticipation. Together, this work sheds light on how we flexibly represent sequential structure to enable planning over multiple timescales.
Collapse
|
21
|
Rolls ET, Yan X, Deco G, Zhang Y, Jousmaki V, Feng J. A ventromedial visual cortical 'Where' stream to the human hippocampus for spatial scenes revealed with magnetoencephalography. Commun Biol 2024; 7:1047. [PMID: 39183244 PMCID: PMC11345434 DOI: 10.1038/s42003-024-06719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The primate including the human hippocampus implicated in episodic memory and navigation represents a spatial view, very different from the place representations in rodents. To understand this system in humans, and the computations performed, the pathway for this spatial view information to reach the hippocampus was analysed in humans. Whole-brain effective connectivity was measured with magnetoencephalography between 30 visual cortical regions and 150 other cortical regions using the HCP-MMP1 atlas in 21 participants while performing a 0-back scene memory task. In a ventromedial visual stream, V1-V4 connect to the ProStriate region where the retrosplenial scene area is located. The ProStriate region has connectivity to ventromedial visual regions VMV1-3 and VVC. These ventromedial regions connect to the medial parahippocampal region PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal regions have effective connectivity to the entorhinal cortex, perirhinal cortex, and hippocampus. In contrast, when viewing faces, the effective connectivity was more through a ventrolateral visual cortical stream via the fusiform face cortex to the inferior temporal visual cortex regions TE2p and TE2a. A ventromedial visual cortical 'Where' stream to the hippocampus for spatial scenes was supported by diffusion topography in 171 HCP participants at 7 T.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, Spain
| | - Yi Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Veikko Jousmaki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Arcaro M, Livingstone M. A Whole-Brain Topographic Ontology. Annu Rev Neurosci 2024; 47:21-40. [PMID: 38360565 DOI: 10.1146/annurev-neuro-082823-073701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.
Collapse
Affiliation(s)
- Michael Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
23
|
Noad KN, Watson DM, Andrews TJ. Familiarity enhances functional connectivity between visual and nonvisual regions of the brain during natural viewing. Cereb Cortex 2024; 34:bhae285. [PMID: 39038830 DOI: 10.1093/cercor/bhae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
We explored the neural correlates of familiarity with people and places using a naturalistic viewing paradigm. Neural responses were measured using functional magnetic resonance imaging, while participants viewed a movie taken from Game of Thrones. We compared inter-subject correlations and functional connectivity in participants who were either familiar or unfamiliar with the TV series. Higher inter-subject correlations were found between familiar participants in regions, beyond the visual brain, that are typically associated with the processing of semantic, episodic, and affective information. However, familiarity also increased functional connectivity between face and scene regions in the visual brain and the nonvisual regions of the familiarity network. To determine whether these regions play an important role in face recognition, we measured responses in participants with developmental prosopagnosia (DP). Consistent with a deficit in face recognition, the effect of familiarity was significantly attenuated across the familiarity network in DP. The effect of familiarity on functional connectivity between face regions and the familiarity network was also attenuated in DP. These results show that the neural response to familiarity involves an extended network of brain regions and that functional connectivity between visual and nonvisual regions of the brain plays an important role in the recognition of people and places during natural viewing.
Collapse
Affiliation(s)
- Kira N Noad
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| | - David M Watson
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| | - Timothy J Andrews
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| |
Collapse
|
24
|
Park J, Soucy E, Segawa J, Mair R, Konkle T. Immersive scene representation in human visual cortex with ultra-wide-angle neuroimaging. Nat Commun 2024; 15:5477. [PMID: 38942766 PMCID: PMC11213904 DOI: 10.1038/s41467-024-49669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
While human vision spans 220°, traditional functional MRI setups display images only up to central 10-15°. Thus, it remains unknown how the brain represents a scene perceived across the full visual field. Here, we introduce a method for ultra-wide angle display and probe signatures of immersive scene representation. An unobstructed view of 175° is achieved by bouncing the projected image off angled-mirrors onto a custom-built curved screen. To avoid perceptual distortion, scenes are created with wide field-of-view from custom virtual environments. We find that immersive scene representation drives medial cortex with far-peripheral preferences, but shows minimal modulation in classic scene regions. Further, scene and face-selective regions maintain their content preferences even with extreme far-periphery stimulation, highlighting that not all far-peripheral information is automatically integrated into scene regions computations. This work provides clarifying evidence on content vs. peripheral preferences in scene representation and opens new avenues to research immersive vision.
Collapse
Affiliation(s)
- Jeongho Park
- Department of Psychology, Harvard University, Cambridge, MA, USA.
| | - Edward Soucy
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jennifer Segawa
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ross Mair
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Talia Konkle
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Kempner Institute for Biological and Artificial Intelligence, Harvard University, Boston, MA, USA
| |
Collapse
|
25
|
Malladi SN, Skerswetat J, Tootell RB, Gaier ED, Bex P, Hunter DG, Nasr S. Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597579. [PMID: 38895262 PMCID: PMC11185631 DOI: 10.1101/2024.06.05.597579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Amblyopia is a developmental disorder associated with reduced performance in visually guided tasks, including binocular navigation within natural environments. To help understand the underlying neurological disorder, we used fMRI to test the impact of amblyopia on the functional organization of scene-selective cortical areas, including the posterior intraparietal gyrus scene-selective (PIGS) area, a recently discovered region that responds selectively to ego-motion within naturalistic environments (Kennedy et al., 2024). Nineteen amblyopic adults (10 female) and thirty age-matched controls (12 female) participated in this study. Amblyopic participants spanned a wide range of amblyopia severity, based on their interocular visual acuity difference and stereoacuity. The visual function questionnaire (VFQ-39) was used to assess the participants' perception of their visual capabilities. Compared to controls, we found weaker scene-selective activity within the PIGS area in amblyopic individuals. By contrast, the level of scene-selective activity across the occipital place area (OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC)) remained comparable between amblyopic and control participants. The subjects' scores on "general vision" (VFQ-39 subscale) correlated with the level of scene-selective activity in PIGS. These results provide novel and direct evidence for amblyopia-related changes in scene-processing networks, thus enabling future studies to potentially link these changes across the spectrum of documented disabilities in amblyopia.
Collapse
Affiliation(s)
- Sarala N. Malladi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jan Skerswetat
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Roger B.H. Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston’s Children Hospital, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - David G. Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Chen YY, Areti A, Yoshor D, Foster BL. Perception and Memory Reinstatement Engage Overlapping Face-Selective Regions within Human Ventral Temporal Cortex. J Neurosci 2024; 44:e2180232024. [PMID: 38627090 PMCID: PMC11140664 DOI: 10.1523/jneurosci.2180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions specialized for processing specific sensory stimuli are reactivated to support content-specific retrieval. Recently, several studies have emphasized transformations in the spatial organization of these reinstated activity patterns. Specifically, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with the activity observed during perception. However, it is not clear that such transformations occur universally, with inconsistent evidence for other important stimulus categories, particularly faces. One challenge in addressing this question is the careful delineation of face-selective cortices, which are interdigitated with other selective regions, in configurations that spatially differ across individuals. Therefore, we conducted a multisession neuroimaging study to first carefully map individual participants' (nine males and seven females) face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the activity patterns within these regions during face memory encoding and retrieval. While face-selective regions were expectedly engaged during face perception at encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions, but did not show any consistent direction of spatial transformation (e.g., anteriorization). We also report on unique human intracranial recordings from VTC under the same experimental conditions. These findings highlight the importance of considering the complex configuration of category-selective cortex in elucidating principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
27
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Koslov SR, Kable JW, Foster BL. Dissociable Contributions of the Medial Parietal Cortex to Recognition Memory. J Neurosci 2024; 44:e2220232024. [PMID: 38527809 PMCID: PMC11063824 DOI: 10.1523/jneurosci.2220-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
29
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Kennedy B, Malladi SN, Tootell RBH, Nasr S. A previously undescribed scene-selective site is the key to encoding ego-motion in naturalistic environments. eLife 2024; 13:RP91601. [PMID: 38506719 PMCID: PMC10954307 DOI: 10.7554/elife.91601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Current models of scene processing in the human brain include three scene-selective areas: the parahippocampal place area (or the temporal place areas), the restrosplenial cortex (or the medial place area), and the transverse occipital sulcus (or the occipital place area). Here, we challenged this model by showing that at least one other scene-selective site can also be detected within the human posterior intraparietal gyrus. Despite the smaller size of this site compared to the other scene-selective areas, the posterior intraparietal gyrus scene-selective (PIGS) site was detected consistently in a large pool of subjects (n = 59; 33 females). The reproducibility of this finding was tested based on multiple criteria, including comparing the results across sessions, utilizing different scanners (3T and 7T) and stimulus sets. Furthermore, we found that this site (but not the other three scene-selective areas) is significantly sensitive to ego-motion in scenes, thus distinguishing the role of PIGS in scene perception relative to other scene-selective areas. These results highlight the importance of including finer scale scene-selective sites in models of scene processing - a crucial step toward a more comprehensive understanding of how scenes are encoded under dynamic conditions.
Collapse
Affiliation(s)
- Bryan Kennedy
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
| | - Sarala N Malladi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
| | - Roger BH Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
31
|
Park J, Soucy E, Segawa J, Mair R, Konkle T. Immersive scene representation in human visual cortex with ultra-wide angle neuroimaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.14.540275. [PMID: 37292806 PMCID: PMC10245572 DOI: 10.1101/2023.05.14.540275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While humans experience the visual environment in a panoramic 220° view, traditional functional MRI setups are limited to display images like postcards in the central 10-15° of the visual field. Thus, it remains unknown how a scene is represented in the brain when perceived across the full visual field. Here, we developed a novel method for ultra-wide angle visual presentation and probed for signatures of immersive scene representation. To accomplish this, we bounced the projected image off angled-mirrors directly onto a custom-built curved screen, creating an unobstructed view of 175°. Scene images were created from custom-built virtual environments with a compatible wide field-of-view to avoid perceptual distortion. We found that immersive scene representation drives medial cortex with far-peripheral preferences, but surprisingly had little effect on classic scene regions. That is, scene regions showed relatively minimal modulation over dramatic changes of visual size. Further, we found that scene and face-selective regions maintain their content preferences even under conditions of central scotoma, when only the extreme far-peripheral visual field is stimulated. These results highlight that not all far-peripheral information is automatically integrated into the computations of scene regions, and that there are routes to high-level visual areas that do not require direct stimulation of the central visual field. Broadly, this work provides new clarifying evidence on content vs. peripheral preferences in scene representation, and opens new neuroimaging research avenues to understand immersive visual representation.
Collapse
Affiliation(s)
| | | | | | - Ross Mair
- Center for Brain Science, Harvard University
- Department of Radiology, Harvard Medical School
- Department of Radiology, Massachusetts General Hospital
| | - Talia Konkle
- Department of Psychology, Harvard University
- Center for Brain Science, Harvard University
- Kempner Institute for Biological and Artificial Intelligence, Harvard University
| |
Collapse
|
32
|
Watson DM, Andrews TJ. Mapping the functional and structural connectivity of the scene network. Hum Brain Mapp 2024; 45:e26628. [PMID: 38376190 PMCID: PMC10878195 DOI: 10.1002/hbm.26628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The recognition and perception of places has been linked to a network of scene-selective regions in the human brain. While previous studies have focussed on functional connectivity between scene-selective regions themselves, less is known about their connectivity with other cortical and subcortical regions in the brain. Here, we determine the functional and structural connectivity profile of the scene network. We used fMRI to examine functional connectivity between scene regions and across the whole brain during rest and movie-watching. Connectivity within the scene network revealed a bias between posterior and anterior scene regions implicated in perceptual and mnemonic aspects of scene perception respectively. Differences between posterior and anterior scene regions were also evident in the connectivity with cortical and subcortical regions across the brain. For example, the Occipital Place Area (OPA) and posterior Parahippocampal Place Area (PPA) showed greater connectivity with visual and dorsal attention networks, while anterior PPA and Retrosplenial Complex showed preferential connectivity with default mode and frontoparietal control networks and the hippocampus. We further measured the structural connectivity of the scene network using diffusion tractography. This indicated both similarities and differences with the functional connectivity, highlighting biases between posterior and anterior regions, but also between ventral and dorsal scene regions. Finally, we quantified the structural connectivity between the scene network and major white matter tracts throughout the brain. These findings provide a map of the functional and structural connectivity of scene-selective regions to each other and the rest of the brain.
Collapse
Affiliation(s)
- David M. Watson
- Department of Psychology and York Neuroimaging CentreUniversity of YorkYorkUK
| | - Timothy J. Andrews
- Department of Psychology and York Neuroimaging CentreUniversity of YorkYorkUK
| |
Collapse
|
33
|
Leferink CA, DeKraker J, Brunec IK, Köhler S, Moscovitch M, Walther DB. Organization of pRF size along the AP axis of the hippocampus and adjacent medial temporal cortex is related to specialization for scenes versus faces. Cereb Cortex 2024; 34:bhad429. [PMID: 37991278 DOI: 10.1093/cercor/bhad429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023] Open
Abstract
The hippocampus is largely recognized for its integral contributions to memory processing. By contrast, its role in perceptual processing remains less clear. Hippocampal properties vary along the anterior-posterior (AP) axis. Based on past research suggesting a gradient in the scale of features processed along the AP extent of the hippocampus, the representations have been proposed to vary as a function of granularity along this axis. One way to quantify such granularity is with population receptive field (pRF) size measured during visual processing, which has so far received little attention. In this study, we compare the pRF sizes within the hippocampus to its activation for images of scenes versus faces. We also measure these functional properties in surrounding medial temporal lobe (MTL) structures. Consistent with past research, we find pRFs to be larger in the anterior than in the posterior hippocampus. Critically, our analysis of surrounding MTL regions, the perirhinal cortex, entorhinal cortex, and parahippocampal cortex shows a similar correlation between scene sensitivity and larger pRF size. These findings provide conclusive evidence for a tight relationship between the pRF size and the sensitivity to image content in the hippocampus and adjacent medial temporal cortex.
Collapse
Affiliation(s)
- Charlotte A Leferink
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
| | - Jordan DeKraker
- Department of Psychology, Western University, Social Science Centre Rm 7418, Western University, London, ON N6A 3K7, Canada
| | - Iva K Brunec
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Stephen A. Levin Bldg. Philadelphia, PA, 19104-6241, United States
| | - Stefan Köhler
- Department of Psychology, Western University, Social Science Centre Rm 7418, Western University, London, ON N6A 3K7, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
34
|
Srokova S. Memory Retrieval of Visuospatial Context is Supported by the Anterior Portions of High-Level Visual Cortex. J Neurosci 2024; 44:e1854232024. [PMID: 38171646 PMCID: PMC10851676 DOI: 10.1523/jneurosci.1854-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Sabina Srokova
- Psychology Department, University of Arizona, Tucson 85721, Arizona
| |
Collapse
|
35
|
Klink H, Kaiser D, Stecher R, Ambrus GG, Kovács G. Your place or mine? The neural dynamics of personally familiar scene recognition suggests category independent familiarity encoding. Cereb Cortex 2023; 33:11634-11645. [PMID: 37885126 DOI: 10.1093/cercor/bhad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Recognizing a stimulus as familiar is an important capacity in our everyday life. Recent investigation of visual processes has led to important insights into the nature of the neural representations of familiarity for human faces. Still, little is known about how familiarity affects the neural dynamics of non-face stimulus processing. Here we report the results of an EEG study, examining the representational dynamics of personally familiar scenes. Participants viewed highly variable images of their own apartments and unfamiliar ones, as well as personally familiar and unfamiliar faces. Multivariate pattern analyses were used to examine the time course of differential processing of familiar and unfamiliar stimuli. Time-resolved classification revealed that familiarity is decodable from the EEG data similarly for scenes and faces. The temporal dynamics showed delayed onsets and peaks for scenes as compared to faces. Familiarity information, starting at 200 ms, generalized across stimulus categories and led to a robust familiarity effect. In addition, familiarity enhanced category representations in early (250-300 ms) and later (>400 ms) processing stages. Our results extend previous face familiarity results to another stimulus category and suggest that familiarity as a construct can be understood as a general, stimulus-independent processing step during recognition.
Collapse
Affiliation(s)
- Hannah Klink
- Department of Neurology, Universitätsklinikum, Kastanienstraße1 Jena, D-07747 Jena, Thüringen, Germany
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| | - Daniel Kaiser
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-University Gießen and Philipps-University Marburg, Hans-Meerwein-Straße 6 Mehrzweckgeb, 03C022, Marburg, D-35032, Hessen, Germany
| | - Rico Stecher
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
| | - Géza G Ambrus
- Department of Psychology, Bournemouth University, Poole House P319, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| |
Collapse
|
36
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
37
|
Perszyk EE, Davis XS, Djordjevic J, Jones-Gotman M, Trinh J, Hutelin Z, Veldhuizen MG, Koban L, Wager TD, Kober H, Small DM. Odour-imagery ability is linked to food craving, intake, and adiposity change in humans. Nat Metab 2023; 5:1483-1493. [PMID: 37640944 DOI: 10.1038/s42255-023-00874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well-known that food-cue reactivity (FCR) is positively associated with body mass index (BMI)1 and weight change2, but the mechanisms underlying these relationships are incompletely understood. One prominent theory of craving posits that the elaboration of a desired substance through sensory imagery intensifies cravings, thereby promoting consumption3. Olfaction is integral to food perception, yet the ability to imagine odours varies widely4. Here we test in a basic observational study whether this large variation in olfactory imagery drives FCR strength to promote adiposity in 45 adults (23 male). We define odour-imagery ability as the extent to which imagining an odour interferes with the detection of a weak incongruent odour (the 'interference effect'5). As predicted in our preregistration, the interference effect correlates with the neural decoding of imagined, but not real, odours. These perceptual and neural measures of odour imagery are in turn associated with FCR, defined by the rated craving intensity of liked foods and cue-potentiated intake. Finally, odour imagery exerts positive indirect effects on changes in BMI and body-fat percentage over one year via its influences on FCR. These findings establish odour imagery as a driver of FCR that in turn confers risk for weight gain.
Collapse
Affiliation(s)
- Emily E Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Xue S Davis
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jelena Djordjevic
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Marilyn Jones-Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Trinh
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maria G Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Ciftlikkoy Campus, Mersin, Turkey
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, University Claude Bernard Lyon 1, Bron, France
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Chen YY, Areti A, Yoshor D, Foster BL. Individual-specific memory reinstatement patterns within human face-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552130. [PMID: 37609262 PMCID: PMC10441346 DOI: 10.1101/2023.08.06.552130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions involved in the sensory processing of prior events are reactivated to support this perception of the past. Recently, several studies have emphasized potential transformations in the spatial organization of reinstated activity patterns. In particular, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with those during perception. However, it is not clear that such transformations occur universally, with evidence lacking for other important stimulus categories, particularly faces. Critical to addressing these questions, and to studies of reinstatement more broadly, is the growing importance of considering meaningful variations in the organization of sensory systems across individuals. Therefore, we conducted a multi-session neuroimaging study to first carefully map individual participants face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the correspondence of activity patterns during face memory encoding and retrieval. Our results showed distinct configurations of face-selective regions within the VTC across individuals. While a significant degree of overlap was observed between face perception and memory encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions. Importantly, these activity patterns were consistently tied to individual-specific neural substrates, but did not show any consistent direction of spatial transformation (e.g., anteriorization). To provide further insight to these findings, we also report on unique human intracranial recordings from VTC under the same experimental conditions. Our findings highlight the importance of considering individual variations in functional neuroanatomy in the context of assessing the nature of cortical reinstatement. Consideration of such factors will be important for establishing general principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
39
|
Steel A, Garcia BD, Goyal K, Mynick A, Robertson CE. Scene Perception and Visuospatial Memory Converge at the Anterior Edge of Visually Responsive Cortex. J Neurosci 2023; 43:5723-5737. [PMID: 37474310 PMCID: PMC10401646 DOI: 10.1523/jneurosci.2043-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
To fluidly engage with the world, our brains must simultaneously represent both the scene in front of us and our memory of the immediate surrounding environment (i.e., local visuospatial context). How does the brain's functional architecture enable sensory and mnemonic representations to closely interface while also avoiding sensory-mnemonic interference? Here, we asked this question using first-person, head-mounted virtual reality and fMRI. Using virtual reality, human participants of both sexes learned a set of immersive, real-world visuospatial environments in which we systematically manipulated the extent of visuospatial context associated with a scene image in memory across three learning conditions, spanning from a single FOV to a city street. We used individualized, within-subject fMRI to determine which brain areas support memory of the visuospatial context associated with a scene during recall (Experiment 1) and recognition (Experiment 2). Across the whole brain, activity in three patches of cortex was modulated by the amount of known visuospatial context, each located immediately anterior to one of the three scene perception areas of high-level visual cortex. Individual subject analyses revealed that these anterior patches corresponded to three functionally defined place memory areas, which selectively respond when visually recalling personally familiar places. In addition to showing activity levels that were modulated by the amount of visuospatial context, multivariate analyses showed that these anterior areas represented the identity of the specific environment being recalled. Together, these results suggest a convergence zone for scene perception and memory of the local visuospatial context at the anterior edge of high-level visual cortex.SIGNIFICANCE STATEMENT As we move through the world, the visual scene around us is integrated with our memory of the wider visuospatial context. Here, we sought to understand how the functional architecture of the brain enables coexisting representations of the current visual scene and memory of the surrounding environment. Using a combination of immersive virtual reality and fMRI, we show that memory of visuospatial context outside the current FOV is represented in a distinct set of brain areas immediately anterior and adjacent to the perceptually oriented scene-selective areas of high-level visual cortex. This functional architecture would allow efficient interaction between immediately adjacent mnemonic and perceptual areas while also minimizing interference between mnemonic and perceptual representations.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Brenda D Garcia
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Kala Goyal
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anna Mynick
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Caroline E Robertson
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
40
|
So SW, Fleming KM, Nixon JP, Butterick TA. Early Life Obesity Increases Neuroinflammation, Amyloid Beta Deposition, and Cognitive Decline in a Mouse Model of Alzheimer's Disease. Nutrients 2023; 15:nu15112494. [PMID: 37299457 DOI: 10.3390/nu15112494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity, a known risk factor of Alzheimer's disease (AD), increases the activation of microglia, leading to a proinflammatory phenotype. Our previous work shows that a high fat diet (HFD) can cause neuroinflammation and cognitive decline in mice. We hypothesized that proinflammatory activation of brain microglia in obesity exacerbates AD pathology and increases the accumulation of amyloid beta (Aβ) plaques. Presently, we tested cognitive function in 8-month-old male and female APP/PS1 mice fed a HFD, starting at 1.5 months of age. Locomotor activity, anxiety-like behavior, behavioral despair, and spatial memory were all assessed through behavioral tests. Microgliosis and Aβ deposition were measured in multiple brain regions through immunohistochemical analysis. Our results show that a HFD decreases locomotor activity, while increasing anxiety-like behavior and behavioral despair independent of genotype. A HFD led to increased memory deficits in both sexes, with HFD-fed APP/PS1 mice performing the worst out of all groups. Immunohistochemical analysis showed increased microgliosis in mice fed a HFD. This was accompanied by an increase in Aβ deposition in the HFD-fed APP/PS1 mice. Together, our results support that HFD-induced obesity exacerbates neuroinflammation and Aβ deposition in a young adult AD mouse model, leading to increased memory deficits and cognitive decline in both sexes.
Collapse
Affiliation(s)
- Simon W So
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Kendra M Fleming
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Food Science and Nutrition, University of Minnesota Twin Cities, St. Paul, MN 55108, USA
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
- Department of Food Science and Nutrition, University of Minnesota Twin Cities, St. Paul, MN 55108, USA
| |
Collapse
|
41
|
Gu L, Li A, Yang R, Yang J, Pang Y, Qu J, Mei L. Category-specific and category-general neural codes of recognition memory in the ventral visual pathway. Cortex 2023; 164:77-89. [PMID: 37207411 DOI: 10.1016/j.cortex.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Researchers have identified category-specific brain regions, such as the fusiform face area (FFA) and parahippocampal place area (PPA) in the ventral visual pathway, which respond preferentially to one particular category of visual objects. In addition to their category-specific role in visual object identification and categorization, regions in the ventral visual pathway play critical roles in recognition memory. Nevertheless, it is not clear whether the contributions of those brain regions to recognition memory are category-specific or category-general. To address this question, the present study adopted a subsequent memory paradigm and multivariate pattern analysis (MVPA) to explore category-specific and category-general neural codes of recognition memory in the visual pathway. The results revealed that the right FFA and the bilateral PPA showed category-specific neural patterns supporting recognition memory of faces and scenes, respectively. In contrast, the lateral occipital cortex seemed to carry category-general neural codes of recognition memory. These results provide neuroimaging evidence for category-specific and category-general neural mechanisms of recognition memory in the ventral visual pathway.
Collapse
Affiliation(s)
- Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
42
|
Perszyk EE, Davis XS, Djordjevic J, Jones-Gotman M, Trinh J, Hutelin Z, Veldhuizen MG, Koban L, Wager TD, Kober H, Small DM. Odor imagery but not perception drives risk for food cue reactivity and increased adiposity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527292. [PMID: 36798231 PMCID: PMC9934556 DOI: 10.1101/2023.02.06.527292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mental imagery has been proposed to play a critical role in the amplification of cravings. Here we tested whether olfactory imagery drives food cue reactivity strength to promote adiposity in 45 healthy individuals. We measured odor perception, odor imagery ability, and food cue reactivity using self-report, perceptual testing, and neuroimaging. Adiposity was assessed at baseline and one year later. Brain responses to real and imagined odors were analyzed with univariate and multivariate decoding methods to identify pattern-based olfactory codes. We found that the accuracy of decoding imagined, but not real, odor quality correlated with a perceptual measure of odor imagery ability and with greater adiposity changes. This latter relationship was mediated by cue-potentiated craving and intake. Collectively, these findings establish odor imagery ability as a risk factor for weight gain and more specifically as a mechanism by which exposure to food cues promotes craving and overeating.
Collapse
Affiliation(s)
- Emily E. Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xue S. Davis
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jelena Djordjevic
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marilyn Jones-Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Jessica Trinh
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Ciftlikkoy Campus, Mersin 33343, Turkey
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, University Claude Bernard Lyon 1, France
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
43
|
Dissociating Hippocampal and Cortical Contributions to Predictive Processing. J Neurosci 2023; 43:184-186. [PMID: 36646458 PMCID: PMC9838692 DOI: 10.1523/jneurosci.1840-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 01/13/2023] Open
|
44
|
Bainbridge WA, Baker CI. Multidimensional memory topography in the medial parietal cortex identified from neuroimaging of thousands of daily memory videos. Nat Commun 2022; 13:6508. [PMID: 36316315 PMCID: PMC9622880 DOI: 10.1038/s41467-022-34075-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Our memories form a tapestry of events, people, and places, woven across the decades of our lives. However, research has often been limited in assessing the nature of episodic memory by using artificial stimuli and short time scales. The explosion of social media enables new ways to examine the neural representations of naturalistic episodic memories, for features like the memory's age, location, memory strength, and emotions. We recruited 23 users of a video diary app ("1 s Everyday"), who had recorded 9266 daily memory videos spanning up to 7 years. During a 3 T fMRI scan, participants viewed 300 of their memory videos intermixed with 300 from another individual. We find that memory features are tightly interrelated, highlighting the need to test them in conjunction, and discover a multidimensional topography in medial parietal cortex, with subregions sensitive to a memory's age, strength, and the familiarity of the people and places involved.
Collapse
Affiliation(s)
- Wilma A Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Favila SE, Kuhl BA, Winawer J. Perception and memory have distinct spatial tuning properties in human visual cortex. Nat Commun 2022; 13:5864. [PMID: 36257949 PMCID: PMC9579130 DOI: 10.1038/s41467-022-33161-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Reactivation of earlier perceptual activity is thought to underlie long-term memory recall. Despite evidence for this view, it is unclear whether mnemonic activity exhibits the same tuning properties as feedforward perceptual activity. Here, we leverage population receptive field models to parameterize fMRI activity in human visual cortex during spatial memory retrieval. Though retinotopic organization is present during both perception and memory, large systematic differences in tuning are also evident. Whereas there is a three-fold decline in spatial precision from early to late visual areas during perception, this pattern is not observed during memory retrieval. This difference cannot be explained by reduced signal-to-noise or poor performance on memory trials. Instead, by simulating top-down activity in a network model of cortex, we demonstrate that this property is well explained by the hierarchical structure of the visual system. Together, modeling and empirical results suggest that computational constraints imposed by visual system architecture limit the fidelity of memory reactivation in sensory cortex.
Collapse
Affiliation(s)
- Serra E Favila
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Department of Psychology, Columbia University, New York, NY, 10027, USA.
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
46
|
Meng L, Ge K. Decoding Visual fMRI Stimuli from Human Brain Based on Graph Convolutional Neural Network. Brain Sci 2022; 12:brainsci12101394. [PMID: 36291327 PMCID: PMC9599823 DOI: 10.3390/brainsci12101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Brain decoding is to predict the external stimulus information from the collected brain response activities, and visual information is one of the most important sources of external stimulus information. Decoding functional magnetic resonance imaging (fMRI) based on visual stimulation is helpful in understanding the working mechanism of the brain visual function regions. Traditional brain decoding algorithms cannot accurately extract stimuli features from fMRI. To address these shortcomings, this paper proposed a brain decoding algorithm based on a graph convolution network (GCN). Firstly, 11 regions of interest (ROI) were selected according to the human brain visual function regions, which can avoid the noise interference of the non-visual regions of the human brain; then, a deep three-dimensional convolution neural network was specially designed to extract the features of these 11 regions; next, the GCN was used to extract the functional correlation features between the different human brain visual regions. Furthermore, to avoid the problem of gradient disappearance when there were too many layers of graph convolutional neural network, the residual connections were adopted in our algorithm, which helped to integrate different levels of features in order to improve the accuracy of the proposed GCN. The proposed algorithm was tested on the public dataset, and the recognition accuracy reached 98.67%. Compared with the other state-of-the-art algorithms, the proposed algorithm performed the best.
Collapse
|
47
|
Yu Y, Setogawa T, Matsumoto J, Nishimaru H, Nishijo H. Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. AIMS Neurosci 2022; 9:373-394. [PMID: 36329903 PMCID: PMC9581735 DOI: 10.3934/neuroscience.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.
Collapse
Affiliation(s)
- Yang Yu
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Schultz H, Sommer T, Peters J. Category-sensitive incidental reinstatement in medial temporal lobe subregions during word recognition. Learn Mem 2022; 29:126-135. [PMID: 35428729 PMCID: PMC9053111 DOI: 10.1101/lm.053553.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
During associative retrieval, the brain reinstates neural representations that were present during encoding. The human medial temporal lobe (MTL), with its subregions hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), plays a central role in neural reinstatement. Previous studies have given compelling evidence for reinstatement in the MTL during explicitly instructed associative retrieval. High-confident recognition may be similarly accompanied by recollection of associated information from the encoding context. It is unclear, however, whether high-confident recognition memory elicits reinstatement in the MTL even in the absence of an explicit instruction to retrieve associated information. Here, we addressed this open question using high-resolution fMRI. Twenty-eight male and female human volunteers engaged in a recognition memory task for words that they had previously encoded together with faces and scenes. Using complementary univariate and multivariate approaches, we show that MTL subregions including the PRC, PHC, and HC differentially reinstate category-sensitive representations during high-confident word recognition, even though no explicit instruction to retrieve the associated category was given. This constitutes novel evidence that high-confident recognition memory is accompanied by incidental reinstatement of associated category information in MTL subregions, and supports a functional model of the MTL that emphasizes content-sensitive representations during both encoding and retrieval.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
| |
Collapse
|
49
|
LaChance PA, Taube JS. Spatial context and the functional role of the postrhinal cortex. Neurobiol Learn Mem 2022; 189:107596. [PMID: 35131453 PMCID: PMC8897231 DOI: 10.1016/j.nlm.2022.107596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
The postrhinal cortex (POR) serves as a key input area to the hippocampal system. It receives highly processed information from the ventral visual stream and other limbic areas including the retrosplenial cortex, parahippocampal areas, and portions of the limbic thalamus. The POR was studied early on by David Bucci and colleagues who first postulated that the POR plays a major role in contextual learning. Here we review a number of approaches and experimental studies that have explored POR's role in contextual processing. We discuss POR lesion studies that monitored deficits in fear conditioning tasks and the effects that these lesions had on processing visual landmark information. We then review the types of spatial correlates encoded by POR cells. A large number of head direction (HD) cells are present, although recent findings suggest that many of them are more accurately characterized as landmark modulated-HD cells as opposed to classic HD cells. A significant number of POR cells are also tuned to egocentric properties of the environment, such as the spatial relationship of the animal to the center of its environment, or the distance between the animal and either the environment's center or its boundaries. We suggest potential frameworks through which these functional cell types might support contextual processing. We then discuss deficits seen in humans who have damage to the homologous parahippocampal cortex, and we finish by reviewing functional imaging studies that found activation of this area while human subjects performed various tasks. A preponderance of evidence suggests that the POR, along with its interactions with retrosplenial cortex, plays a key role in contextual information processing.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Jeffrey S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
50
|
Three cortical scene systems and their development. Trends Cogn Sci 2022; 26:117-127. [PMID: 34857468 PMCID: PMC8770598 DOI: 10.1016/j.tics.2021.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Since the discovery of three scene-selective regions in the human brain, a central assumption has been that all three regions directly support navigation. We propose instead that cortical scene processing regions support three distinct computational goals (and one not for navigation at all): (i) The parahippocampal place area supports scene categorization, which involves recognizing the kind of place we are in; (ii) the occipital place area supports visually guided navigation, which involves finding our way through the immediately visible environment, avoiding boundaries and obstacles; and (iii) the retrosplenial complex supports map-based navigation, which involves finding our way from a specific place to some distant, out-of-sight place. We further hypothesize that these systems develop along different timelines, with both navigation systems developing slower than the scene categorization system.
Collapse
|