1
|
Gao Z, Yang H, Zhang J, Yang J, Hong L, Li ZY. Hollow Au nanoparticles for single-molecule Raman spectroscopy via a synergistic electromagnetic and chemical enhancement strategy. NANOSCALE 2025; 17:8741-8751. [PMID: 40072878 DOI: 10.1039/d4nr05311g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS2, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS. We have used hollow gold nanoparticles to form plasmonic nanogaps, which better match the wavelength of near-infrared pump lasers, thus maximizing the electromagnetic field enhancement within the nanogap and creating a more effective hotspot. Notably, our strategy has achieved universal, robust, fast, and uniform SM-SERS detection of three dye molecules (Rhodamine B, Rhodamine 6G and Crystal Violet) with a detection limit of 10 mol L-1. This innovative approach opens up new possibilities for bringing state-of-the-art optical imaging, monitoring, and spectroscopy technologies into the single-molecule science arena for disclosing more unknown physical, chemical, and biological properties and principles.
Collapse
Affiliation(s)
- Zihan Gao
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Haiyao Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Jianzhi Zhang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Jie Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Lihong Hong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Das M, Gangopadhyay D, Andrushchenko V, Kapitán J, Bouř P. Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids. ACS NANO 2025; 19:10412-10420. [PMID: 40053825 PMCID: PMC11924305 DOI: 10.1021/acsnano.4c19027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Spectroscopic detection of chiral compounds is often hampered by a low sensitivity. For Raman optical activity (ROA), the signal can be dramatically increased in surface-enhanced experiments. So far, however, reproducible surface-enhanced ROA (SEROA) spectra were obtained for a reporter molecule only via induced chirality, and the intensities were just proportional to the Raman scattering. In the present study, we show that the signal can be substantially increased if colloidal silver nanoparticles are prepared already in the presence of a chiral analyte. In this case, both the analyte's and reporter's bands are visible. In addition, some experiments provided bisignate SEROA patterns, thus significantly enhancing information about the molecular structure provided by this spectroscopic method. Increased electronic circular dichroism (ECD) of the capped aggregated colloids suggests that ECD and polarized Raman scattering (ECD-Raman) contribute to the monosignate SEROA intensities, while well-dispersed nonaggregating colloids are important for observation of true (bisignate) molecular vibrational SEROA.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| |
Collapse
|
3
|
Wang H, Chen S, Liu X, Yu Y, Xiao TH, Shan CX. Mid-infrared giant optical chirality induced by multipole degeneracy in a diamond metasurface. OPTICS LETTERS 2025; 50:1381-1384. [PMID: 39951809 DOI: 10.1364/ol.550219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/01/2025] [Indexed: 02/16/2025]
Abstract
Optical chirality is a fundamental property of light that plays a crucial role in chiroptical spectroscopy, analytical chemistry, spin photonics, and astrobiology. However, giant optical chirality at the wavelength beyond 15 μm remains untapped, which hinders its various applications, such as ultrasensitive vibrational circular dichroism, in the mid-infrared region. Here we propose and theoretically present giant optical chirality with a, to our knowledge, record-high value of ∼330 at the wavelength beyond 15 μm in a diamond metasurface. This is enabled by tailoring the multipole degeneracy and leveraging the low optical loss of the diamond metasurface. This work provides a new method for boosting the optical chirality at the wavelength beyond 15 μm.
Collapse
|
4
|
Oshikiri T, Matsuo Y, Niinomi H, Nakagawa M. Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction. Photochem Photobiol Sci 2025; 24:13-21. [PMID: 39656427 DOI: 10.1007/s43630-024-00667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025]
Abstract
The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO2 and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.
Collapse
Grants
- JP23H01916 Japan Society for the Promotion of Science
- JP22K19003 Japan Society for the Promotion of Science
- JP22H05136 Japan Society for the Promotion of Science
- JP22H05131( Japan Society for the Promotion of Science
- JP23H04572 Japan Society for the Promotion of Science
- Crossover Alliance to Create the Future with People Ministry of Education, Culture, Sports, Science and Technology
- Intelligence Ministry of Education, Culture, Sports, Science and Technology
- Materials Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1223HK0096 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1222TU0119 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1224HK0039 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1223TU0023 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1224TU0018 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tomoya Oshikiri
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Masaru Nakagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
5
|
Liu Y, Gao Y, Niu R, Zhang Z, Lu GW, Hu H, Liu T, Cheng Z. Rapid and accurate bacteria identification through deep-learning-based two-dimensional Raman spectroscopy. Anal Chim Acta 2024; 1332:343376. [PMID: 39580159 DOI: 10.1016/j.aca.2024.343376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) offers a distinctive vibrational fingerprint of the molecules and has led to widespread applications in medical diagnosis, biochemistry, and virology. With the rapid development of artificial intelligence (AI) technology, AI-enabled Raman spectroscopic techniques, as a promising avenue for biosensing applications, have significantly boosted bacteria identification. By converting spectra into images, the dataset is enriched with more detailed information, allowing AI to identify bacterial isolates with enhanced precision. However, previous studies usually suffer from a trade-off between high-resolution spectrograms for high-accuracy identification and short training time for data processing. Here, we present an efficient bacteria identification strategy that combines deep learning models with a spectrogram encoding algorithm based on wavelet packet transform and Gramian angular field techniques. In contrast to the direct analysis of raw Raman spectra, our approach utilizes wavelet packet transform techniques to compress the spectra by a factor of 1/15, while concurrently maintaining state-of-the-art accuracy by amplifying the subtle differences via Gramian angular field techniques. The results demonstrate that our approach can achieve a 99.64 % and a 90.55 % identification accuracy for two types of bacterial isolates and thirty types of bacterial isolates, respectively, while a 90 % reduction in training time compared to the conventional methods. To verify the model's stability, Gaussian noises were superimposed on the testing dataset, showing a specific generalization ability and superior performance. This algorithm has the potential for integration into on-site testing protocols and is readily updatable with new bacterial isolates. This study provides profound insights and contributes to the current understanding of spectroscopy, paving the way for accurate and rapid bacteria identification in diverse applications of environment monitoring, food safety, microbiology, and public health.
Collapse
Affiliation(s)
- Yichen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China
| | - Yisheng Gao
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China.
| | - Rui Niu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China
| | - Zunyue Zhang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China
| | - Guo-Wei Lu
- Institute of Material Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Haofeng Hu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Tiegen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China
| | - Zhenzhou Cheng
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China; Georgia Tech-Shenzhen Institute, Tianjin University, Shenzhen 518055, China; Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan; School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
6
|
Hang P, Tong J, Xi Z, Li S, Tao S, Sun X, Han J. Precise Control of Polyaniline Nanohelices with Chirality Continuum and Their Correlation on Catalytic Performance. NANO LETTERS 2024. [PMID: 39555734 DOI: 10.1021/acs.nanolett.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Left- and right-handed chiral molecule inducers have been frequently used to guide the formation of chiral nanomaterials with binary chiral shapes. However, the transition of chiral nanomaterials from discrete to continuously tunable chiral shapes is imperative but challenging and will contribute to a deep understanding of the fundamental relations between chiral nanostructures and their chemical properties. This study shows that chiral polyaniline nanohelices (PANI NHs) with similar aspect ratios (∼5.0) but continuously tunable screw pitches (293 to ∞ nm) and tilt angles (33° to 0°) can be fabricated by adjusting the enantiomer excess of S/R-camphorsulfonic acid used as a chiral molecule inducer. After Au nanoparticles were loaded on the surface of chiral PANI NHs, the chiral morphology-dependent catalytic performances of PANI-Au NHs are studied in reduction, oxidation, and enantioselective catalytic reactions, showing that the larger the helical twist degree, the higher the catalytic activity and enantioselectivity of PANI-Au NHs.
Collapse
Affiliation(s)
- Pengyuan Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiangbo Tong
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shengyang Tao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
7
|
Chaubey SK, Kumar R, Lalaguna PL, Kartau M, Bianco S, Tabouillot V, Thomson AR, Sutherland A, Lyutakov O, Gadegaard N, Karimullah AS, Kadodwala M. Ultrasensitive Raman Detection of Biomolecular Conformation at the Attomole Scale using Chiral Nanophotonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404536. [PMID: 39045909 DOI: 10.1002/smll.202404536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.
Collapse
Affiliation(s)
- Shailendra K Chaubey
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rahul Kumar
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paula L Lalaguna
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin Kartau
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simona Bianco
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victor Tabouillot
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew R Thomson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew Sutherland
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Nikolaj Gadegaard
- James Watt School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
8
|
Skvortsova A, Han JH, Tosovska A, Bainova P, Kim RM, Burtsev V, Erzina M, Fitl P, Urbanova M, Svorcik V, Ha IH, Nam KT, Lyutakov O. Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48526-48535. [PMID: 39224930 PMCID: PMC11403552 DOI: 10.1021/acsami.4c09301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition. This arrangement ensured a homogeneous distribution of chiral plasmonic hot spots and facilitated the enhancement of the SERS response of targeted analytes through plasmon coupling between gold helicoid multimers (formed in the grating valleys) and adjacent regions of the gold grating. Naproxen enantiomers (R(+) and S(-)) were employed as model compounds, revealing a clear dependence of their SERS response on the chirality of the gold helicoids. Additionally, propranolol and penicillamine enantiomers were used to validate the universality of the proposed approach. Finally, numerical simulations were conducted to elucidate the roles of intensified local electric field and optical helicity density on the SERS signal intensity and on the chirality of the nanoparticles and enantiomers. Unlike previously reported methods, our approach relies on the excitation of a chiral plasmonic near-field and its interaction with the chiral environment of analyte molecules, obviating the need for the enantioselective entrapment of targeted molecules. Moreover, our method is not limited to specific analyte classes and can be applied to a broad range of chiral molecules.
Collapse
Affiliation(s)
- Anastasiia Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Andrea Tosovska
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Polina Bainova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Mariia Erzina
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Premysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Marie Urbanova
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
9
|
Wang C, Wang R, Cheng X, Hu X, Wang C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS NANO 2024; 18:18922-18932. [PMID: 38990704 DOI: 10.1021/acsnano.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Dynamic control for a strong circular dichroism (CD) response is essential in engineering applications such as polarization manipulation, sensing, and imaging. Here, we propose and experimentally demonstrate a broadband tunable dual CD response via bound states in the continuum (BICs) in two-dimensional topologically protected metasurfaces composed of all-dielectric Si chiral grating structures that generate a pair of mixed and degenerated BIC mode and circular dichroic mode (CDM) as an additional degree of freedom in CD manipulation. It is found that a singular CD peak of nearly 100% at 1.6 μm can be achieved by CDM when BIC is hidden under normal incidence, while the CD peak can be split into two in which peak wavelengths can be precisely and linearly tuned over a bandwidth of 180 nm by the incident angle when the BIC mode is excited under oblique incidence. Additionally, dynamic modulation of output polarization states from linear to circular can be arbitrarily achieved at the split CD peaks by controlling the incident angle when asymmetry perturbations on chiral gratings are introduced due to the decoupling of various polarization states at Γ point by BIC to different positions in K space. The proposed chiral grating metasurface exhibits unique angle-sensitive tunable CD spectral characteristics, making it ideal for hyperspectral and spin-selective wavefront shaping, and holds significant promise in various applications such as optical security, angle sensors, chiral lasers, nonlinear filters, and other active chiral optical devices.
Collapse
Affiliation(s)
- Chenqian Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Rui Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiguo Cheng
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xin Hu
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Chinhua Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Song G, Hao H, Yan S, Fang S, Xu W, Tong L, Zhang J. Observation of Chirality Transfer in Twisted Few-Layer Graphene. ACS NANO 2024; 18:17578-17585. [PMID: 38919006 DOI: 10.1021/acsnano.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Chiral materials are the focus of research in a variety of fields such as chiroptical sensing, biosensing, catalysis, and spintronics. Twisted two-dimensional (2D) materials are rapidly developing into a class of atomically thin chiral materials that can be effectively modulated through interlayer twist. However, chirality transfer in chiral 2D materials has not been reported. Here, we show that the chirality from the twist interface of graphene can directly transfer to achiral few-layer graphene and lead to a strong chiroptical response probed with circularly polarized Raman spectroscopy. Distinct Raman optical activity (ROA) for the interlayer shear modes in achiral few-layer graphene is observed, with the degree of polarization reaching as high as 0.5. These findings demonstrate the programmability of chiroptical response through stacking and twist engineering in 2D materials and offer insights into the transfer of chirality in atomically thin chiral materials for optical and electronic applications.
Collapse
Affiliation(s)
- Ge Song
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - He Hao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuowen Yan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Susu Fang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Er E, Chow TH, Liz-Marzán LM, Kotov NA. Circular Polarization-Resolved Raman Optical Activity: A Perspective on Chiral Spectroscopies of Vibrational States. ACS NANO 2024; 18:12589-12597. [PMID: 38709673 PMCID: PMC11112978 DOI: 10.1021/acsnano.3c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Circular polarization-resolved Raman scattering methods include Raman optical activity (ROA) and its derivative─surface-enhanced Raman optical activity (SEROA). These spectroscopic modalities are rapidly developing due to their high information content, stand-off capabilities, and rapid development of Raman-active chiral nanostructures. These methods enable a direct readout of the vibrational energy levels of chiral molecules, crystals, and nanostructured materials, making it possible to study complex interactions and the dynamic interfaces between them. They were shown to be particularly valuable for nano- and biotechnological fields encompassing complex particles with nanoscale chirality that combine strong scattering and intense polarization rotation. This perspective dives into recent advancements in ROA and SEROA, their distinction from surface-enhanced Raman scattering, and the potential of these information-rich label-free spectroscopies for the detection of chiral biomolecules.
Collapse
Affiliation(s)
- Engin Er
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Biotechnology
Institute, Ankara University, Ankara 06135, Turkey
| | - Tsz Him Chow
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 43009, Spain
- Centro de
Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Department
of Materials Science, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
| |
Collapse
|
12
|
Zhao Y, Xie J, Tian Y, Mourdikoudis S, Fiuza‐Maneiro N, Du Y, Polavarapu L, Zheng G. Colloidal Chiral Carbon Dots: An Emerging System for Chiroptical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305797. [PMID: 38268241 PMCID: PMC10987166 DOI: 10.1002/advs.202305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Chiral CDots (c-CDots) not only inherit those merits from CDots but also exhibit chiral effects in optical, electric, and bio-properties. Therefore, c-CDots have received significant interest from a wide range of research communities including chemistry, physics, biology, and device engineers. They have already made decent progress in terms of synthesis, together with the exploration of their optical properties and applications. In this review, the chiroptical properties and chirality origin in extinction circular dichroism (ECD) and circularly polarized luminescence (CPL) of c-CDots is briefly discussed. Then, the synthetic strategies of c-CDots is summarized, including one-pot synthesis, post-functionalization of CDots with chiral ligands, and assembly of CDots into chiral architectures with soft chiral templates. Afterward, the chiral effects on the applications of c-CDots are elaborated. Research domains such as drug delivery, bio- or chemical sensing, regulation of enzyme-like catalysis, and others are covered. Finally, the perspective on the challenges associated with the synthetic strategies, understanding the origin of chirality, and potential applications is provided. This review not only discusses the latest developments of c-CDots but also helps toward a better understanding of the structure-property relationship along with their respective applications.
Collapse
Affiliation(s)
- Yuwan Zhao
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Juan Xie
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhi Tian
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Stefanos Mourdikoudis
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Nadesh Fiuza‐Maneiro
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Yanli Du
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Lakshminarayana Polavarapu
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Guangchao Zheng
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
- Institute of Quantum Materials and PhysicsHenan Academy of SciencesZhengzhou450046P. R. China
| |
Collapse
|
13
|
Fukuta T, Kato R, Tanaka T, Yano TA. Fabrication of Mie-resonant silicon nanoparticles using laser annealing for surface-enhanced fluorescence spectroscopy. MICROSYSTEMS & NANOENGINEERING 2024; 10:45. [PMID: 38560726 PMCID: PMC10978982 DOI: 10.1038/s41378-024-00666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024]
Abstract
Silicon nanostructures with unique Mie resonances have garnered considerable attention in the field of nanophotonics. Here, we present a simple and efficient method for the fabrication of silicon (Si) nanoparticle substrates using continuous-wave (CW) laser annealing. The resulting silicon nanoparticles exhibit Mie resonances in the visible region, and their resonant wavelengths can be precisely controlled. Notably, laser-annealed silicon nanoparticle substrates show a 60-fold enhancement in fluorescence. This tunable and fluorescence-enhancing silicon nanoparticle platform has tremendous potential for highly sensitive fluorescence sensing and biomedical imaging applications.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| |
Collapse
|
14
|
Zhou J, Huang S, Peng J, Hou Y. Origination of the chiroptical effect in plasmonic nano-structures in the view of quasi-normal mode theory. OPTICS LETTERS 2024; 49:1149-1152. [PMID: 38426960 DOI: 10.1364/ol.519256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
General chiroptical effects describe all of the interaction differences between light carrying opposite spins and chiral matters, such as circular dichroism, optical activity, and chiral Raman optical activity, and have been proven to hold great promise for extensive applications in physics, chemistry, and biology. However, the underlying physical mechanism is usually explained intangibly by the twisted currents in chiral geometry, where the cross coupling between the electric and magnetic dipoles breaks the degeneracy of the helicity eigenmodes. In this Letter, we construct a clear sight on the origination of the chiroptical effect in the view of the eigenstates of a non-Hermitian system, i.e., quasi-normal modes (QNMs). The intrinsic chiroptical effect comes from the chiral QNMs, which have distinct excitation and emission differences in both phase and intensity for lights carrying opposite spins, while the extrinsic chiroptical effect coming from the achiral QNMs requires specific illumination and observation conditions, where the low symmetrical QNM can generate chiroptical effects in both absorption and scattering, but the highly symmetrical QNMs can only generate chiroptical effects in scattering through the coherent superposition of several QNMs. Our findings offer an in-depth understanding of the chiroptical effect and have the potential to bring broad inspiration to the design and applications of chiroptical effects.
Collapse
|
15
|
Niinomi H, Gotoh K, Takano N, Tagawa M, Morita I, Onuma A, Yoshikawa HY, Kawamura R, Oshikiri T, Nakagawa M. Mie-Resonant Nanophotonic-Enhancement of Asymmetry in Sodium Chlorate Chiral Crystallization. J Phys Chem Lett 2024; 15:1564-1571. [PMID: 38316420 DOI: 10.1021/acs.jpclett.3c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Studies on chiral spectroscopy have recently demonstrated strong enhancement of chiral light-matter interaction in the chiral near-field of Mie resonance in high-refractive-index dielectric nanostructures by studies on chiral spectroscopy. This situation has motivated researchers to demonstrate effective chiral photosynthesis under a chiral near-field beyond circularly polarized light (CPL) as a chiral source. However, the effectivity of the chiral near-field of Mie resonance for chiral photosynthesis has not been clearly demonstrated. One major challenge is the experimental difficulty in evaluating enantiomeric excess of a trace amount of chiral products synthesized in the near-field. Here, by adopting sodium chlorate chiral crystallization as a phenomenon that includes both synthesis and the amplification of chiral products, we show that crystallization on a Mie-resonant silicon metasurface excited by CPL yields a statistically significant large crystal enantiomeric excess of ∼18%, which cannot be achieved merely by CPL. This result provides implications for efficient chiral photosynthesis in a chiral near-field.
Collapse
Affiliation(s)
- Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazuhiro Gotoh
- Department of Electrical and Information Engineering, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata 950-2181, Japan
- Interdisciplinary Research Center for Carbon-Neutral Technologies, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan
| | - Naoki Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Miho Tagawa
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Iori Morita
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-0812, Japan
| | - Akiko Onuma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryuzo Kawamura
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Tomoya Oshikiri
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masaru Nakagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
16
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
17
|
Dixon J, Pan F, Moradifar P, Bordoloi P, Dagli S, Dionne J. Through thick and thin: how optical cavities control spin. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2779-2788. [PMID: 39635484 PMCID: PMC11501721 DOI: 10.1515/nanoph-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/19/2023] [Indexed: 12/07/2024]
Abstract
When light interacts with matter by means of scattering and absorption, we observe the resulting color. Light also probes the symmetry of matter and the result is encoded in its polarization. In the special case of circularly-polarized light, which is especially relevant in nonlinear optics, quantum photonics, and physical chemistry, a critical dimension of symmetry is along the longitudinal direction. We examine recent advances in controlling circularly-polarized light and reveal that the commonality in these advances is in judicious control of longitudinal symmetry. In particular, in the use of high quality-factor modes in dielectric metasurfaces, the finite thickness can be used to tune the modal profile. These symmetry considerations can be applied in multiplexed optical communication schemes, deterministic control of quantum emitters, and sensitive detection of the asymmetry of small molecules.
Collapse
Affiliation(s)
- Jefferson Dixon
- Mechanical Engineering, Stanford University, 440 Escondido Mall, 94305, Stanford, CA, USA
| | - Feng Pan
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Parivash Moradifar
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Priyanuj Bordoloi
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Sahil Dagli
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Jennifer Dionne
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| |
Collapse
|
18
|
Xu C, Ren Z, Zhou H, Zhou J, Ho CP, Wang N, Lee C. Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. LIGHT, SCIENCE & APPLICATIONS 2023; 12:154. [PMID: 37357238 DOI: 10.1038/s41377-023-01186-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Circular dichroism (CD) spectroscopy has been widely demonstrated for detecting chiral molecules. However, the determination of chiral mixtures with various concentrations and enantiomeric ratios can be a challenging task. To solve this problem, we report an enhanced vibrational circular dichroism (VCD) sensing platform based on plasmonic chiral metamaterials, which presents a 6-magnitude signal enhancement with a selectivity of chiral molecules. Guided by coupled-mode theory, we leverage both in-plane and out-of-plane symmetry-breaking structures for chiral metamaterial design enabled by a two-step lithography process, which increases the near-field coupling strengths and varies the ratio between absorption and radiation loss, resulting in improved chiral light-matter interaction and enhanced molecular VCD signals. Besides, we demonstrate the thin-film sensing process of BSA and β-lactoglobulin proteins, which contain secondary structures α-helix and β-sheet and achieve a limit of detection down to zeptomole level. Furthermore, we also, for the first time, explore the potential of enhanced VCD spectroscopy by demonstrating a selective sensing process of chiral mixtures, where the mixing ratio can be successfully differentiated with our proposed chiral metamaterials. Our findings improve the sensing signal of molecules and expand the extractable information, paving the way toward label-free, compact, small-volume chiral molecule detection for stereochemical and clinical diagnosis applications.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chong Pei Ho
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Nan Wang
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- NUS Graduate School for Integrative Science and Engineering Program (ISEP), National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
19
|
Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 2022; 13:5757. [PMID: 36180485 PMCID: PMC9525700 DOI: 10.1038/s41467-022-33448-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Chiral discrimination is critical in environmental and life sciences. However, an ideal chiral discrimination strategy has not yet been developed because of the inevitable nonspecific binding entity of wrong enantiomers or insufficient intrinsic optical activities of chiral molecules. Here, we propose an "inspector" recognition mechanism (IRM), which is implemented on a chiral imprinted polydopamine (PDA) layer coated on surface-enhanced Raman scattering (SERS) tag layer. The IRM works based on the permeability change of the imprinted PDA after the chiral recognition and scrutiny of the permeability by an inspector molecule. Good enantiomer can specifically recognize and fully fill the chiral imprinted cavities, whereas the wrong cannot. Then a linear shape aminothiol molecule, as an inspector of the recognition status is introduced, which can only percolate through the vacant and nonspecifically occupied cavities, inducing the SERS signal to decrease. Accordingly, chirality information exclusively stems from good enantiomer specific binding, while nonspecific recognition of wrong enantiomer is curbed. The IRM benefits from sensitivity and versatility, enabling absolute discrimination of a wide variety of chiral molecules regardless of size, functional groups, polarities, optical activities, Raman scattering, and the number of chiral centers.
Collapse
|
20
|
Hajji M, Cariello M, Gilroy C, Kartau M, Syme CD, Karimullah A, Gadegaard N, Malfait A, Woisel P, Cooke G, Peveler WJ, Kadodwala M. Chiral Quantum Metamaterial for Hypersensitive Biomolecule Detection. ACS NANO 2021; 15:19905-19916. [PMID: 34846858 DOI: 10.1021/acsnano.1c07408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral biological and pharmaceutical molecules are analyzed with phenomena that monitor their very weak differential interaction with circularly polarized light. This inherent weakness results in detection levels for chiral molecules that are inferior, by at least six orders of magnitude, to the single molecule level achieved by state-of-the-art chirally insensitive spectroscopic measurements. Here, we show a phenomenon based on chiral quantum metamaterials (CQMs) that overcomes these intrinsic limits. Specifically, the emission from a quantum emitter, a semiconductor quantum dot (QD), selectively placed in a chiral nanocavity is strongly perturbed when individual biomolecules (here, antibodies) are introduced into the cavity. The effect is extremely sensitive, with six molecules per nanocavity being easily detected. The phenomenon is attributed to the CQM being responsive to significant local changes in the optical density of states caused by the introduction of the biomolecule into the cavity. These local changes in the metamaterial electromagnetic environment, and hence the biomolecules, are invisible to "classical" light-scattering-based measurements. Given the extremely large effects reported, our work presages next generation technologies for rapid hypersensitive measurements with applications in nanometrology and biodetection.
Collapse
Affiliation(s)
- Maryam Hajji
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michele Cariello
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Cameron Gilroy
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Martin Kartau
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christopher D Syme
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Affar Karimullah
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Aurélie Malfait
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Graeme Cooke
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - William J Peveler
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|