1
|
Matyszczak G, Krawczyk K, Yedzikhanau A, Głuc K, Szymajda M, Sobiech A, Gackowska Z. Sonochemical Synthesis of Low-Dimensional Nanostructures and Their Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5488. [PMID: 39597312 PMCID: PMC11595999 DOI: 10.3390/ma17225488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Sonochemical synthesis is becoming a popular method of preparing various nanomaterials, including metals, carbons, oxides, and chalcogenides. This method is relatively cheap and responds to the challenges of green chemistry as it typically does not involve high temperatures, high pressures, inert atmospheres, or long reaction times in comparison to other conventional methods. The utilization of ultrasound in synthesis makes the elimination of toxic solvents possible, as well as the execution of the synthesis without the use of reducing and stabilizing agents, while receiving products with the same or even better properties. The application of ultrasound allows for the synthesis of various nanomaterials with different properties for use in fields such as catalysis, electrochemistry, medicine, and biosensors. The final product is influenced by multiple variables such as temperature, pH, reagents, capping agents, time of reaction, and the addition of dopants.
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski Str. 3, 00-664 Warsaw, Poland; (K.K.); (A.Y.); (K.G.); (M.S.); (A.S.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Fang H, Pan Y, Lu C, Liu J, Ding T, Liu Z. In Situ Nanomechanics: Opportunities Based on Superplastic Nanomolding. ACS NANO 2023; 17:24479-24486. [PMID: 38060263 DOI: 10.1021/acsnano.3c10304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In situ nanomechanics, referring to the real-time monitoring of nanomechanical deformation during quantitative mechanical testing, is a key technology for understanding the physical and mechanical properties of nanoscale materials. This perspective reviews the progress of in situ nanomechanics from the aspects of preparation and testing of nanosamples, with a major focus on one-dimensional (1D) nanostructures and discussions of their challenges. We highlight the opportunities provided by in situ nanomechanics combined with the superplastic nanomolding technique, especially in the aspects of regulating physical and chemical properties which are highly exploitable for mechanoelectronics, mechanoluminescence, piezoelectronics, piezomagnetism, piezothermography, and mechanochemistry.
Collapse
Affiliation(s)
- Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yangyang Pan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Cai Lu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jianxin Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, People's Republic of China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
3
|
Meng J, Shu J, Zhao J, Wu L, Jin R, Yang H, Li S. Enhancing electrocatalytic methanol oxidation of Pd-Ir nanoalloy through electron-rich catalytic interface induced by incorporating phosphorus. J Colloid Interface Sci 2023; 647:438-445. [PMID: 37269740 DOI: 10.1016/j.jcis.2023.05.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Incorporating less expensive nonmetal phosphorus (P) into noble metal-based catalysts has become a developing strategy to enhance the catalytic performance of electrocatalysts for methanol electrooxidation reaction (MOR), attributing to the electronic and synergistic structure alteration mechanism. In the work, three-dimensional nitrogen-doped graphene anchoring ternary Pd-Ir-P nanoalloy catalyst (Pd7IrPx/NG) was prepared by co-reduction strategy. As a multi-electron system, elemental P adjusts the outer electron structure of Pd and diminishes the particle size of nanocomposites, which heightens the electrocatalytic activity effectively and accelerate MOR kinetics in alkaline medium. The study reveals that the electron effect and ligand effect induced by P atoms on the hydrophilic and electron-rich surface of Pd7Ir/NG and Pd7IrPx/NG samples can reduce the initial oxidation potential and peak potential of COads, showing significantly enhanced the anti-poisoning ability compared with commercial Pd/C as the benchmark. Meanwhile, the stability of Pd7IrPx/NG is significantly higher than that of commercial Pd/C. The facile synthetic approach provides an economic option and a new vision for the development of electrocatalysts in MOR.
Collapse
Affiliation(s)
- Jianqi Meng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junhao Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinjuan Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruifa Jin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Cigane U, Palevicius A, Jurenas V, Pilkauskas K, Janusas G. Development and Analysis of Electrochemical Reactor with Vibrating Functional Element for AAO Nanoporous Membranes Fabrication. SENSORS (BASEL, SWITZERLAND) 2022; 22:8856. [PMID: 36433453 PMCID: PMC9695578 DOI: 10.3390/s22228856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanoporous anodic aluminum oxide (AAO) is needed for a variety of purposes due to its unique properties, including high hardness, thermal stability, large surface area, and light weight. Nevertheless, the use of AAO in different applications is limited because of its brittleness. A new design of an electrochemical reactor with a vibrating element for AAO nanoporous membranes fabrication is proposed. The vibrating element in the form of a piezoceramic ring was installed inside the developed reactor, which allows to create a high-frequency excitation. Furthermore, mixing and vibration simulations in the novel reactor were carried out using ANSYS 17 and COMSOL Multiphysics 5.4 software, respectively. By theoretical calculations, the possibility to excite the vibrations of five resonant modes at different frequencies in the AAO membrane was shown. The theoretical results were experimentally confirmed. Five vibration modes at close to the theoretical frequencies were obtained in the novel reactor. Moreover, nanoporous AAO membranes were synthesized. The novel aluminum anodization technology results in AAO membranes with 82.6 ± 10 nm pore diameters and 43% porosity at 3.1 kHz frequency excitation and AAO membranes with 86.1 ± 10 nm pore diameters and 46% porosity at 4.1 kHz frequency excitation. Furthermore, the chemical composition of the membrane remained unchanged, and the hardness decreased. Nanoporous AAO has become less brittle but hard enough to be used for template synthesis.
Collapse
Affiliation(s)
- Urte Cigane
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Arvydas Palevicius
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Vytautas Jurenas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Kestutis Pilkauskas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Giedrius Janusas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| |
Collapse
|
5
|
Tian J, Tang K, Chen X, Wang X. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio. NANOSCALE 2022; 14:12677-12691. [PMID: 35972125 DOI: 10.1039/d2nr02509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the aid of recent efficient and prior knowledge-free machine learning (ML) algorithms, extraordinary mechanical properties such as negative Poisson's ratio have extensively promoted the diverse designs of metamaterials with distinctive cellular structures. However, most existing ML approaches applied to the design of metamaterials are primarily based on a single property value with the assumption that the Poisson's ratio of a material is stationary, neglecting the dynamic variability of Poisson's ratio, termed deformation-dependent Poisson's ratio, during the loading process that a metamaterial other than conventional materials may experience. This paper first proposes a crystallographic symmetry-based methodology to build 2D metamaterials with complex but patterned topological structures, and then converts them into computational models suitable for molecular dynamics simulations. Then, we employ an integrated approach, consisting of molecular dynamics simulations capable of generating and collecting a large dataset for training/validation, in addition to ML algorithms (CNN and Cycle-GAN) able to predict the dynamic characteristics of Poisson's ratio and offer the inverse design of a metamaterial structure based on a target quasi-continuous Poisson's ratio-strain curve, to eventually unravel the underlying mechanism and design principles of 2D metamaterial structures with tunable Poisson's ratio. The close match between the predefined Poisson's ratio response and that from the generated structure validates the feasibility of the proposed ML model. Owing to the high efficiency and complete independence from prior knowledge, our proposed approach offers a novel and robust technique for the prediction and inverse design of metamaterial structures with tailored deformation-dependent Poisson's ratio, an unprecedented property attractive in flexible electronics, soft robotics, and nanodevices.
Collapse
Affiliation(s)
- Jie Tian
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
| | - Keke Tang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
| | - Xianyan Chen
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Xianqiao Wang
- School of ECAM, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
7
|
Nassar GM, Chung J, Trinh CK, El-Shehawy AA, El-Barbary AA, Kang Y, Lee JS. Polymers based on thieno[3,4- c]pyrrole-4,6-dione and pyromellitic diimide by CH–CH arylation reaction for high-performance thin-film transistors. RSC Adv 2022; 12:31180-31185. [PMID: 36349028 PMCID: PMC9623454 DOI: 10.1039/d2ra04602d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Three homopolymers were successfully synthesized by direct CH–CH arylation polymerization of thieno[3,4-c]pyrrole-4,6-dione or pyromellitic diimide derivatives affording highly purified polymers with high molecular weights (43.0–174.7 K). Thieno[3,4-c]pyrrole-4,6-dione and pyromellitic diimide derivatives are considered as electron-withdrawing units. The synthesized homopolymers P1, P2, and P3 showed band gaps in the range of 2.13–2.08 eV, respectively. The electron mobilities of the three homopolymers have been investigated. The thin film transistor for P1 prepared by the eutectic-melt-assisted nanoimprinting method achieved an electron mobility of 2.11 × 10−3 cm2 s−1 V−1. Based on the obtained results, the synthesized polymers can be used as potential electron acceptors in solar cell applications. The homopolymers P1, P2 and P3 were successfully synthesized by direct CH–CH arylation polymerization in an eco-friendly one-step coupling reaction. They present n-type properties for potential applications as acceptor polymers.![]()
Collapse
Affiliation(s)
- Gamal M. Nassar
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jeyon Chung
- Department of Chemistry, Institute of Nano-Science and Technology and Research Institute for Natural Sciences, Hanyang University, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Korea
| | - Cuc Kim Trinh
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Ashraf A. El-Shehawy
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed A. El-Barbary
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Youngjong Kang
- Department of Chemistry, Institute of Nano-Science and Technology and Research Institute for Natural Sciences, Hanyang University, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|