1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Ryan P, Iftikhar R, Hunter L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein J Org Chem 2025; 21:680-716. [PMID: 40196389 PMCID: PMC11973591 DOI: 10.3762/bjoc.21.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
When present within an organic molecule, the C-F bond tends to align in predictable ways with neighbouring functional groups, due to stereoelectronic effects such as hyperconjugation and electrostatic attraction/repulsion. These fluorine-derived conformational effects have been exploited to control the shapes, and thereby enhance the properties, of a wide variety of functional molecules including pharmaceutical agents, liquid crystals, fragrance chemicals, organocatalysts, and peptides. This comprehensive review summarises developments in this field during the period 2010-2024.
Collapse
Affiliation(s)
- Patrick Ryan
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Ramsha Iftikhar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
3
|
Liu X, Kou Y, Wu H, Liu TX, Liu Q, Zhang Z, Zhang X, Zhang G. Inverse conjugate additions of acrylic amides and esters with F/Cl/O/N-nucleophiles and CF 3+ reagents. SCIENCE ADVANCES 2025; 11:eadt2715. [PMID: 39937903 DOI: 10.1126/sciadv.adt2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
The conjugate additions of nucleophiles to conjugate acceptors are among the most powerful hetero-carbon bond formation reactions. The conjugate addition normally occurs via a β-nucleophilic addition, resulting in the formation of a stabilized α-carbanion intermediate that can be subsequently quenched by electrophiles or protons. Nevertheless, the inverse conjugate addition involving an α-specific nucleophilic addition remains less explored because of the electronic mismatch. In this research, we disclosed an α-specific nucleophilic addition of the nucleophiles including Py·HF, TBACl, HOR, H2O, H218O, RCO2H, and pyrazole to conjugate acceptors concurrent with a trifluoromethylation. This umpolung and inversely regioselective conjugate addition, enabled by a visible light-induced redox photocatalysis, occurred via an unusual α-nucleophilic addition other than the normal β-nucleophilic addition to efficiently generate diverse α-functionalized CF3-containing amides/esters. The broad substrate scope, excellent functional-group tolerance, and versatile late-stage derivatizations as well as the biologically and functionally important CF3-containing products demonstrated the potential applications of this protocol in materials, agrochemicals, and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Yuan Kou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Xingjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| |
Collapse
|
4
|
Ding W, Hu W, Chen X, Wang Y, Liu X, Liu W, Wu X. Direct C-H difluoroallylation of α,β-unsaturated amides and aryl amides by rhodium catalysis. Chem Commun (Camb) 2024; 60:13036-13039. [PMID: 39431900 DOI: 10.1039/d4cc03804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Herein, we report the first example of Rh-catalyzed C(sp2)-H difluoroallylation of α,β-unsaturated amides with 3-bromo-3,3-difluoropropene under mild conditions. The features of this protocol for difluoroallylation are unprecedented vinylic substrates, ethanol as a green solvent, good functional group and air compatibility, and scale-up synthesis with low catalyst loading.
Collapse
Affiliation(s)
- Wenqian Ding
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wanqi Hu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xingyu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yan Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Xueqing Liu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Weiqi Liu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaowei Wu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Liu Y, Zhou X, Li R, Sun Z. Photocatalytic Synthesis of γ,γ-Difluoroallylic Ketones and δ,δ-Difluoroallylic Ketones via a Desulfurative/Defluorinative Alkylation Process. Org Lett 2024; 26:6424-6427. [PMID: 39041637 DOI: 10.1021/acs.orglett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The gem-difluoroalkene moiety is frequently found in medicinal chemistry. From α-keton sulfides and thioic acids, we were able to develop a universal approach for the synthesis of γ,γ-difluoroallylic ketones and δ,δ-difluoroallylic ketones via a desulfurative/defluorinative alkylation process. We expect that this mild and efficient method will be complementary to other known strategies.
Collapse
Affiliation(s)
- Yunqi Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiyan Zhou
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Ruining Li
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
7
|
Zhou M, Ren JX, Feng XT, Zhao HY, Fu XP, Min QQ, Zhang X. Late-stage gem-difluoroallylation of phenol in bioactive molecules and peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:2937-2945. [PMID: 38404383 PMCID: PMC10882445 DOI: 10.1039/d3sc06302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
An efficient method for the late-stage selective O-fluoroalkylation of tyrosine residues with a stable yet highly reactive fluoroalkylating reagent, 3,3-difluoroallyl sulfonium salts (DFASs), has been developed. The reaction proceeds in a mild basic aqueous buffer (pH = 11.6) with high efficiency, high biocompatibility, and excellent regio- and chemoselectivity. Various oligopeptides and phenol-containing bioactive molecules, including carbohydrates and nucleosides, could be selectively O-fluoroalkylated. The added vinyl and other functional groups from DFASs can be valuable linkers for successive modification, significantly expanding the chemical space for further bioconjugation. The synthetic utility of this protocol has been demonstrated by the fluorescently labeled anti-cancer drug and the synthesis of O-link type 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid-tyrosine3-octreotate (DOTA-TATE), showing the prospect of the method in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Qiao Min
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
8
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
9
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
10
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Xu WY, Xu ZY, Zhang ZK, Gong TJ, Fu Y. Tunable Synthesis of Monofluoroalkenes and Gem-Difluoroalkenes via Solvent-Controlled Rhodium-Catalyzed Arylation of 1-Bromo-2,2-difluoroethylene. Angew Chem Int Ed Engl 2023; 62:e202310125. [PMID: 37589202 DOI: 10.1002/anie.202310125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Divergent synthesis of fluorine-containing scaffolds starting from a suite of raw materials is an intriguing topic. Herein, we report the solvent-controlled rhodium-catalyzed tunable arylation of 1-bromo-2,2-difluoroethylene. The selection of the reaction solvents provides switchable defluorinated or debrominated arylation from readily available feedstock resources (both arylboronic acids/esters and 1-bromo-2,2-difluoroethylene are commercially available). This switch is feasible because of the difference in coordination ability between the solvent (CH2 Cl2 or CH3 CN) and the rhodium center, resulting in different olefin insertion. This protocol allows the convenient synthesis of monofluoroalkenes and gem-difluoroalkenes, both of which are important scaffolds in the fields of medicine and materials. Moreover, this newly developed solvent-regulated reaction system can be applied to the site-selective dechlorinated arylation of trichloroethylene. Overall, this study provides a useful strategy for the divergent synthesis of fluorine-containing scaffolds and provides insight into the importance of solvent selection in catalytic reactions.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Zhe-Yuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Ze-Kuan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Tian-Jun Gong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
12
|
Han X, Liu X, Len C, Liu L, Wang D, Zhang Y, Duan XH, Hu M. Photoredox-Catalyzed gem-Difluoromethylenation of Aliphatic Alcohols with 1,1-Difluoroalkenes to Access α,α-Difluoromethylene Ethers. J Org Chem 2023; 88:12744-12754. [PMID: 37610918 DOI: 10.1021/acs.joc.3c01428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A switchable synthesis of alcohols and ketones bearing a CF2-OR scaffold using visible-light promotion is described. The method of PDI catalysis is characterized by its ease of operation, broad substrate scopes, and the ability to switch between desired products without the need for transition metal catalysts. The addition or absence of a base plays a key role in controlling the synthesis of the major desired products.
Collapse
Affiliation(s)
- Xinxin Han
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Christophe Len
- CNRS, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Université de Technologie de Compiègne, Sorbonne Université, F-60203 Compiègne, France
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongdong Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinbin Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Feng Z, Riemann L, Guo Z, Herrero D, Simon M, Golz C, Mata RA, Alcarazo M. Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization. Angew Chem Int Ed Engl 2023; 62:e202306764. [PMID: 37402213 DOI: 10.1002/anie.202306764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The evaluation of the pentafluorocyclopropyl group as a chemotype in crop protection and medicinal chemistry has been hampered in the past by the lack of suitable methodologies that enable the practical incorporation of this moiety into advanced synthetic intermediates. Herein, we report the gram-scale synthesis of an unprecedented sulfonium salt, 5-(pentafluorocyclopropyl)dibenzothiophenium triflate, and its use as a versatile reagent for the photoinduced C-H pentafluorocyclopropylation of a broad series of non-previously functionalized (hetero)arenes through a radical mediated mechanism. The scope and potential benefits of the protocol developed are further demonstrated by the late-stage introduction of the pentafluorocyclopropyl unit into biologically relevant molecules and widely used pharmaceuticals.
Collapse
Affiliation(s)
- Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Lucas Riemann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Zichen Guo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - David Herrero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Zhang WW, Li BJ. Enantioselective Hydrosilylation of β,β-Disubstituted Enamides to Construct α-Aminosilanes with Vicinal Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202214534. [PMID: 36344453 DOI: 10.1002/anie.202214534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Feng Z, Marset X, Tostado J, Kircher J, She Z, Golz C, Mata RA, Simon M, Alcarazo M. 5-(Trifluorovinyl)dibenzothiophenium Triflate: Introducing the 1,1,2-Trifluoroethylene Tether in Drug-Like Structures. Chemistry 2022; 29:e202203966. [PMID: 36545870 DOI: 10.1002/chem.202203966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reports the synthesis and structure of an unprecedented sulfonium salt, 5-(trifluorovinyl)dibenzothiophenium triflate, and its use as a versatile reagent for the introduction of the bioisosteric 1,1,2-trifluoroethylene linker in drug-like structures. The protocol developed consists of the reaction of this compound with alcohols and phenols to deliver a complete set of 1,2,2-trifluoro-2-(alkoxy-/aryloxy)ethyl sulfonium salts, which have been purified by column chromatography and fully characterized. Subsequent single electron reduction under mild photochemical conditions efficiently affords the corresponding fluoroalkyl radicals that are trapped either intra- or intermolecularly through their reaction with (hetero)arenes. Theoretical calculations are used to evaluate the conformational consequences derived from the presence of the CF2 -CHF tether.
Collapse
Affiliation(s)
- Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Xavier Marset
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Jaime Tostado
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Johannes Kircher
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Zhijie She
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Hao J, Ding W, Zheng Z, Sun L, Dong J, Li M, Wan W. Hantzsch Ester-Mediated Visible-Light-Induced Radical Ethoxycarbonyldifluoromethylation of Aryl Alkynes: Kinetic-Controlled Stereoselective Synthesis of Z- gem-Difluoroallyl Esters. J Org Chem 2022; 87:13828-13836. [DOI: 10.1021/acs.joc.2c01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Hao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Wanjun Ding
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Zhichun Zheng
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Linan Sun
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Junjie Dong
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Minjie Li
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Feng X, Ren J, Gao X, Min Q, Zhang X. 3,3‐Difluoroallyl Sulfonium Salts: Practical and Bench‐Stable Reagents for Highly Regioselective
gem
‐Difluoroallylations. Angew Chem Int Ed Engl 2022; 61:e202210103. [DOI: 10.1002/anie.202210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Tian Feng
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Jin‐Xiu Ren
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xing Gao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao‐Qiao Min
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
18
|
Feng XT, Ren JX, Gao X, Min QQ, Zhang X. 3,3‐Difluoroallyl Sulfonium Salts: Practical and Bench‐Stable Reagents for Highly Regioselective gem‐Difluoroallylations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Tian Feng
- Zhengzhou University Green Catalysis Center, and College of Chemistry Zhengzhou CHINA
| | - Jin-Xiu Ren
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Linling road Shanghai CHINA
| | - Xing Gao
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 200032 Shanghai CHINA
| | - Qiao-Qiao Min
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 200032 Shanghai CHINA
| | - Xingang Zhang
- Shanghai Institute of Organic Chemistry Chinese Academy of Science Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| |
Collapse
|
19
|
Uno H, Kawai K, Araki T, Shiro M, Shibata N. Enantio-, Diastereo- and Regioselective Synthesis of Chiral Cyclic and Acyclic gem-Difluoromethylenes by Palladium-Catalyzed [4+2] Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202117635. [PMID: 35344247 DOI: 10.1002/anie.202117635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/25/2022]
Abstract
gem-Difluoromethylene moieties are attractive in medicinal chemistry due to their ability to mimic other more ubiquitous functional groups. Thus, effective asymmetric methods for their construction are highly desirable, especially for the industrial production of chiral drugs. Using a Pd-catalyzed asymmetric [4+2] cycloaddition between substituted-2-alkylidenetrimethylene carbonates and gem-difluoroalkyl ketones, we were able to easily access chiral 1,3-dioxanes that contain a tetrasubstituted difluoroalkyl stereogenic center in cyclic and acyclic skeletons. A novel phosphoramidite ligand, which contains a bulky 1,1-dinaphthylmethanamino moiety, was developed to provide the products in high yield with excellent enantio-, diastereo-, and regioselectivity. Strikingly, the gem-difluoro substitution pattern promotes the reaction, and pentafluoroethylketone, an α,α-difluorinated β-ketoester, and a β-ketosulfone are suitable substrates for this method.
Collapse
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Koki Kawai
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Taichi Araki
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
20
|
Uno H, Kawai K, Araki T, Shiro M, Shibata N. Enantio‐, Diastereo‐ and Regioselective Synthesis of Chiral Cyclic and Acyclic gem‐Difluoromethylenes by Palladium‐Catalyzed [4+2] Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroto Uno
- Nagoya Kogyo Daigaku Nano Medicine Kagaku Senko Department of Nanophamaceutical Sciences JAPAN
| | - Koki Kawai
- Nagoya Kogyo Daigaku Department of Chemistry JAPAN
| | - Taichi Araki
- Nagoya Kogyo Daigaku Department of Chemistry JAPAN
| | - Motoo Shiro
- Rigaku Kenkyujo Kakushin chino togo kenkyu senta Non JAPAN
| | - Norio Shibata
- Nagoya Kogyo Daigaku Nano Medicine Kagaku Senko Department of Nanopharmaceutical Science and Department of Frontier Materials Gokiso, Showa-kuNagare College 466-8555 Nagoya JAPAN
| |
Collapse
|
21
|
Zhi-Qiang L, Cheng-Qiang W, Chao F. Facile Synthesis of Allylic gem-Difluorides Enabled by Novel 3,3-Difluoroallyl Sulfonium Salts. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Li T, Luo Y, Wu Z, Xiao T, Jiang Y, Qin G. Dual Fe/Pd‐Catalyzed Reductive Cross‐Coupling: Constructing
gem
‐Difluoroallylenes with Alkenyl Bromides and Bromodifluoromethanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tao Li
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yuhang Luo
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Zefeng Wu
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| |
Collapse
|
23
|
Xing W, Wang J, Fu M, Fu Y. Efficient Decarboxylative/Defluorinative Alkylation for the Synthesis of
gem
‐Difluoroalkenes
through an
S
N
2
’‐Type Route. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei‐Long Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Xin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ming‐Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
24
|
Novák Z, Kotschy A, Varga B, Csenki JT, Tóth BL, Béke F. Application of Industrially Relevant HydroFluoroOlefin (HFO) Gases in Organic Syntheses. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1538-8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractHydrofluoroolefin (HFO) gases are state-of-the-art cooling agents with widespread household and industrial applications. Considering their structural benefits these fluorous feedstocks have gained the attention of organic chemists in the last couple of years. In this short review we summarized the existing synthetic transformations of these gaseous starting material and present their applicability in the synthesis of fluorine-containing organic molecules, which have potential importance as building blocks and reagents for diverse syntheses.1 Introduction2 Addition Reactions3 Substitutions4 Organometallic Chemistry4.1 Organolithium Compounds4.2 Organometallic Complexes4.3 Silicon Organic Chemistry4.4 Boron Organic Chemistry4.5 Palladium-Catalyzed Transformations4.6 Metathesis4.7 Hydroesterification, Hydroformylation5 Conclusions
Collapse
Affiliation(s)
- Zoltán Novák
- ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University
| | | | - Bálint Varga
- ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University
| | - János T. Csenki
- ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University
| | - Balázs L. Tóth
- ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University
| | - Ferenc Béke
- ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Faculty of Science, Eötvös Loránd University
| |
Collapse
|
25
|
Sorrentino JP, Altman RA. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes. SYNTHESIS-STUTTGART 2021; 53:3935-3950. [PMID: 34707322 DOI: 10.1055/a-1547-9270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
gem-Difluoroalkenes are readily available fluorinated building blocks, and the fluorine-induced electronic perturbations of the alkenes enables a wide array of selective functionalization reactions. However, many reactions of gem-difluoroalkenes result in a net C─F functionalization to generate monofluorovinyl products or addition of F to generate trifluoromethyl-containing products. In contrast, fluorine-retentive strategies for the functionalization of gem-difluoroalkenes remain less generally developed, and is now becoming a rapidly developing area. This review will present the development of fluorine-retentive strategies including electrophilic, nucleophilic, radical, and transition metal catalytic strategies with an emphasis on key physical organic and mechanistic aspects that enable reactivities.
Collapse
Affiliation(s)
- Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
26
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2-Difluorotetrahydrofurans through Palladium-Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021; 60:23641-23645. [PMID: 34494347 DOI: 10.1002/anie.202111376] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/21/2022]
Abstract
The asymmetric synthesis of 2,2-difluorinated tetrahydrofurans was accomplished via enantioselective formal [3+2] cycloaddition catalyzed by palladium. The asymmetric reaction between gem-difluoroalkenes and racemic vinyl epoxides or vinylethylene carbonates resulted in the formation of enantioenriched 2,2-difluorotetrahydrofurans with an enantioselectivity up to 98 %. Notably, the reaction used the readily available (R)-BINAP as the ligand at a low loading and yielded a wide variety of difluorinated products in moderate to high yields. Both chiral diastereomers could be obtained in a single sequence.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| |
Collapse
|
27
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2‐Difluorotetrahydrofurans through Palladium‐Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Changwu Zheng
- School of Pharmacy Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
28
|
Wang J, Yu J, Chen J, Jiang Y, Xiao T. Doyle-Kirmse reaction using 3,3-difluoroallyl sulfide and N-sulfonyl-1,2,3-triazole: an efficient access to gem-difluoroallylated multifunctional quaternary carbon. Org Biomol Chem 2021; 19:6974-6978. [PMID: 34338276 DOI: 10.1039/d1ob01129d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Doyle-Kirmse reaction of N-sulfonyl-1,2,3-triazole with 3,3-difluoroallyl sulfide through a Rh(ii)-catalyzed [2,3]-sigmatropic rearrangement has been developed, which provides an efficient access to multifunctional quaternary centers containing aryl, imino, thio, and brominated gem-difluoroallyl groups. The reaction features broad substrate scope with moderate to excellent yields. The applicability of the method is confirmed by gram-scale synthesis and further transformations.
Collapse
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. of China.
| | | | | | | | | |
Collapse
|