1
|
Huang Y, Lu Y, Li W, Xu X, Jiang X, Ma R, Chen L, Ruan N, Wu Q, Xu J. Giant Kerr nonlinearity of terahertz waves mediated by stimulated phonon polaritons in a microcavity chip. LIGHT, SCIENCE & APPLICATIONS 2024; 13:212. [PMID: 39179595 PMCID: PMC11343743 DOI: 10.1038/s41377-024-01509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 08/26/2024]
Abstract
Optical Kerr effect, in which input light intensity linearly alters the refractive index, has enabled the generation of optical solitons, supercontinuum spectra, and frequency combs, playing vital roles in the on-chip devices, fiber communications, and quantum manipulations. Especially, terahertz Kerr effect, featuring fascinating prospects in future high-rate computing, artificial intelligence, and cloud-based technologies, encounters a great challenge due to the rather low power density and feeble Kerr response. Here, we demonstrate a giant terahertz frequency Kerr nonlinearity mediated by stimulated phonon polaritons. Under the influences of the giant Kerr nonlinearity, the power-dependent refractive index change would result in a frequency shift in the microcavity, which was experimentally demonstrated via the measurement of the resonant mode of a chip-scale lithium niobate Fabry-Pérot microcavity. Attributed to the existence of stimulated phonon polaritons, the nonlinear coefficient extracted from the frequency shifts is orders of magnitude larger than that of visible and infrared light, which is also theoretically demonstrated by nonlinear Huang equations. This work opens an avenue for many rich and fruitful terahertz Kerr effect based physical, chemical, and biological systems that have terahertz fingerprints.
Collapse
Affiliation(s)
- Yibo Huang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China
| | - Yao Lu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China.
| | - Wei Li
- Beijing Institute of Space Mechanics & Electricity, China Academy of Space Technology, 100094, Beijing, China
| | - Xitan Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China
| | - Xinda Jiang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China
| | - Ruobin Ma
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China
| | - Lu Chen
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China
| | - Ningjuan Ruan
- Beijing Institute of Space Mechanics & Electricity, China Academy of Space Technology, 100094, Beijing, China
| | - Qiang Wu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
- Shenzhen Research Institute of Nankai University, Shenzhen, 518083, Guangdong, China.
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Lu Y, Huang Y, Cheng J, Ma R, Xu X, Zang Y, Wu Q, Xu J. Nonlinear optical physics at terahertz frequency. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3279-3298. [PMID: 39634843 PMCID: PMC11501724 DOI: 10.1515/nanoph-2024-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 12/07/2024]
Abstract
Terahertz (THz) waves have exhibited promising prospects in 6G/7G communications, sensing, nondestructive detection, material modulation, and biomedical applications. With the development of high-power THz sources, more and more nonlinear optical effects at THz frequency and THz-induced nonlinear optical phenomena are investigated. These studies not only show a clear physics picture of electrons, ions, and molecules but also provide many novel applications in sensing, imaging, communications, and aerospace. Here, we review recent developments in THz nonlinear physics and THz-induced nonlinear optical phenomena. This review provides an overview and illustrates examples of how to achieve strong THz nonlinear phenomena and how to use THz waves to achieve nonlinear material modulation.
Collapse
Affiliation(s)
- Yao Lu
- Nankai University, Tianjin, China
| | | | | | | | - Xitan Xu
- Nankai University, Tianjin, China
| | | | - Qiang Wu
- Nankai University, Tianjin, China
| | | |
Collapse
|
3
|
Ma R, Lu Y, Qi J, Xiong H, Xu X, Huang Y, Wu Q, Xu J. Transient cavity-cavity strong coupling at terahertz frequency on LiNbO 3 chips. OPTICS EXPRESS 2024; 32:12763-12773. [PMID: 38571106 DOI: 10.1364/oe.518799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Terahertz (THz) microcavities have garnered considerable attention for their ability to localize and confine THz waves, allowing for strong coupling to remarkably enhance the light-matter interaction. These properties hold great promise for advancing THz science and technology, particularly for high-speed integrated THz chips where transient interaction between THz waves and matter is critical. However, experimental study of these transient time-domain processes requires high temporal and spatial resolution since these processes, such as THz strong coupling, occur in several picoseconds and microns. Thus, most literature studies rarely cover temporal and spatial processes at the same time. In this work, we thoroughly investigate the transient cavity-cavity strong-coupling phenomena at THz frequency and find a Rabi-like oscillation in the microcavities, manifested by direct observation of a periodic energy exchange process via a phase-contrast time-resolved imaging system. Our explanation, based on the Jaynes-Cummings model, provides theoretical insight into this transient strong-coupling process. This work provides an opportunity to deeply understand the transient strong-coupling process between THz microcavities, which sheds light on the potential of THz microcavities for high-speed THz sensor and THz chip design.
Collapse
|
4
|
Litchinitser NM. Revisiting non-linear Thomson scattering with metamaterials. Natl Sci Rev 2024; 11:nwad230. [PMID: 38130973 PMCID: PMC10734770 DOI: 10.1093/nsr/nwad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Indexed: 12/23/2023] Open
|
5
|
Cui W, Yalavarthi EK, Radhan AV, Bashirpour M, Gamouras A, Ménard JM. High-field THz source centered at 2.6 THz. OPTICS EXPRESS 2023; 31:32468-32477. [PMID: 37859049 DOI: 10.1364/oe.496855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
We demonstrate a table-top high-field terahertz (THz) source based on optical rectification of a collimated near-infrared pulse in gallium phosphide (GaP) to produce peak fields above 300 kV/cm with a spectrum centered at 2.6 THz. The experimental configuration, based on tilted-pulse-front phase matching, is implemented with a phase grating etched directly onto the front surface of the GaP crystal. Although the THz generation efficiency starts showing a saturation onset as the near-infrared pulse energy reaches 0.57 mJ, we can expect our configuration to yield THz peak fields up to 866 kV/cm when a 5 mJ generation NIR pulse is used. This work paves the way towards broadband, high-field THz sources able to access a new class of THz coherent control and nonlinear phenomena driven at frequencies above 2 THz.
Collapse
|
6
|
Carletti L, McDonnell C, Arregui Leon U, Rocco D, Finazzi M, Toma A, Ellenbogen T, Della Valle G, Celebrano M, De Angelis C. Nonlinear THz Generation through Optical Rectification Enhanced by Phonon-Polaritons in Lithium Niobate Thin Films. ACS PHOTONICS 2023; 10:3419-3425. [PMID: 37743936 PMCID: PMC10515699 DOI: 10.1021/acsphotonics.3c00924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/26/2023]
Abstract
We investigate nonlinear THz generation from lithium niobate films and crystals of different thicknesses by optical rectification of near-infrared femtosecond pulses. A comparison between numerical studies and polarization-resolved measurements of the generated THz signal reveals a 2 orders of magnitude enhancement in the nonlinear response compared to optical frequencies. We show that this enhancement is due to optical phonon modes at 4.5 and 7.45 THz and is most pronounced for films thinner than 2 μm where optical-to-THz conversion is not limited by self-absorption. These results shed new light on the employment of thin film lithium niobate platforms for the development of new integrated broadband THz emitters and detectors. This may also open the door for further control (e.g., polarization, directivity, and spectral selectivity) of the process in nanophotonic structures, such as nanowires and metasurfaces, realized in the thin film platform. We illustrate this potential by numerically investigating optical-to-THz conversion driven by localized surface phonon-polariton resonances in sub-wavelength lithium niobate rods.
Collapse
Affiliation(s)
- Luca Carletti
- Department
of Information Engineering, University of
Brescia, Via Branze 38, 25123 Brescia, Italy
- National
Institute of Optics—National Research Council (INO-CNR), Via Branze 45, 25123 Brescia, Italy
| | - Cormac McDonnell
- Department
of Physical Electronics, Fleischman Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Unai Arregui Leon
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Davide Rocco
- Department
of Information Engineering, University of
Brescia, Via Branze 38, 25123 Brescia, Italy
- National
Institute of Optics—National Research Council (INO-CNR), Via Branze 45, 25123 Brescia, Italy
| | - Marco Finazzi
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Toma
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
| | - Tal Ellenbogen
- Department
of Physical Electronics, Fleischman Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Giuseppe Della Valle
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Michele Celebrano
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Costantino De Angelis
- Department
of Information Engineering, University of
Brescia, Via Branze 38, 25123 Brescia, Italy
- National
Institute of Optics—National Research Council (INO-CNR), Via Branze 45, 25123 Brescia, Italy
| |
Collapse
|
7
|
Barhum H, McDonnell C, Alon T, Hammad R, Attrash M, Ellenbogen T, Ginzburg P. Organic Kainate Single Crystals for Second-Harmonic and Broadband THz Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8590-8600. [PMID: 36729720 PMCID: PMC9940106 DOI: 10.1021/acsami.2c18454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Organic crystals with unique nonlinear optical properties have been attracting attention owing to their capability to outperform their conventional nonorganic counterparts. Since nonlinear material responses are linked to a crystal's internal microscopic structure, molecular engineering of maximally unharmonic quantum potentials can boost macromolecular susceptibilities. Here, large-scale kainic acid (kainate) single crystals were synthesized, and their linear and nonlinear optical properties were studied in a broad spectral range, spanning the visible to THz spectral regions. The non-centrosymmetric zwitterionic crystallization, molecular structure, and intermolecular arrangement were found to act as additive donor-acceptor domains, enhancing the efficiency of the intrinsic second-order optical nonlinearity of this pure enantiomeric crystal. Molecular simulations and experimental analysis were performed to retrieve the crystals' properties. The crystals were predicted and found to have good transparency in a broad spectral range from the UV to the infrared (0.2-20 μm). Second-harmonic generation was measured for ultrashort pumping wavelengths between 800 and 2400 nm, showing an enhanced response around 600 nm. Broadband THz generation was demonstrated with a detection limited bandwidth of >8 THz along with emission efficiencies comparable to and prevailing those of commercial ZnTe crystals. The broadband nonlinear response and high transparency make kainate crystals extremely attractive for realizing a range of nonlinear optical devices.
Collapse
Affiliation(s)
- Hani Barhum
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
- Triangle
Regional Research and Development Center, Kfar Qara’3007500, Israel
| | - Cormac McDonnell
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Tmiron Alon
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Raheel Hammad
- Tata
Institute of Fundamental Research, Sy No 36/P Serilingampally Mandal, Hyderabad, Telangana500046, India
| | - Mohammed Attrash
- Schulich
Faculty of Chemistry, Technion - Israel
Institute of Technology, Haifa32000, Israel
| | - Tal Ellenbogen
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Pavel Ginzburg
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
8
|
Huang HH, Nagashima T, Hatanaka K. Shockwave-based THz emission in air. OPTICS EXPRESS 2023; 31:5650-5661. [PMID: 36823839 DOI: 10.1364/oe.478610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
THz emission in air under the irradiation of a pair of tightly-focused femtosecond laser pulses (800nm, 35fs) with nanosecond time delay and micro-meter spatial offsets is studied with polarization-sensitive THz time-domain spectroscopy and time-resolved imaging. The pre-pulse irradiation induces air-breakdown at its focus, which results in the expansion of shockwave front traveling outward. When the main pulse irradiates such shockwave front far from the pre-pulse focus with nanosecond delay, THz emission intensity was enhanced up to ∼13-times and its linear polarization was aligned along the line between the two focus positions of the pre- and the main pulses which is parallel to the expansion direction of the shockwave front. Asymmetric density profiles of the shockwave fronts prepared by the pre-pulse irradiation define the polarization of THz emission. Mechanisms are discussed from the viewpoint of electron diffusion in such asymmetric density profiles.
Collapse
|
9
|
Lin HW, Mead G, Blake GA. Mapping LiNbO_{3} Phonon-Polariton Nonlinearities with 2D THz-THz-Raman Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:207401. [PMID: 36461997 DOI: 10.1103/physrevlett.129.207401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional terahertz-terahertz-Raman spectroscopy can provide insight into the anharmonicities of low-energy phonon modes-knowledge of which can help develop strategies for coherent control of material properties. Measurements on LiNbO_{3} reveal THz and Raman nonlinear transitions between the E(TO_{1}) and E(TO_{3}) phonon polaritons. Distinct coherence pathways are observed with different THz polarizations. The observed pathways suggest that the origin of the third-order nonlinear responses is due to mechanical anharmonicities, as opposed to electronic anharmonicities. Further, we confirm that the E(TO_{1}) and E(TO_{3}) phonon polaritons are excited through resonant one-photon THz excitation.
Collapse
Affiliation(s)
- Haw-Wei Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Griffin Mead
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering and Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Meng Q, Ding J, Peng B, Zhang B, Qian S, Su B, Zhang C. Terahertz modulation characteristics of three nanosols under external field control based on microfluidic chip. iScience 2022; 25:104898. [PMID: 36043051 PMCID: PMC9420507 DOI: 10.1016/j.isci.2022.104898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Recently, with the widespread application of metamaterials in the terahertz (THz) modulation field, solid-state THz modulators have made breakthrough progress; however, there are still challenges in preparing flexible THz modulators with wide modulation bandwidths. In this study, a THz microfluidic chip was fabricated using cycloolefin copolymers with high transmission (90%) of THz waves. The THz modulation characteristics of TiO2, Ag, and Fe3O4 nanosols under the control of an optical field, electric field, and magnetic field, respectively, were investigated. Under the action of photogenerated carrier migration, colloidal electrophoresis, and magneto-optical effect, all three nanosols exhibit broadband modulation performance in the frequency range of 0.3–2.4 THz, and the maximum modulation depth is 24%, 33%, and 54%, respectively. Contrary to previous studies based on traditional solid-state materials, this study innovatively explores the possibility of modulating THz waves with liquid materials, laying the foundation for the application of flexible liquid-film THz modulators. THz broadband amplitude modulation of liquid nanosols under external fields Using a microfluidic chip to reduce the absorption of THz waves by hydrogen bonds The experimental results lay a foundation for liquid-film THz modulators
Collapse
|
11
|
Wang J, Xia S, Wang R, Ma R, Lu Y, Zhang X, Song D, Wu Q, Morandotti R, Xu J, Chen Z. Topologically tuned terahertz confinement in a nonlinear photonic chip. LIGHT, SCIENCE & APPLICATIONS 2022; 11:152. [PMID: 35606368 PMCID: PMC9126941 DOI: 10.1038/s41377-022-00823-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/16/2023]
Abstract
Compact terahertz (THz) functional devices are greatly sought after for high-speed wireless communication, biochemical sensing, and non-destructive inspection. However, controlled THz generation, along with transport and detection, has remained a challenge especially for chip-scale devices due to low-coupling efficiency and unavoidable absorption losses. Here, based on the topological protection of electromagnetic waves, we demonstrate nonlinear generation and topologically tuned confinement of THz waves in an engineered lithium niobate chip forming a wedge-shaped Su-Schrieffer-Heeger lattice. Experimentally measured band structures provide direct visualization of the THz localization in the momentum space, while robustness of the confined mode against chiral perturbations is also analyzed and compared for both topologically trivial and nontrivial regimes. Such topological control of THz waves may bring about new possibilities in the realization of THz integrated circuits, promising for advanced photonic applications.
Collapse
Affiliation(s)
- Jiayi Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
| | - Shiqi Xia
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
| | - Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, 100071, Beijing, China
| | - Ruobin Ma
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
| | - Yao Lu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
| | - Xinzheng Zhang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
| | - Daohong Song
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Qiang Wu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| | | | - Jingjun Xu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China.
| | - Zhigang Chen
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Li P, Liu S, Chen X, Geng C, Wu X. Spintronic terahertz emission with manipulated polarization (STEMP). FRONTIERS OF OPTOELECTRONICS 2022; 15:12. [PMID: 36637604 PMCID: PMC9756272 DOI: 10.1007/s12200-022-00011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 06/17/2023]
Abstract
Highly efficient generation and arbitrary manipulation of spin-polarized terahertz (THz) radiation will enable chiral lightwave driven quantum nonequilibrium state regulation, induce new electronic structures, consequently provide a powerful experimental tool for investigation of nonlinear THz optics and extreme THz science and applications. THz circular dichromic spectroscopy, ultrafast electron bunch manipulation, as well as THz imaging, sensing, and telecommunication, also need chiral THz waves. Here we review optical generation of circularly-polarized THz radiation but focus on recently emerged polarization tunable spintronic THz emission techniques, which possess many advantages of ultra-broadband, high efficiency, low cost, easy for integration and so on. We believe that chiral THz sources based on the combination of electron spin, ultrafast optical techniques and material structure engineering will accelerate the development of THz science and applications.
Collapse
Affiliation(s)
- Peiyan Li
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Shaojie Liu
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Xinhou Chen
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Chunyan Geng
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|