1
|
Lee Y, Gjerdevik M, Jugessur A, Gjessing HK, Corfield E, Havdahl A, Harris JR, Magnus MC, Håberg SE, Magnus P. Parent-of-Origin Effects in Childhood Asthma at Seven Years of Age. Genet Epidemiol 2025; 49:e70007. [PMID: 40133993 PMCID: PMC11937430 DOI: 10.1002/gepi.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Childhood asthma is more common among children whose mothers have asthma than among those whose fathers have asthma. The reasons for this are unknown, and we hypothesize that genomic imprinting may partly explain this observation. Our aim is to assess parent-of-origin (PoO) effects on childhood asthma by analyzing SNP array genotype data from a large population-based cohort. To estimate PoO effects in parent-reported childhood asthma at 7 years of age, we fit a log-linear model implemented in the HAPLIN R package to SNP array genotype data from 915 mother-father-child case triads, 603 mother-child case dyads, and 113 father-child case dyads participating in the Norwegian Mother, Father, and Child Cohort Study (MoBa). We found that alleles at two SNPs-rs3003214 and rs3003211-near the adenylosuccinate synthase 2 gene (ADSS2 on chromosome 1q44) showed significant PoO effects at a false positive rate ≤ 0.05. The ratio of the effect of the maternally and paternally inherited G-allele at rs3003214 was 1.68 (95% CI: 1.41-2.03, p value = 1.13E-08). Our results suggest PoO effects at the ADSS2 gene, particularly the maternally inherited G-allele at rs3003214, may contribute to the maternal effect in childhood asthma.
Collapse
Affiliation(s)
- Yunsung Lee
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
| | - Miriam Gjerdevik
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
- Department of Computer Science, Electrical Engineering and Mathematical SciencesWestern Norway University of Applied SciencesBergenNorway
| | - Astanand Jugessur
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Håkon Kristian Gjessing
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Elizabeth Corfield
- PsychGen Centre for Genetic Epidemiology and Mental HealthNorwegian Institute of Public HealthOsloNorway
- Nic Waals InstituteLovisenberg Diaconal HospitalOsloNorway
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental HealthNorwegian Institute of Public HealthOsloNorway
- Nic Waals InstituteLovisenberg Diaconal HospitalOsloNorway
| | | | | | - Siri Eldevik Håberg
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
| | - Per Magnus
- Centre for Fertility and HealthNorwegian Institute of Public HealthOsloNorway
| |
Collapse
|
2
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Chen EX, Hu SC, Xu JQ, Liu KY, Tang J, Shen XP, Liang X, Xie YL, Ge LX, Luo X, Wang YX, Xiang YL, Ding YB. Suppression of GATA3 promotes epithelial-mesenchymal transition and simultaneous cellular senescence in human extravillous trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119768. [PMID: 38838858 DOI: 10.1016/j.bbamcr.2024.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated β-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.
Collapse
Affiliation(s)
- En-Xiang Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Si-Chen Hu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Qi Xu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Kun-Yan Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xi-Peng Shen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - You-Long Xie
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lu-Xin Ge
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University. Hunan 410219, China
| | - Xin Luo
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying-Xiong Wang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yun-Long Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Romero M, Miller K, Gelsomini A, Garcia D, Li K, Suresh D, Frasca D. Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages. Nat Commun 2024; 15:7515. [PMID: 39209820 PMCID: PMC11362567 DOI: 10.1038/s41467-024-51207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is characterized by chronic systemic inflammation and metabolic changes. We compare the metabolic status of B cells from young and elderly donors and found that aging is associated with higher oxygen consumption rates, and especially higher extracellular acidification rates, measures of oxidative phosphorylation and of anaerobic glycolysis, respectively. Importantly, this higher metabolic status, which reflects age-associated expansion of pro-inflammatory B cells, is found associated with higher secretion of lactate and autoimmune antibodies after in vitro stimulation. B cells from elderly individuals induce in vitro polarization of CD4+ T cells from young individuals into pro-inflammatory CD4+ T cells through metabolic pathways mediated by lactate, which can be inhibited by targeting lactate enzymes and transporters, as well as signaling pathways supporting anaerobic glycolysis. Lactate also induces immunosenescent B cells that are glycolytic, express transcripts for multiple pro-inflammatory molecules, and are characterized by a higher metabolic status. These results altogether may have relevant clinical implications and suggest alternative targets for therapeutic interventions in the elderly and patients with inflammatory conditions and diseases.
Collapse
Affiliation(s)
- Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kate Miller
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Gelsomini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dhananjay Suresh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Bishop EL, Gudgeon N, Fulton-Ward T, Stavrou V, Roberts J, Boufersaoui A, Tennant DA, Hewison M, Raza K, Dimeloe S. TNF-α signals through ITK-Akt-mTOR to drive CD4 + T cell metabolic reprogramming, which is dysregulated in rheumatoid arthritis. Sci Signal 2024; 17:eadg5678. [PMID: 38652761 DOI: 10.1126/scisignal.adg5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.
Collapse
Affiliation(s)
- Emma L Bishop
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Taylor Fulton-Ward
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Victoria Stavrou
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, B15 2TT Birmingham, UK
- Sandwell and West Birmingham NHS Trust, B18 7QH Birmingham, UK
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
7
|
Romero M, Miller K, Gelsomini A, Garcia D, Li K, Suresh D, Frasca D. Immunometabolic effects of lactate on B cell function in healthy individuals of different ages. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.07.23293760. [PMID: 37609164 PMCID: PMC10441492 DOI: 10.1101/2023.08.07.23293760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aging is characterized by chronic systemic inflammation and metabolic changes. When we compared B cells from young and elderly donors, we found that aging induces higher oxygen consumption rates, and especially higher extracellular acidification rates, measures of oxidative phosphorylation and of anaerobic glycolysis, respectively. Importantly, this higher metabolic status, which reflects the age-associated expansion of pro-inflammatory B cell subsets, was found associated with higher secretion of lactate and autoimmune antibodies after in vitro stimulation. B cells from elderly individuals, induce in vitro generation of pro-inflammatory CD4+ T cells from young individuals through metabolic pathways mediated by lactate secretion. Lactate also induces immunosenescent B cells that are glycolytic and express transcripts for multiple pro-inflammatory molecules. These results altogether may have relevant clinical implications and suggest novel targets for therapeutic interventions in patients with inflammatory conditions and diseases.
Collapse
|
8
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Dong J, Liu J, Zhang B, Liang C, Hua J, Meng Q, Wei M, Wang W, Yu X, Xu J. Mitochondria-Related Transcriptome Characterization Associated with the Immune Microenvironment, Therapeutic Response and Survival Prediction in Pancreatic Cancer. Int J Mol Sci 2023; 24:3270. [PMID: 36834681 PMCID: PMC9966003 DOI: 10.3390/ijms24043270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Pancreatic cancer (PC) is one of the most lethal tumors. Mitochondrial dysfunction has been reported to be involved in cancer development; however, its role in PC has remained unclear. (2) Methods: The differentially expressed NMGs were selected between PC and normal pancreatic tissue. The NMG-related prognostic signature was established by LASSO regression. A nomogram was developed based on the 12-gene signature combined with other significant pathological features. An extensive analysis of the 12 critical NMGs was performed in multiple dimensions. The expression of some key genes was verified in our external cohort. (3) Results: Mitochondria-related transcriptome features was obviously altered in PC compared with normal pancreas tissue. The 12-NMG signature showed good performance in predicting prognosis in various cohorts. The high- and low-risk groups exhibited notable diversity in gene mutation characteristics, biological characteristics, chemotherapy response, and the tumor immune microenvironment. Critical gene expression was demonstrated in our cohort at the mRNA and protein levels and in organelle localization. (4) Conclusions: Our study analyzed the mitochondrial molecular characterization of PC, proving the crucial role of NMGs in PC development. The established NMG signature helps classify patient subtypes in terms of prognosis prediction, treatment response, immunological features, and biological function, providing a potential therapeutic strategy targeting mitochondrial transcriptome characterization.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Qu QY, Song XY, Lin L, Gong ZH, Xu W, Xiao WJ. L-Theanine Modulates Intestine-Specific Immunity by Regulating the Differentiation of CD4+ T Cells in Ovalbumin-Sensitized Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14851-14863. [PMID: 36394825 DOI: 10.1021/acs.jafc.2c06171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ovalbumin (OVA), a common food protein, can cause deadly allergies with intestine-specific immune reactions. L-Theanine (LTA) shows great potential for regulating intestinal immunity. To investigate the regulatory effect of LTA intervention on intestine-specific immunity, a 41 day experiment was performed on BALB/c OVA-sensitized mice. The results show that injecting female mice intraperitoneally with 50 μg of OVA and administering 30 mg of OVA 4 times can successfully establish an OVA-sensitized mouse model. LTA intervention significantly increased weight gain and thymus index (p < 0.05), decreased allergy and diarrhea scores (p < 0.05), and improved jejunum structure. Meanwhile, the histological score and degranulation of mast cells decreased. LTA intervention increased Clostridiales, Lachnospiraceae, Lactobacillus, Prevotella, and Ruminococcus abundance while decreasing Helicobacter abundance. Flow cytometry and Western blotting results indicated that 200 and 400 mg/kg of LTA upregulated the expression of T-bet and Foxp3 proteins (p < 0.05), thus promoting the differentiation of jejunum CD4+ T cells to Th1 and Tregs and increasing the cytokines IFN-γ, IL-10, and TGF-β (p < 0.05). We found that 200 and 400 mg/kg of LTA downregulated the expression of RORγt and GATA3, thus inhibiting the differentiation of Th2 and Th17 cells and decreasing cytokines IL-4, IL-5, IL-13 TNF-α, IL-6, and IL-17A (p < 0.05). LTA inhibited the degranulation of mast cells and significantly decreased the serum levels of OVA-IgE, HIS, and mouse MCPT-1 (p < 0.05). Therefore, LTA intervention alleviated OVA allergy by improving intestine-specific immunity.
Collapse
Affiliation(s)
- Qing-Yun Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Xian-Ying Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhi-Hua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wen-Jun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| |
Collapse
|
11
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
12
|
Barati M, Shabani M, Jabbari M, Khaki Bakhtiarvand V, Nikmehr P, Ahmadi H, Akbari ME, Davoodi SH. Antioxidant nutrients can increase high-dose Methotrexate efficacy in 4T1 breast tumor Model: An experimental study on Vitamin E Succinate and Methyl-selenic acid. Int Immunopharmacol 2022; 110:109011. [PMID: 35803129 DOI: 10.1016/j.intimp.2022.109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND We aimed to evaluate the anti-cancer and immune system enhancing properties of Vitamin E succinate (VES) and methylselenic acid (MSA) administration on 4T1 breast tumor model under high-dose methotrexate (HDMTX) therapy and folinic acid (FA) rescue. METHODS Thirty six 4T1 mammary carcinoma bearing mice were randomly divided into six groups: control (untreated; n = 6), treatment-1 (T1 group; HDMTX; n = 6), T2 (T1 + FA; n = 6), T3 (T2 + MSA; n = 6), T4 (T2 + VES; n = 6) and T5 (T3 + VES; n = 6). On day 21 of the study, all surviving mice were sacrificed and primary tumors and peripheral tissues were examined for histological and gene expression assays. The expression of GATA Binding Protein-3 (GATA3), forkhead box-P3 (FOXP3), T-bet and Retinoic acid receptor-related orphan receptor γt (RORγt) were evaluated in tumors and spleens. Also, vascular endothelial growth factor-A (VEGF-A) and UL16-Binding Protein 1 (ULBP-1) expression were evaluated in tumors. RESULTS The control, T4 and T5 groups were able to complete the entire 21-day study period. Also, significant tumor shrinkage was occurred in T4 group (P < 0.05). Suppression of splenic FOXP3 and GATA3 were observed in the mice receiving T4 and T5 regimens. Also, induction of tumoral FOXP3 and GATA3 were achieved in the T4 and T5 groups, respectively (P < 0.05). No metastasis occurred in T4 receiving group; while, lung and liver metastasis were observed in T5 group. CONCLUSION In this study, high and fixed dose of MTX was used. Further studies are needed to optimize MTX dose along with FA, VES and MSA.
Collapse
Affiliation(s)
- Meisam Barati
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khaki Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Nikmehr
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Barati M, Shabani M, Jabbari M, Khaki Bakhtiarvand V, Nikmehr P, Ahmadi H, Akbari ME, Davoodi SH. Antioxidant nutrients can increase high-dose Methotrexate efficacy in 4T1 breast tumor Model: An experimental study on Vitamin E Succinate and Methyl-selenic acid. Int Immunopharmacol 2022; 110:109011. [DOI: https:/doi.org/10.1016/j.intimp.2022.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
|
14
|
An L, Zhang M, Lin Y, Jiang T, Xu K, Xiao S, Cai L, Kwan HY, Liu Z, Su T. Morroniside, a novel GATA3 binding molecule, inhibits hepatic stellate cells activation by enhancing lysosomal acid lipase expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154199. [PMID: 35679793 DOI: 10.1016/j.phymed.2022.154199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Liver fibrosis can be easily developed into irreversible liver cirrhosis or even liver cancer. Lysosomal acid lipase (LAL), encoded by the lipase A (Lipa) gene, is a critical enzyme involved in liver fibrosis development. Morroniside, an iridoid glycoside isolated from Cornus officinalis Sieb. et Zucc., exerts hepatic protective effects. However, the mechanism of action underling the anti-liver fibrosis effects of morroniside have not been fully elucidated. PURPOSE To explore whether Lipa served as a biomarker for liver fibrosis and investigate the anti-liver fibrosis effects of morroniside and the underlying action mechanism in liver fibrosis cell models. METHODS LAL expression was examined in the liver tissues of CCl4 and high-fat diet (HFD)-induced liver fibrosis animal models. α-smooth muscle actin (α-SMA) level, collagen and GATA family expressions were analyzed by Real-time PCR and Western blot. Putative transcription factor binding sites in the DNA sequences of Lipa was identified by PROMO-ALGGEN v8.3 online software and ENCODE ChIP-Seq Significance Tool. MD simulation was performed to explore the protein-ligand interaction. RESULTS We found that the expression of hepatic LAL is lower in the liver fibrosis animal models than the control models. The reduced LAL expression is associated with HSCs activation, suggesting LAL is novel liver fibrosis biomarker. More importantly, our data showed that morroniside exerts anti-liver fibrosis effects in vitro. Mechanistic studies reveal that it binds to the hydrophobic sites of GATA3 and also reduces GATA3 expression, which increases LAL expression. CONCLUSIONS This study, for the first time, suggests LAL is a novel biomarker for liver fibrosis. Besides, morroniside exerts its anti-liver fibrosis effects by targeting GATA3 and LAL and hence inhibits HSC activation. These findings provide strong scientific evidence to support the development of morroniside as novel alternative or complementary therapeutics for liver injury prevention and treatment.
Collapse
Affiliation(s)
- Lin An
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mi Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuefang Lin
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ting Jiang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shilin Xiao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liming Cai
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
15
|
GATA3 aids in distinguishing fumarate hydratase-deficient renal cell carcinoma from papillary renal cell carcinoma. Ann Diagn Pathol 2022; 60:152007. [PMID: 35841867 DOI: 10.1016/j.anndiagpath.2022.152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
GATA3 has been reported to be positive in clear cell papillary renal cell carcinoma and papillary renal neoplasm with reverse polarity. However, its features in high-grade RCC remain unclear. Despite the emergence of novel renal entities, FH-deficient RCC remains one of the most aggressive renal neoplasms. The diagnosis is mainly based on the loss of FH at the protein level. Previous studies have shown that inclusion-like nuclei, multiple architectural patterns, FH loss, and 2SC positivity can differentiate FH-deficient RCC from other RCC. In some FH-deficient RCC cases, FH is normally expressed and is difficult to diagnose. This study included 11 FH-deficient RCC, and GATA3 showed different expression in seven cases. However, 147 papillary renal cell carcinomas were included, and GATA3 expression was negative. A comparison of clinicopathological aspects between 11 FH-deficient RCC and 30 high-grade PRCC showed statistical significance in age, size, multiple architectural patterns, inclusion-like nuclei, and prognosis. However, PRCC exhibited similar characteristics. CK7, GATA3, and FH profiles were also statistically significant. Different chromosomal alterations were found in FH-deficient RCC, and chromosomal alterations were not different between FH-deficient RCC and PRCC. GATA3 was positive in 33 % (7/21) of collecting duct carcinomas and negative in other high-grade renal neoplasms. GATA3 is negative in PRCC, but can be positive in FH-deficient RCC and collecting duct carcinoma. GATA3 expression may indicate a worse outcome in high-grade RCC with papillary architecture. We recommend GATA3 IHC for the differential diagnosis and prognostic assessment of high-grade RCC with papillary architecture.
Collapse
|
16
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
17
|
Ma Y, Guo G, Li T, Wen F, Yang J, Chen B, Wang X, Chen JL. A novel imatinib-upregulated long noncoding RNA plays a critical role in inhibition of tumor growth induced by Abl oncogenes. Mol Cancer 2022; 21:5. [PMID: 34980123 PMCID: PMC8722111 DOI: 10.1186/s12943-021-01478-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dysregulation of long noncoding RNAs (lncRNAs) has been linked to various human cancers. Bcr-Abl oncogene that results from a reciprocal translocation between human chromosome 9 and 22, is associated with several hematological malignancies. However, the role of lncRNAs in Bcr-Abl-induced leukemia remains largely unexplored. METHODS LncRNA cDNA microarray was employed to identify key lncRNAs involved in Bcr-Abl-mediated cellular transformation. Abl-transformed cell survival and xenografted tumor growth in mice were evaluated to dissect the role of imatinib-upregulated lncRNA 1 (IUR1) in Abl-induced tumorigenesis. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR1 knockout (KO) mice were further conducted to address the functional relevance of lncRNA-IUR1 in Abl-mediated leukemia. Transcriptome RNA-seq and Western blotting were performed to determine the mechanisms by which lncRNA-IUR1 regulates Bcr-Abl-induced tumorigenesis. RESULTS We identified lncRNA-IUR1 as a critical negative regulator of Bcr-Abl-induced tumorigenesis. LncRNA-IUR1 expressed in a very low level in Bcr-Abl-positive cells from chronic myeloid leukemia patients. Interestingly, it was significantly induced in Abl-positive leukemic cells treated by imatinib. Depletion of lncRNA-IUR1 promoted survival of Abl-transformed human leukemic cells in experiments in vitro and xenografted tumor growth in mice, whereas ectopic expression of lncRNA-IUR1 sensitized the cells to apoptosis and suppressed tumor growth. In concert, silencing murine lncRNA-IUR1 in Abl-transformed cells accelerated cell survival and the development of leukemia in mice. Furthermore, lncRNA-IUR1 deficient mice were generated, and we observed that knockout of murine lncRNA-IUR1 facilitated Bcr-Abl-mediated primary bone marrow transformation. Moreover, animal leukemia model revealed that lncRNA-IUR1 deficiency promoted Abl-transformed cell survival and development of leukemia in mice. Mechanistically, we demonstrated that lncRNA-IUR1 suppressed Bcr-Abl-induced tumorigenesis through negatively regulating STAT5-mediated GATA3 expression. CONCLUSIONS These findings unveil an inhibitory role of lncRNA-IUR1 in Abl-mediated cellular transformation, and provide new insights into molecular mechanisms underlying Abl-induced leukemogenesis.
Collapse
Affiliation(s)
- Yun Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingting Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faxin Wen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianling Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|