1
|
Sweeting SG, Lennox AJJ. Non-Aqueous Binary and Ternary nHF·Base Fluoride Reagents: Characterization of Structure, Properties, and Reactivity. J Am Chem Soc 2025. [PMID: 40420318 DOI: 10.1021/jacs.5c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Binary and ternary nHF·base mixtures are an important class of nucleophilic fluorinating reagents used in myriad fluorination reactions. These reagents are soluble in organic media, and by varying n, the reactivity of fluoride can be controlled and tuned. Of particularly frequent utility are the ternary mixtures of nHF·amine, in which the binary 9HF·py and 3HF·NEt3 mixtures are combined, the ratio (n) of which has a strong influence on the reaction yields and selectivity. The structure, properties, and reactivity of these non-aqueous ionic liquid mixtures vary considerably with n. Herein, we disclose a combined experimental and theoretical study aimed at characterizing binary and ternary nHF·base mixtures. We have measured the concentration of components, their Hammett acidity H0, nucleophilicity, and basicity, while using theory to calculate the lowest energy size and structure of the clusters formed at different ratios of HF to base and analyzed the noncovalent interactions present. The quantification of properties and enhanced understanding presented should facilitate the further development and use of this important family of fluorination reagents.
Collapse
Affiliation(s)
- Stephen G Sweeting
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, Avon BS8 1TS, U.K
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, Avon BS8 1TS, U.K
| |
Collapse
|
2
|
Li Y, Liu XB, Sham V, Logvinenko I, Xue JH, Wu JY, Fu JL, Lin S, Liu Y, Li Q, Mykhailiuk PK, Wang H. Saturated F 2-Rings from Alkenes. Angew Chem Int Ed Engl 2025; 64:e202422899. [PMID: 39809698 DOI: 10.1002/anie.202422899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
A general method to convert simple exocyclic alkenes into saturated F2-rings has been developed. The reaction involves reagent C6F5I(OAc)2. The reaction efficiently works on the mg-, g-, and even multigram scale.
Collapse
Affiliation(s)
- Yin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Bin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Vadym Sham
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Akademik Kukhar Street, 02094, Kyiv, Ukraine
| | - Ivan Logvinenko
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | - Jiang-Hao Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jun-Yunzi Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jia-Luo Fu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Hussain Padder A, Ghora B, Hussain F, Bhat MY, Ahmed QN. BF 3·Et 2O-promoted unconventional reactions of 2-oxoaldehyde: access to 4-amidooxazoles and β-keto amides/sulphonamides. Org Biomol Chem 2025; 23:1809-1813. [PMID: 39807067 DOI: 10.1039/d4ob01956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study investigates the potential of boron trifluoride etherate (BF3·OEt2) to trigger unprecedented reactions of 2-oxoaldehydes with nitriles and amides/sulphonamides. In contrast to the mechanism in conventional reactions, the α-carbonyl group in 2-oxoaldehydes induces a cyclization pathway to be followed when reacting with nitriles, yielding 4-amidooxazoles. Additionally, reactions with weak nucleophiles produce β-keto amides/sulphonamides. BF3·OEt2 catalysis offers a novel, efficient, and operationally simple synthetic route to these valuable compounds, showcasing the versatility of boron Lewis acids in organic transformations.
Collapse
Affiliation(s)
- Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Bhawna Ghora
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
4
|
Zhao D, Wang X, Huang J, Yu T, Hao E, Ni S, Sun K. Photoinduced Difluoromethylation Cyclization to Generate Medium-Sized Difluoro-benzo[ b]azepines. Org Lett 2025; 27:1030-1035. [PMID: 39831514 DOI: 10.1021/acs.orglett.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Compared with the energetically favorable 5- or 6-membered fluoro-functionalized heterocycles, the construction of medium-sized fluoro-heterocycles is relatively under-researched because of their inherently unfavorable enthalpic and entropic nature. Based on rational design and DFT calculations, a novel photocatalytic difluoromethyl radical-initiated intramolecular 7-endo-trig cyclization was realized, thus affording a sustainable route for the synthesis of challenging fluoro-functionalized medium-sized N-heterocycles. Depending on atomic dipole moment corrected Hirshfeld population (ADCH) charge calculations, the chemoselective 6-exo-trig radical cyclizations were further replenished. Large-scale synthesis and derivatization demonstrated the wide utility of this method.
Collapse
Affiliation(s)
- Dongyang Zhao
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Xin Wang
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Jiabo Huang
- College Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Tingting Yu
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shaofei Ni
- College Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Kai Sun
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
5
|
Ahmed S, Banday JS, Ahmed QN. BF 3·Et 2O controlled selective synthesis of α-substituted propargylamides and β-( N-acylamino) ketones: application to carbon and sulphur nucleophiles. Org Biomol Chem 2025; 23:803-808. [PMID: 39641613 DOI: 10.1039/d4ob01882f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This study presents a metal-free and selective synthesis of α-substituted propargylamides and β-(N-acylamino) ketones utilizing nitriles, aldehydes, and terminal alkynes, mediated by BF3·Et2O. The unique reactivity of BF3·Et2O, a potent Lewis acid, facilitates precise control over product formation. By adjusting the concentration of BF3·Et2O, we can effectively manipulate reaction pathways and selectivity, ensuring the desired products are achieved with enhanced specificity. Notably, this method demonstrates remarkable tolerance to other nucleophiles, such as β-naphthol, indole, arenes and thiol, thereby enabling the synthesis of a diverse array of functionally significant compounds. This approach offers a valuable tool for advancing synthetic methodologies in organic chemistry.
Collapse
Affiliation(s)
- Sajjad Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Junaid Shafi Banday
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Ghosh P, Saikia AK. BF 3·OEt 2-catalyzed/mediated alkyne cyclization: a comprehensive review of heterocycle synthesis with mechanistic insights. Org Biomol Chem 2024; 22:8991-9020. [PMID: 39431437 DOI: 10.1039/d4ob01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The quest for efficient and versatile methods for heterocycle synthesis continues to drive innovation in organic chemistry. In this context, the cyclization of alkynes catalyzed or mediated by boron trifluoride diethyl etherate (BF3·OEt2) has emerged as a powerful and widely applicable strategy. This review provides a comprehensive and authoritative overview of BF3·OEt2-catalyzed/mediated alkyne cyclization reactions, covering the scope, mechanisms, and applications of these processes. We discuss the synthesis of a diverse range of heterocyclic compounds, including dihydropyrans, quinolines, dehydropiperidines, oxindoles and others, and highlight the unique advantages of BF3·OEt2 as a catalyst/mediator. Recent advances, challenges, and future directions in this rapidly evolving field are also addressed. This review aims to serve as a valuable resource for synthetic chemists, inspiring further research and applications in this exciting area.
Collapse
Affiliation(s)
- Priya Ghosh
- Department of Chemistry, Ganesh Lal Choudhury College, Borpeta-781315, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
7
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
8
|
Zou XY, Sun Q, Hong P, Xiao YT, Luo YD, Lu X, Li JH, Song RJ. Theoretical Insights into the Mechanism and Origin of Solvent-Dependent Selectivity in the Cyclization of Propargyl Alcohols for the Divergent Synthesis of N-Heterocycles. J Phys Chem A 2024; 128:6729-6738. [PMID: 39109870 DOI: 10.1021/acs.jpca.4c04993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This study elucidates the mechanisms and principles governing chemoselectivity in synthesizing two distinct N-heterocycles, benzimidazole thiazine and benzothiazole imidazole, through BF3•OEt2-catalyzed cyclization reactions of propargyl alcohols with benzimidazole thiols. Employing density functional theory calculations, we highlight the crucial role of fluorine source in influencing chemoselectivity. In DCM, BF3, as the catalytic center, coordinates with propargyl alcohol's hydroxyl group to form a precursor. Conversely, in DMF, [BF2•DMF]+, formed from DMF and BF3•OEt2, acts as the catalytic center, activating the propargyl alcohol's hydroxyl group. The mechanisms in both solvents involve sequential steps: B-O bond formation, C-O bond cleavage, S-C bond formation, hydrogen atom transfer (HAT), cyclization, and deprotonation. A notable difference is the HAT process: in DCM, it follows a 1,5-HAT process, while in DMF, BF4- formation from DMF and BF3•OEt2 provides a fluorine source and introduces steric hindrance, favoring a 1,6-HAT process and leading to unique chemoselectivity. This pioneering research showcases the impact of DMF on cyclization reactions, offering valuable insights for comprehending and designing reactions driven by fluorine sources. Crucially, our results propose an innovative reaction mechanism featuring lower potential energy surfaces, enhancing our understanding of the intricate interplay among reactants, catalysts, and solvents.
Collapse
Affiliation(s)
- Xiu-Yuan Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Dong Luo
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
9
|
Kataoka S, Morimoto H, Ohshima T. Primary Allylic Amine Synthesis via Pd-Catalyzed Direct Amination of Allylic Alcohols with Ammonium Acetate. J Org Chem 2024; 89:10693-10697. [PMID: 39008521 DOI: 10.1021/acs.joc.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Pd/DPEphos-catalyzed direct amination of allylic alcohols with readily available ammonium acetate as a nitrogen source provides access to convenient and scalable syntheses of primary allylic amines with high monoallylation selectivity. Mechanistic studies revealed that ammonium acetate functions as a Brønsted acid to activate the hydroxyl groups and inhibit overreaction.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Moskalik MY. Recent Advances on Fluorine Chemistry. Int J Mol Sci 2024; 25:8251. [PMID: 39125820 PMCID: PMC11311344 DOI: 10.3390/ijms25158251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The purpose of this Special Issue is to showcase the latest findings in fluorine chemistry [...].
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
11
|
Chai H, Wang X, Ma X, Zhen X, Qin Y, Qi L, Xu Z, Li F, Zhu W. Light-Activated BF 3·Et 2O-Promoted Generation of Singlet Oxygen and Cascade Reaction of Unsaturated Amides. Org Lett 2024; 26:1775-1779. [PMID: 38408019 DOI: 10.1021/acs.orglett.3c04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein, BF3·Et2O-promoted O-insertion/spirocyclization/fluorination/ring-expansion of unsaturated amides to synthesis of spiro[benzo[b]-[1,4]dioxepine-3,5'-oxazole] skeletons in the presence of natural light and O2 (3Σg-) was reported. Air was the oxygen source of the 1O2-generation and O-insertion reaction under metal-free and mild conditions. BF3·Et2O played multiple roles, such as Lewis acid, activating reagent, and fluorine source in the reported cascade. A mechanism involving 1O2 generation/activation of double bond/O-insertion/spirocyclization/fluorination/ring expansion was supposed.
Collapse
Affiliation(s)
- Hongli Chai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xingyu Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiang Zhen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Yuji Qin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Qi
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Fuchong Li
- Lanzhou Chemical Research Center of PetroChina, Lanzhou, 730000, China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Cui M, Xu Y, Tian R, Duan Z. BF 3-Promoted Ring Expansion of Iminylphosphiranes and Acylphosphiranes for Divergent Access to 1,2-Azaphospholidines and 1,2-Dihydrophosphetes. Org Lett 2024; 26:1819-1823. [PMID: 38415589 DOI: 10.1021/acs.orglett.3c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ring expansion of strained small rings provides an efficient method for the synthesis of various high-value carbocycles and heterocycles. Here we report BF3·Et2O as both an activating reagent and fluorine source, enabling ring expansion of phosphirane and P-F bond formation. Treatment of 1-iminylphosphirane complexes with BF3·Et2O resulted in 1,2-azaphospholidines, while the reaction of 1-acylphosphirane complexes with BF3·Et2O afforded 1,2-dihydrophosphetes. The reaction path was tuned by the nucleophilicity of the N and O atoms toward the intermediate phosphenium cation.
Collapse
Affiliation(s)
- Mingyue Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yang Xu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
13
|
Li F, Li E, Samanta K, Zheng Z, Wu L, Chen AD, Farha OK, Staples RJ, Niu J, Schmidt-Rohr K, Ke C. Ortho-Alkoxy-benzamide Directed Formation of a Single Crystalline Hydrogen-bonded Crosslinked Organic Framework and Its Boron Trifluoride Uptake and Catalysis. Angew Chem Int Ed Engl 2023; 62:e202311601. [PMID: 37870901 DOI: 10.1002/anie.202311601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Boron trifluoride (BF3 ) is a highly corrosive gas widely used in industry. Confining BF3 in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3 corrosion. Herein, we designed and synthesized a Lewis basic single-crystalline hydrogen-bond crosslinked organic framework (HC OF-50) for BF3 storage and its application in catalysis. Specifically, we introduced self-complementary ortho-alkoxy-benzamide hydrogen-bonding moieties to direct the formation of highly organized hydrogen-bonded networks, which were subsequently photo-crosslinked to generate HC OFs. The HC OF-50 features Lewis basic thioether linkages and electron-rich pore surfaces for BF3 uptake. As a result, HC OF-50 shows a record-high 14.2 mmol/g BF3 uptake capacity. The BF3 uptake in HC OF-50 is reversible, leading to the slow release of BF3 . We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2 O. The elucidation of the structure-property relationship, as provided by the single-crystal X-ray structures, combined with the high BF3 uptake capacity and controlled sorption, highlights the molecular understanding of framework-guest interactions in addressing contemporary challenges.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Errui Li
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Krishanu Samanta
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Albert D Chen
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lancing, MI 48824, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Ahmed S, Shafeeq Z, Hussain F, Ahmed QN. BF 3-Et 2O promoted bifunctionalization of aldehydes for the synthesis of arylmethyl substituted organophosphorus compounds. Chem Commun (Camb) 2023; 59:12334-12337. [PMID: 37766561 DOI: 10.1039/d3cc03898j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A simple and efficient protocol for the synthesis of arylmethyl substituted organophosphorus compounds is presented. This method involves the reaction of diphenyl phosphite with aldehydes in the presence of BF3-Et2O. In this method, BF3-Et2O plays a dual role, as it facilitates the generation of both hydrophosphonylated intermediate and phenol from diphenyl phosphite. A significant feature of this approach is its tolerance to the presence of external nucleophiles, such as phenol, aliphatic thiols, indole and 3-methylanisole. The simplicity of the reaction conditions and the high yields achieved make this method promising for applications in areas where phosphonate compounds are of interest.
Collapse
Affiliation(s)
- Sajjad Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Zoya Shafeeq
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Yu YJ, Häfliger J, Wang ZX, Daniliuc CG, Gilmour R. Forging Medium Rings via I(I)/I(III)-Catalyzed Diene Carbofunctionalization. Angew Chem Int Ed Engl 2023; 62:e202309789. [PMID: 37531257 DOI: 10.1002/anie.202309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
A main-group catalysis-based strategy to access 8-membered carbocycles via the direct carbofunctionalization of 2-phenethyl-substituted 1,3-dienes is disclosed. Through the intervention of an I(I)/I(III) catalysis cycle, the synthesis of densely functionalized, fluorinated benzocyclooctenes can be achieved in an operationally simple manner. Modulating the oxidation/activation regime, and the external nucleophile, the process has been extended to unify the challenging cyclization with formation of allylic C-O, C-N, and C-C bonds (>30 examples). Derivatization of the product benzocyclooctenes is demonstrated together with X-ray conformational analysis, preliminary validation of enantioselective catalysis and a scalable resolution protocol.
Collapse
Affiliation(s)
- You-Jie Yu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
16
|
Zhao P, Wang W, Gulder T. Hypervalent Fluoro-iodane-Triggered Semipinacol Rearrangements: Synthesis of α-Fluoro Ketones. Org Lett 2023; 25:6560-6565. [PMID: 37615672 DOI: 10.1021/acs.orglett.3c02384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Hypervalent fluoro-λ3-iodanes have emerged as versatile reagents that provide unusual fluorination selectivities under mild reaction conditions. Here, we report on adding a semipinacol rearrangement, fluorination, and aryl migration cascade reaction of styrene derivatives. Thus, various cyclopentanones became accessible in up to 96% yield, all bearing tertiary C,F-carbon centers adjacent to the ketone group. Such fluorinated structural motifs are difficult to build with previously established methods. Preliminary experiments on enantioselective processes validated that asymmetric transformations are likewise feasible.
Collapse
Affiliation(s)
- Pengyuan Zhao
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Wanying Wang
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Tanja Gulder
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Li Q, Liu XB, Wang H. Iodine(III)-Mediated Migratory gem-Difluorinations: Synthesis of β Transformable Functionality Substituted gem-Difluoroalkanes. CHEM REC 2023:e202300231. [PMID: 37665225 DOI: 10.1002/tcr.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the β position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.
Collapse
Affiliation(s)
- Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
McKnight EA, Arora R, Pradhan E, Fujisato YH, Ajayi AJ, Lautens M, Zeng T, Le CM. BF 3-Catalyzed Intramolecular Fluorocarbamoylation of Alkynes via Halide Recycling. J Am Chem Soc 2023; 145:11012-11018. [PMID: 37172320 DOI: 10.1021/jacs.3c03982] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.
Collapse
Affiliation(s)
- E Ali McKnight
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ramon Arora
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yuriko H Fujisato
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ayonitemi J Ajayi
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
19
|
Leibler INM, Gandhi SS, Tekle-Smith MA, Doyle AG. Strategies for Nucleophilic C(sp 3)-(Radio)Fluorination. J Am Chem Soc 2023; 145:9928-9950. [PMID: 37094357 DOI: 10.1021/jacs.3c01824] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.
Collapse
Affiliation(s)
| | - Shivaani S Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
20
|
Li Y, Fan WX, Luo S, Trofimova A, Liu Y, Xue JH, Yang L, Li Q, Wang H, Yudin AK. β-Boron Effect Enables Regioselective and Stereospecific Electrophilic Addition to Alkenes. J Am Chem Soc 2023; 145:7548-7558. [PMID: 36947220 DOI: 10.1021/jacs.3c00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Electrophilic addition to alkenes is a textbook-taught reaction, yet it is not always possible to control the regioselectivity of addition to unsymmetrical 1,2-disubstituted substrates. We report the observation and applications of the β-boron effect that accounts for high regioselectivity in electrophilic addition reactions to allylic MIDA (N-methyliminodiacetic acid) boronates. While the well-established β-silicon effect bears partial resemblance to the observed reactivity, the silyl group is typically lost during functionalization. In contrast, the boryl moiety is retained in the product when B(MIDA) is used as the nucleophilic stabilizer. Mechanistic studies elucidate the origin of this effect and demonstrate how σ(C-B) hyperconjugation helps stabilize the incipient carbocation. This transformation represents a rare example of the stereospecific hydrohalogenation of secondary allyl MIDA-boronates that proceeds in a syn-fashion.
Collapse
Affiliation(s)
- Yin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wen-Xin Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Alina Trofimova
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6 Canada
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiang-Hao Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
21
|
Qin Y, Qi L, Zhen X, Wang X, Chai H, Ma X, Jiang X, Cai X, Zhu W. Different Performances of BF 3, BCl 3, and BBr 3 in Hypervalent Iodine-Catalyzed Halogenations. J Org Chem 2023; 88:4359-4371. [PMID: 36939669 DOI: 10.1021/acs.joc.2c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Herein, hypervalent iodine-catalyzed halogenation of aryl-activated alkenes using BX3 (X = Cl, Br) as the halogen source and activating reagents was reported. Various halogenated 1,3-oxazine/2-oxazoline derivatives were obtained in good-to-high yields. Using BF3 resulted in different substitute sites from BBr3 and BCl3 of the products, indicating different reactive intermediates and reaction pathways. The reaction underwent a "ligand coupling/oxidative addition/intermolecular nucleophilic attack/1,2-aryl migration/reductive elimination/intramolecular nucleophilic attack" cascade when BF3 was applied as the halogen source, while 1,2-aryl migration has "disappeared" when the halogen source was BBr3 or BCl3. Possible catalytic cycles were proposed, and DFT calculations were conducted to demonstrate the differences among BX3 (X = F, Cl, Br) in the hypervalent iodine-catalyzed halogenations.
Collapse
Affiliation(s)
- Yuji Qin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Qi
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiang Zhen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hongli Chai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Egami H, Hamashima Y. Asymmetric Fluorofunctionalizations with Carboxylate-Based Phase-Transfer Catalysts. CHEM REC 2023:e202200285. [PMID: 36734199 DOI: 10.1002/tcr.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate-based phase-transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2-naphthols, and resorcinols.
Collapse
Affiliation(s)
- Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
23
|
Qi L, Qin Y, Wang X, Chai H, Zhu W, Zhou Y. Electrophilic Halogen Reagents-mediated Halogenation: Synthesis of Halogenated Dihydro-1,3-oxazine Derivatives. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Chai H, Zhen X, Wang X, Qi L, Qin Y, Xue J, Xu Z, Zhang H, Zhu W. Catalytic Synthesis of 5-Fluoro-2-oxazolines: Using BF 3·Et 2O as the Fluorine Source and Activating Reagent. ACS OMEGA 2022; 7:19988-19996. [PMID: 35721954 PMCID: PMC9202255 DOI: 10.1021/acsomega.2c01791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hypervalent iodine catalyst-catalyzed nucleophilic fluorination of unsaturated amides using BF3·Et2O as the fluorine source and activating reagent was reported. Various 5-fluoro-2-oxazoline derivatives were synthesized in good to excellent yields (up to 95% isolated yield) within 10 min. The process was efficient and metal-free under mild conditions. A mechanism involving a fluorination/1,2-aryl migration/cyclization cascade was proposed on the basis of previous work and experimental results.
Collapse
Affiliation(s)
- Hongli Chai
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department
of Pharmacy, College of Life Sciences, China
Jiliang University, Hangzhou 310018, China
| | - Liang Qi
- Department
of Pharmacy, College of Life Sciences, China
Jiliang University, Hangzhou 310018, China
| | - Yuji Qin
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, China
| | - Jijun Xue
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Hongrui Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Zhu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, China
| |
Collapse
|
25
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
26
|
Clark JL, Neyyappadath RM, Yu C, Slawin AMZ, Cordes DB, O'Hagan D. Janus All-Cis 2,3,4,5,6-Pentafluorocyclohexyl Building Blocks Applied to Medicinal Chemistry and Bioactives Discovery Chemistry. Chemistry 2021; 27:16000-16005. [PMID: 34486192 PMCID: PMC9292521 DOI: 10.1002/chem.202102819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Monoalkylated derivatives of the unusually polar all-cis 2,3,4,5,6- pentafluorocyclohexyl (Janus face) motif are prepared starting from an aryl hydrogenation of 2,3,4,5,6- pentafluorophenylacetate methyl ester 15. The method used Zeng's Rh(CAAC) carbene catalyst 4 in the hydrogenation following the protocol developed by Glorius. The resultant Janus pentafluorocyclohexylacetate methyl ester 16 was converted to the corresponding alcohol 18, aldehyde 13, bromide 29 and azide 14 through functional group manipulations, and some of these building blocks were used in Ugi-multicomponent and Cu-catalysed click reactions. NBoc protected pentafluoroarylphenylalanine methyl ester 35 was also subject to an aryl hydrogenation, and then deprotection to generate the Janus face β-pentafluorocyclohexyl-alanine amino acid 15, which was incorporated into representative members of an emerging class of candidate antiviral compounds. Log P measurements demonstrate that the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring system is more polar than a phenyl ring. In overview the paper introduces new building blocks containing this Janus ring and demonstrates their progression to molecules typically used in bioactives discovery programmes.
Collapse
Affiliation(s)
- Joshua L. Clark
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - Cihang Yu
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - David B. Cordes
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | - David O'Hagan
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| |
Collapse
|