1
|
Gao D, Shen L, Lin Y, Huang S, Xie Z. Ferric Uptake Regulator Contributes to Pseudomonas donghuensis HYS-Induced Iron Metabolic Disruption in Caenorhabditis elegans. Microorganisms 2025; 13:1081. [PMID: 40431254 PMCID: PMC12114261 DOI: 10.3390/microorganisms13051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Iron is essential for vital biological processes, with its metabolism closely linked to host-pathogen interactions. Pseudomonas donghuensis HYS, with its superior iron uptake capacity, demonstrates pronounced virulence toward Caenorhabditis elegans. However, the virulence mechanisms remain unexplored. Ferric uptake regulator (Fur) regulates iron homeostasis and pathogenicity in bacteria, yet its role in HYS-mediated C. elegans pathogenesis requires systematic investigation. In this study, comparing the pathogenic processes of HYS and P. aeruginosa PA14 revealed that HYS causes stronger, irreversible toxicity via distinct mechanisms. Transcriptomics revealed that HYS infection disrupts C. elegans iron metabolism pathways, specifically iron transport, and iron-sulfur cluster utilization. Fur was identified as a pivotal regulator in HYS virulence and was indispensable for its colonization. Specifically, Fur was critical for disrupting nematode iron metabolism, as fur deletion eliminated this effect. While Fur regulated two HYS siderophores, neither of them mediated in the iron metabolism disruption of C. elegans. Screening identified Fur-regulated virulence factors to further investigate the function of Fur in HYS virulence, particularly alkaline proteases, and type II secretion system components. This study highlight that HYS can disrupt the iron metabolism pathway in C. elegans; Fur serves as a pivotal positive regulator in HYS-induced damage, particularly in disrupting iron metabolism through a siderophore-independent pathway. These findings expand the understanding of Pseudomonas pathogenicity and Fur-mediated virulence regulation.
Collapse
Affiliation(s)
| | | | | | | | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (D.G.); (L.S.); (Y.L.); (S.H.)
| |
Collapse
|
2
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
3
|
Giovannini M, Petroni G, Castelli M. Novel evolutionary insights on the interactions of the Holosporales (Alphaproteobacteria) with eukaryotic hosts from comparative genomics. Environ Microbiol 2024; 26:e16562. [PMID: 38173299 DOI: 10.1111/1462-2920.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Holosporales are an alphaproteobacterial order engaging in obligate and complex associations with eukaryotes, in particular protists. The functional and evolutionary features of those interactions are still largely undisclosed. Here, we sequenced the genomes of two members of the species Bealeia paramacronuclearis (Holosporales, Holosporaceae) intracellularly associated with the ciliate protist Paramecium, which resulted in high correspondence. Consistent with the short-branched early-divergent phylogenetic position, Bealeia presents a larger functional repertoire than other Holosporaceae, comparable to those of other Holosporales families, particularly for energy metabolism and motility. Our analyses indicate that different Holosporales likely experienced at least partly autonomous genome reduction and adaptation to host interactions, for example regarding dependence on host biotin driven by multiple independent horizontal acquisitions of transporters. Among Alphaproteobacteria, this is reminiscent of the convergently evolved Rickettsiales, which however appear more diverse, possibly due to a probably more ancient origin. We identified in Bealeia and other Holosporales the plasmid-encoded putative genetic determinants of R-bodies, which may be involved in a killer trait towards symbiont-free hosts. While it is not clear whether these genes are ancestral or recently horizontally acquired, an intriguing and peculiar role of R-bodies is suggested in the evolution of the interactions of multiple Holosporales with their hosts.
Collapse
Affiliation(s)
| | | | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MICROLIFE 2023; 4:uqad015. [PMID: 37223732 PMCID: PMC10118264 DOI: 10.1093/femsml/uqad015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.
Collapse
Affiliation(s)
- Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| | | | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
- Max Planck Unit for the Science of Pathogens, 10115 Berlin, Germany
| |
Collapse
|
5
|
Zarrella TM, Khare A. Systematic identification of molecular mediators of interspecies sensing in a community of two frequently coinfecting bacterial pathogens. PLoS Biol 2022; 20:e3001679. [PMID: 35727825 PMCID: PMC9249247 DOI: 10.1371/journal.pbio.3001679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/01/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteria typically exist in dynamic, multispecies communities where polymicrobial interactions influence fitness. Elucidating the molecular mechanisms underlying these interactions is critical for understanding and modulating bacterial behavior in natural environments. While bacterial responses to foreign species are frequently characterized at the molecular and phenotypic level, the exogenous molecules that elicit these responses are understudied. Here, we outline a systematic strategy based on transcriptomics combined with genetic and biochemical screens of promoter-reporters to identify the molecules from one species that are sensed by another. We utilized this method to study interactions between the pathogens Pseudomonas aeruginosa and Staphylococcus aureus that are frequently found in coinfections. We discovered that P. aeruginosa senses diverse staphylococcal exoproducts including the metallophore staphylopine (StP), intermediate metabolites citrate and acetoin, and multiple molecules that modulate its iron starvation response. We observed that StP inhibits biofilm formation and that P. aeruginosa can utilize citrate and acetoin for growth, revealing that these interactions have both antagonistic and beneficial effects. Due to the unbiased nature of our approach, we also identified on a genome scale the genes in S. aureus that affect production of each sensed exoproduct, providing possible targets to modify multispecies community dynamics. Further, a combination of these identified S. aureus products recapitulated a majority of the transcriptional response of P. aeruginosa to S. aureus supernatant, validating our screening strategy. Cystic fibrosis (CF) clinical isolates of both S. aureus and P. aeruginosa also showed varying degrees of induction or responses, respectively, which suggests that these interactions are widespread among pathogenic strains. Our screening approach thus identified multiple S. aureus secreted molecules that are sensed by P. aeruginosa and affect its physiology, demonstrating the efficacy of this approach, and yielding new insight into the molecular basis of interactions between these two species.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Revisiting selected ethical aspects of current clinical in vitro fertilization (IVF) practice. J Assist Reprod Genet 2022; 39:591-604. [PMID: 35190959 PMCID: PMC8995227 DOI: 10.1007/s10815-022-02439-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical considerations are central to all medicine though, likely, nowhere more essential than in the practice of reproductive endocrinology and infertility. Through in vitro fertilization (IVF), this is the only field in medicine involved in creating human life. IVF has, indeed, so far led to close to 10 million births worldwide. Yet, relating to substantial changes in clinical practice of IVF, the medical literature has remained surprisingly quiet over the last two decades. Major changes especially since 2010, however, call for an updated commentary. Three key changes deserve special notice: Starting out as a strictly medical service, IVF in recent years, in efforts to expand female reproductive lifespans in a process given the term “planned” oocyte cryopreservation, increasingly became more socially motivated. The IVF field also increasingly underwent industrialization and commoditization by outside financial interests. Finally, at least partially driven by industrialization and commoditization, so-called add-ons, the term describing mostly unvalidated tests and procedures added to IVF since 2010, have been held responsible for worldwide declines in fresh, non-donor live birthrates after IVF, to levels not seen since the mid-1990s. We here, therefore, do not offer a review of bioethical considerations regarding IVF as a fertility treatment, but attempt to point out ethical issues that arose because of major recent changes in clinical IVF practice.
Collapse
|
7
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|