1
|
Zhang H, Qin L, Zhou Y, Huang G, Cai H, Sha J. High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410609. [PMID: 39723742 DOI: 10.1002/smll.202410609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG). A single IEM-MEG exhibits a maximum open-circuit voltage (VOC) of 0.815 V and a short-circuit current (ISC) of 101 µA at 80% RH. Even at a low RH of 10%, a stable VOC of 0.43 V and ISC of 11 µA can be generated. Moreover, the antifreeze performance of the device is improved by adding LiCl, which significantly expands its operational range in low-temperature environments. Finally, a simple series-parallel connection of six IEM-MEGs can yield an enhanced VOC of 4.8 V and a ISC of ≈0.6 mA, and the scalable units can directly power commercial electronics. This study provides new insights into the design of MEGs that will advance the development of green energy conversion technologies in the future.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Liling Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuyan Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Guiyun Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hui Cai
- China National Pulp and Paper Research Institute Co., Ltd, Beijing, 100102, P. R. China
| | - Jiulong Sha
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
2
|
Sultana A, Würger A, Khan Z, Liao M, Jonsson MP, Crispin R, Zhao D. The Origin of Thermal Gradient-Induced Voltage in Polyelectrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308102. [PMID: 38050937 DOI: 10.1002/smll.202308102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Ionic thermoelectric materials can generate large thermal voltages under temperature gradients while also being low-cost and environmentally friendly. Many electrolytes with large Seebeck coefficients are reported in recent years, however, the mechanism of the thermal voltage is remained elusive. In this work, three types of polyelectrolytes are studied with different cations and identified a significant contribution to their thermal voltage originating from a concentration gradient. This conclusion is based on studies of the loss and gain of water upon temperature changes, variations in conductivity with water content and temperature, and the voltages induced by changes in water content. The results are analyzed by the "hopping mode" dynamics of charge transport in electrolytes. The hydration of different cations influences the water concentration gradient, which affects the barrier height and ion-induced potential in the electrodes. This work shows that the hydro-voltage in ionic thermoelectric devices can be one order of magnitude larger than the contribution from thermodiffusion-induced potentials, and becomes the main contributor to energy harvesting when implemented into ionic thermoelectric supercapacitors. Together with the rationalized theoretical discussion, this work clarifies the mechanism of thermal voltages in electrolytes and provides a new path for the development of ionic thermoelectric materials.
Collapse
Affiliation(s)
- Ayesha Sultana
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Alois Würger
- University of Bordeaux & CNRS, LOMA (UMR 5798), Talence, F-33405, France
| | - Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Mingna Liao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, SE-601 74, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, SE-601 74, Sweden
| | - Dan Zhao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| |
Collapse
|
3
|
He Y, Li S, Chen R, Liu X, Odunmbaku GO, Fang W, Lin X, Ou Z, Gou Q, Wang J, Ouedraogo NAN, Li J, Li M, Li C, Zheng Y, Chen S, Zhou Y, Sun K. Ion-Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density. NANO-MICRO LETTERS 2023; 15:101. [PMID: 37052861 PMCID: PMC10102278 DOI: 10.1007/s40820-023-01077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Ionic thermoelectrics (i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However, as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here, we introduce an ion-electron thermoelectric synergistic (IETS) effect by utilizing an ion-electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min. Moreover, our i-TE exhibits a thermopower of 32.7 mV K-1 and an energy density of 553.9 J m-2, which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.
Collapse
Affiliation(s)
- Yongjie He
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shaowei Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Rui Chen
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xu Liu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - George Omololu Odunmbaku
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Wei Fang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaoxue Lin
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zeping Ou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiacheng Wang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nabonswende Aida Nadege Ouedraogo
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jing Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chen Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shanshan Chen
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yongli Zhou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials and Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
4
|
Cheng H, Ouyang J. Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion. J Phys Chem Lett 2022; 13:10830-10842. [PMID: 36382894 DOI: 10.1021/acs.jpclett.2c02645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cations and anions can accumulate at the two ends of an ionic conductor under temperature gradient, which is the so-called Soret effect. This can generate a voltage between the two electrodes, and the thermopower can be higher than that of the electronic conductors because of the Seebeck effect by 1-2 orders in magnitude. The thermoelectric properties of ionic conductors depend on the ionic thermopower, ionic conductivity, and thermal conductivity. Compared with other ionic conductors, like liquid electrolytes and hydrogels, ionogels made of an ionic liquid and a gelator can have the advantages of high thermopower and high stability. Great progress was recently made to improve the ionic conductivity and/or ionic thermopower of ionogels. They can be used in ionic thermoelectric capacitors (ITECs) to harvest heat. In addition, they can be integrated with electronic thermoelectric materials to harvest heat from both temperature gradient and temperature fluctuation, which can be caused by waste heat.
Collapse
Affiliation(s)
- Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
- National University of Singapore Suzhou Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu215000, China
| |
Collapse
|
5
|
Zhou Y, Dong Z, He Y, Zhu W, Yuan Y, Zeng H, Li C, Chen S, Sun K. Multi-ionic Hydrogel with outstanding heat-to-electrical performance for low-grade heat harvesting. Chem Asian J 2022; 17:e202200850. [PMID: 36074542 DOI: 10.1002/asia.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Ionic thermoelectric (i-TE) materials have attracted much attention due to their ability to generate ionic Seebeck coefficient of tens of millivolts per Kelvin. In this work, we demonstrate that the ionic thermopower can be enhanced by the introduction of multiple ions. The multi-ionic hydrogel possesses a record thermal-to-electrical energy conversion factor (TtoE factor) of 89.6 mV K-1 and an ionic conductivity of 6.8 mS cm-1, which are both better than single salt contact hydrogel. Subsequently we build a model to explain thermal diffusion of the ions in multi-ionic hydrogels. Finally, the possibility of large-scale integrated applications of multi-ionic hydrogels is demonstrated. By connecting 7 i-TEs hydrogels, we obtained an open-circuit voltage of 1.86 V at ΔT = 3 K. Our work provides a new pathway for the design of i-TEs and low-grade heat harvesting.
Collapse
Affiliation(s)
- Yongli Zhou
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Zixian Dong
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Yongjie He
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Wentao Zhu
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Youlan Yuan
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Haoran Zeng
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Chen Li
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Shanshan Chen
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Kuan Sun
- Chongqing University, School of Energy & Power Engineering, 178 Shazhengjie, Shapingba District, 400044, Chongqing, CHINA
| |
Collapse
|
6
|
He Y, Zhang Q, Cheng H, Liu Y, Shu Y, Geng Y, Zheng Y, Qin B, Zhou Y, Chen S, Li J, Li M, Odunmbaku GO, Li C, Shumilova T, Ouyang J, Sun K. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K -1. J Phys Chem Lett 2022; 13:4621-4627. [PMID: 35587455 DOI: 10.1021/acs.jpclett.2c00845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic thermoelectric (i-TE) material with mobile ions as charge carriers has the potential to generate large thermal voltages at low operating temperatures. This study highlights the role of ions in i-TE hydrogels employing a poly(vinyl alcohol) (PVA) polymer matrix and a number of ion providers, e.g., KOH, KNO3, KCl, KBr, NaI, KI, and CsI. The relationship between the intrinsic physical parameters of the ion and the thermoelectric performance is established, indicating the ability to influence the hydrogen bond by the ion is a crucial factor. Among these i-TE hydrogels, the PVA/CsI hydrogel exhibits the largest ionic Seebeck coefficient, reaching 52.9 mV K-1, which is the largest of all i-TE materials reported to date. In addition, our work demonstrates the influence of ions on polymer configuration and provides an avenue for ion selection in the Soret effect in ionic thermoelectrics.
Collapse
Affiliation(s)
- Yongjie He
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qi Zhang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Yang Liu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yue Shu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yang Geng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yujie Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Bo Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yongli Zhou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shanshan Chen
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jing Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - George Omololu Odunmbaku
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chen Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Tatyana Shumilova
- Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Sohn A, Zhang Y, Chakraborty A, Yu C. Sustainable power generation via hydro-electrochemical effects. NANOSCALE 2022; 14:4188-4194. [PMID: 35234234 DOI: 10.1039/d1nr07748a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent efforts towards energy scavenging with eco-friendly methods and abundant water look very promising for powering wearables and distributed electronics. However, the time duration of electricity generation is typically too short, and the current level is not sufficient to meet the required threshold for the proper operation of electronics despite the relatively large voltage. This work newly introduced an electrochemical method in combination with hydro-effects in order to extend the energy scavenging time and boost the current. Our device consists of corroded porous steel electrodes whose corrosion overpotential was lowered when the water concentration was increased and vice versa. Then a potential difference was created between two electrodes, generating electricity via the hydro-electrochemical method up to an open-circuit voltage of 750 mV and a short-circuit current of 90 μA cm-2. Furthermore, electricity was continuously generated for more than 1500 minutes by slow water diffusion against gravity from the bottom electrode. Lastly, we demonstrated that our hydro-electrochemical power generators successfully operated electronics, showing the feasibility of offering electrical power for sufficiently long time periods in practice.
Collapse
Affiliation(s)
- Ahrum Sohn
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Yufan Zhang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirban Chakraborty
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Choongho Yu
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|