1
|
Jiang B, Zhao C, Zhang Y, Gu S, Zhang N. Atomic-Scale Interface Engineering to Construct Highly Efficient Electrocatalysts for Advanced Lithium-Sulfur Batteries. ACS NANO 2025; 19:18332-18346. [PMID: 40331591 DOI: 10.1021/acsnano.5c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Heterostructure materials integrating the unique physical and chemical properties of each heterogeneous component are highly promising for optimizing lithium-sulfur batteries. However, precisely regulating the interface microstructures of heterostructures at the atomic scale still lacks effective means, and the law of interface microstructures affecting the properties of heterostructures is not yet clearly understood. Herein, an atomic-scale regulation strategy is presented to construct heterostructure materials containing the high-energy Fe2O3-CeO2 interfaces with specific atomic arrangements using a high-index faceted Fe2O3 octadecahedron as the substrate for the heterogrowth of CeO2 nanocrystals, which effectively improves the redox kinetics of sulfur species in lithium-sulfur batteries. Experimental and theoretical calculations reveal that the strong interface interactions, characterized by plentiful electron transfer between Fe2O3 and CeO2, render the high-energy Fe2O3-CeO2 interfaces with good adsorption properties and high catalytic activity for various sulfur species. Attributed to the abundant high-energy Fe2O3-CeO2 interfaces, the Fe2O3-CeO2 octadecahedra effectively inhibit the shuttling of polysulfide and significantly accelerate the interconversion of sulfur species. The incorporation of these high-activity electrocatalysts enables the batteries to deliver superb long-term cyclic stability with a low average capacity fading of 0.016% per cycle over 2000 cycles at 2.0 C. Even at a low electrolyte/sulfur ratio of 4.3 μL mg-1, the batteries with a sulfur loading of 8.79 mg cm-2 maintain an areal capacity as high as 7.53 mAh cm-2 after 100 cycles. This study achieves the precise atomic-scale regulation of the interface microstructures, deepening the comprehending of the electrocatalytic conversion of sulfur species associated with the interface microstructures while delivering valuable guidance for the rational construction of advanced electrocatalysts for Li-S batteries.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chenghao Zhao
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Zhang
- Department of Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Sheng Gu
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| | - Naiqing Zhang
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Hu Y, Lin L, Ji J, Wu W, Zuo X, Cai Z, Li H, Shang H, Li Z. Chemical-Resistant, Highly-Impermeable Integration of Large Differential Semiconductor and Oxide by Spatial-Confined Plasma Assisted Ultrafast Laser Microwelding for Optofluidic Microsystem. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500881. [PMID: 40270294 DOI: 10.1002/smll.202500881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Large-differential semiconductor and oxide interconnect are widely used in high-performance multi-function integrated microsystems. In this work, spatial-confined plasma-assisted ultrafast laser microwelding has been developed to activate the inert surface and improve mass transportation for robust semiconductor-oxide integration. The inherent stress concentration within the weld of semiconductor (Si) and oxide (Sapphire) can be compensated by inserting hundreds-of-nanometer-thick intermediate oxide layer (SiO2). Amorphous silicate with embedded Si nanocrystals is generated to facilitate the bond between Si and Sapphire. While, SiO2 jet with extremely high energy can expand into the interior of Sapphire, bringing in numerous bonding sites. The shear strength of welded Si and Sapphire structures can be up to 10.7 ± 0.8 MPa. As-received heterostructures also show high chemical resistance to acid (pH 2) and alkaline (pH 12) solutions, where the corrosive liquid is well preserved in the welded cavity after a long time. Developed Si-based SERS optofluidic sensor by ultrafast laser microwleding of Si substrate and Sapphire window shows the reliable ability for high-sensitive detection of low-concentration chemicals (down to 10-12 mol L-1). This method can be also applicable for large-differential materials integration with broad combinations (e.g., Si/Ga2O3 and SiC/Sapphire), which is promising for high-performance multi-function micro devices development.
Collapse
Affiliation(s)
- Yifan Hu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Junde Ji
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weiqing Wu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinde Zuo
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhengjie Cai
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huan Shang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Ren H, Guo H, Hao Y, Liu Y, Peng L, Yang W. Defect-regulated MnS@Ni 0.654Co 0.155Se 1.234S 0.101 structures: A novel approach to unlock energy storage potential in supercapacitors. J Colloid Interface Sci 2025; 683:746-758. [PMID: 39746245 DOI: 10.1016/j.jcis.2024.12.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Transition metal sulfides (TMSs) have significant potential in energy storage applications due to their high theoretical capacity and diverse reaction mechanisms. However, performance limitations in supercapacitors arise from various intrinsic defects, including low active material utilization and poor cycling stability caused by unstable electrical conductivity. To address these issues, this paper incorporates selenium atoms into sulfides, aiming to leverage selenium's high conductivity to enhance the electroactivity of transition metal sulfides. This approach improves both the conductivity of sulfides and the ion transport rate as well as enhances structural stability. Furthermore, a hierarchically porous structure of metal-organic framework (MOF) is synergistically optimized to augment the composite's energy storage capacity. The resulting MnS@NiCoSeS-1 composite demonstrates excellent electrochemical performance, achieving a specific capacity of 901.0 C g-1 at 1 A g-1 in a three-electrode configuration, with a capacity retention of 82.6 % after 10,000 cycles at 3 A g-1. Additionally, the hybrid supercapacitor (HSC) constructed from this composite exhibits a high specific energy of 78.85 Wh kg-1 at a power density of 775.2 W kg-1. These findings validate the effectiveness of co-doping strategies for optimizing active material utilization and provide novel insights into the design of supercapacitors with both high energy and power densities.
Collapse
Affiliation(s)
- Henglong Ren
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Yanrui Hao
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Yu Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Liping Peng
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Karmakar S, Ash S, Haque S, Murugasenapathi NK, Sridevi M, Mandal I, Ghorai G, Muhammed Ali AV, Gosvami NN, Krishnan NMA, Kanungo S, Chirumamilla M, Palanisamy T, Singh RK, Allu AR, Rao KDM. On-Chip Full-UV-Band Photodetectors Enabled by Hot Hole Extraction. ACS NANO 2025; 19:6309-6319. [PMID: 39913663 DOI: 10.1021/acsnano.4c16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Achieving on-chip, full-UV-band photodetection across UV-A (315-400 nm), UV-B (280-315 nm), and UV-C (100-280 nm) bands remains challenging due to the limitations in traditional materials, which often have narrow detection ranges and require high operating voltages. In this study, we introduce a self-driven, on-chip photodetector based on a heterostructure of hybrid gold nanoislands (Au NIs) embedded in H-glass and cesium bismuth iodide (Cs3Bi2I9). The Au NIs act as catalytic nucleation sites, enhancing crystallinity and facilitating the vertical alignment of the interconnected Cs3Bi2I9 petal-like thin film. A built-in electric field developed at the heterojunction efficiently separates hot holes generated in the Au NIs under UV illumination, transferring them to the valence band of Cs3Bi2I9 and minimizing recombination losses. The device demonstrates an ultrahigh open-circuit voltage of 0.6 V, exceptional responsivity of 0.88 A/W, and a detection threshold of 90 nW/cm2, outperforming the existing thin film-based UV photodetectors under self-driven mode. Long-term stability tests confirmed robust operational reliability under ambient conditions for up to eight months. This architecture, driven by efficient hot hole dynamics, represents a significant advancement for full-UV-band optoelectronics with promising applications in environmental monitoring, flame detection, biomedical diagnostics, and secure communication systems.
Collapse
Affiliation(s)
- Sougata Karmakar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Soham Ash
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sinorul Haque
- CSIR-Central Glass and Ceramic Research Institute 196 Raja S C Mullick Road, Kolkata 700032, India
| | - N K Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute(CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Sridevi
- Photovoltaic Metrology Section, Advanced Materials & Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Indrajeet Mandal
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gurupada Ghorai
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - A V Muhammed Ali
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sayan Kanungo
- Department of Electrical & Electronics Engineering, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University Skjernvej 4A, Aalborg 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg 21073, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute(CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajiv K Singh
- Photovoltaic Metrology Section, Advanced Materials & Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute 196 Raja S C Mullick Road, Kolkata 700032, India
| | - K D M Rao
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
5
|
Ran C, Zhang JL, He X, Luo C, Zhang Q, Shen Y, Yin L. Recent development of gold nanochips in biosensing and biodiagnosis sensibilization strategies in vitro based on SPR, SERS and FRET optical properties. Talanta 2025; 282:126936. [PMID: 39362039 DOI: 10.1016/j.talanta.2024.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Gold nanomaterials have become attractive nanomaterials for biomedical research due to their unique physical and chemical properties, and nanochips are designed to manufacture high-quality substrates for loading gold nanoparticles (GNPs) to achieve specific and selective detection. By utilizing multiple optical properties of different gold nanostructures, the sensitivity, specificity, speed, contrast, resolution, and other performance of biosensing and biological diagnosis can be significantly improved. This paper summarized the sensitivity enhancement strategies of optical biosensing techniques based on the three main optical properties of gold nanomaterials: surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET). The aim is to comprehensively review the development direction of in vitro diagnostics (IVDs) from two aspects: detection strategies and modification of gold nanomaterials. In addition, some opportunities and challenges that gold-based IVDs may encounter at present or in the future are also mentioned in this paper. In summary, this paper can enlighten readers with feasible strategies for manufacturing potential gold-based nanobiosensors.
Collapse
Affiliation(s)
- Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Jin-Lin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China; Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Changyou Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Qingjie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Wang LC, Chang LC, Huang HL, Chang PY, Pao CW, Liu YF, Huang KS, Chien YH, Sheu HS, Su WP, Yeh CH, Yeh CS. Synergistic ROS Generation via Core-Shell Nanostructures with Increased Lattice Microstrain Combined with Single-Atom Catalysis for Enhanced Tumor Suppression. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45356-45370. [PMID: 39143699 PMCID: PMC11367581 DOI: 10.1021/acsami.4c10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
This study emphasizes the innovative application of FePt and Cu core-shell nanostructures with increased lattice microstrain, coupled with Au single-atom catalysis, in significantly enhancing •OH generation for catalytic tumor therapy. The combination of core-shell with increased lattice microstrain and single-atom structures introduces an unexpected boost in hydroxyl radical (•OH) production, representing a pivotal advancement in strategies for enhancing reactive oxygen species. The creation of a core-shell structure, FePt@Cu, showcases a synergistic effect in •OH generation that surpasses the combined effects of FePt and Cu individually. Incorporating atomic Au with FePt@Cu/Au further enhances •OH production. Both FePt@Cu and FePt@Cu/Au structures boost the O2 → H2O2 → •OH reaction pathway and catalyze Fenton-like reactions. This enhancement is underpinned by DFT theoretical calculations revealing a reduced O2 adsorption energy and energy barrier, facilitated by lattice mismatch and the unique catalytic activity of single-atom Au. Notably, the FePt@Cu/Au structure demonstrates remarkable efficacy in tumor suppression and exhibits biodegradable properties, allowing for rapid excretion from the body. This dual attribute underscores its potential as a highly effective and safe cancer therapeutic agent.
Collapse
Affiliation(s)
- Liu-Chun Wang
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
| | - Li-Chan Chang
- Institute
of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsiang-Lin Huang
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Ya Chang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yin-Fen Liu
- Institute
of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Keng-Shiang Huang
- The
School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yi-Hsin Chien
- Department
of Materials Science and Engineering, Feng
Chia University, Taichung 40724, Taiwan
| | - Hwo-Shuenn Sheu
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wen-Pin Su
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
- Institute
of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Departments
of Oncology and Internal Medicine, National Cheng Kung University
Hospital, College of Medicine, National
Cheng Kung University, Tainan 704, Taiwan
- Clinical
Medicine Research Center, National Cheng Kung University Hospital,
College of Medicine, National Cheng Kung
University, Tainan 704, Taiwan
| | - Chen-Hao Yeh
- Department
of Materials Science and Engineering, Feng
Chia University, Taichung 40724, Taiwan
| | - Chen-Sheng Yeh
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
| |
Collapse
|
7
|
Mandal I, Gangareddy J, Sethurajaperumal A, Nk M, Majji M, Bera S, Rudra P, Ravichandran V, Bysakh S, Jacob N, Rao KDM, Singh RK, Krishnan NMA, Chirumamilla M, Palanisamy T, Motapothula M, Varrla E, Ghosh S, Allu AR. H-Glass Supported Hybrid Gold Nano-Islands for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401131. [PMID: 38563587 DOI: 10.1002/smll.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.
Collapse
Affiliation(s)
- Indrajeet Mandal
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Jagannath Gangareddy
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Abimannan Sethurajaperumal
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Murugasenapathi Nk
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manikanta Majji
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Susmita Bera
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST), Sector V, Salt Lake, Kolkata, 700091, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Noah Jacob
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - K D M Rao
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rajiv K Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Photovoltaic Metrology Section, Advanced Material and Devices Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073, Hamburg, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Motapothula
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Srabanti Ghosh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Yang Y, Sun X, Wang S, Tang Z, Luo S, Shi J, Zhuo X, Zhu J, Zhang H, Kong X. Yolk-shelled silver nanowire@amorphous metal-organic framework for controlled drug delivery and light-promoting infected wound healing. Regen Biomater 2024; 11:rbae056. [PMID: 38845853 PMCID: PMC11153340 DOI: 10.1093/rb/rbae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against Escherichia coli and Staphylococcus aureus bacteria decreased to 3 and 3 μg ml-1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective and clinically-translatable solution for accelerating the healing process of infected wounds.
Collapse
Affiliation(s)
- Yueyan Yang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xu Sun
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Zhe Tang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Siyuan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jianjun Shi
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
9
|
Tao Y, Sun L, Liu C, Yang G, Sun X, Zhang Q. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301218. [PMID: 37029697 DOI: 10.1002/smll.202301218] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.
Collapse
Affiliation(s)
- Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Feng Y, Ning X, Wang J, Wen Z, Cao F, You Q, Zou J, Zhou X, Sun T, Cao J, Chen X. Mace-Like Plasmonic Au-Pd Heterostructures Boost Near-Infrared Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204842. [PMID: 36599677 PMCID: PMC9951300 DOI: 10.1002/advs.202204842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Indexed: 05/20/2023]
Abstract
Photoimmunotherapy, with spatiotemporal precision and noninvasive property, has provided a novel targeted therapeutic strategy for highly malignant triple-negative breast cancer (TNBC). However, their therapeutic effect is severely restricted by the insufficient generation of tumor antigens and the weak activation of immune response, which is caused by the limited tissue penetration of light and complex immunosuppressive microenvironment. To improve the outcomes, herein, mace-like plasmonic AuPd heterostructures (Au Pd HSs) have been fabricated to boost near-infrared (NIR) photoimmunotherapy. The plasmonic Au Pd HSs exhibit strong photothermal and photodynamic effects under NIR light irradiation, effectively triggering immunogenic cell death (ICD) to activate the immune response. Meanwhile, the spiky surface of Au Pd HSs can also stimulate the maturation of DCs to present these antigens, amplifying the immune response. Ultimately, combining with anti-programmed death-ligand 1 (α-PD-L1) will further reverse the immunosuppressive microenvironment and enhance the infiltration of cytotoxic T lymphocytes (CTLs), not only eradicating primary TNBC but also completely inhibiting mimetic metastatic TNBC. Overall, the current study opens a new path for the treatment of TNBC through immunotherapy by integrating nanotopology and plasmonic performance.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xin Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| |
Collapse
|
11
|
Mi X, Chen H, Li J, Qiao H. Plasmonic Au-Cu nanostructures: Synthesis and applications. Front Chem 2023; 11:1153936. [PMID: 36970414 PMCID: PMC10030581 DOI: 10.3389/fchem.2023.1153936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Plasmonic Au-Cu nanostructures composed of Au and Cu metals, have demonstrated advantages over their monolithic counterparts, which have recently attracted considerable attention. Au-Cu nanostructures are currently used in various research fields, including catalysis, light harvesting, optoelectronics, and biotechnologies. Herein, recent developments in Au-Cu nanostructures are summarized. The development of three types of Au-Cu nanostructures is reviewed, including alloys, core-shell structures, and Janus structures. Afterwards, we discuss the peculiar plasmonic properties of Au-Cu nanostructures as well as their potential applications. The excellent properties of Au-Cu nanostructures enable applications in catalysis, plasmon-enhanced spectroscopy, photothermal conversion and therapy. Lastly, we present our thoughts on the current status and future prospects of the Au-Cu nanostructures research field. This review is intended to contribute to the development of fabrication strategies and applications relating to Au-Cu nanostructures.
Collapse
Affiliation(s)
- Xiaohu Mi
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area, China
| | - Huan Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
| | - Jinping Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
- *Correspondence: Jinping Li, ; Haifa Qiao,
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, China
- *Correspondence: Jinping Li, ; Haifa Qiao,
| |
Collapse
|
12
|
Du L, Xiong H, Lu H, Yang L, Liao R, Xia BY, You B. Electroshock synthesis of a bifunctional nonprecious multi-element alloy for alkaline hydrogen oxidation and evolution. EXPLORATION (BEIJING, CHINA) 2022; 2:20220024. [PMID: 37324802 PMCID: PMC10190983 DOI: 10.1002/exp.20220024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
The design and production of active, durable, and nonprecious electrocatalysts toward alkaline hydrogen oxidation and evolution reactions (HOR/HER) are extremely appealing for the implementation of hydrogen economy, but remain challenging. Here, we report a facile electric shock synthesis of an efficient, stable, and inexpensive NiCoCuMoW multi-element alloy on Ni foam (NiCoCuMoW) as a bifunctional electrocatalyst for both HOR and HER. For the HOR, the current density of NiCoCuMoW could reach ∼11.2 mA cm-2 when the overpotential is 100 mV, higher than that for commercial Pt/C (∼7.2 mA cm-2) and control alloy samples with less elements, along with superior CO tolerance. Moreover, for the HER, the overpotential at 10 mA cm-2 for NiCoCuMoW is only 21 mV, along with a Tafel slope of low to 63.7 mV dec-1, rivaling the commercial Pt/C as well (35 mV and 109.7 mV dec-1). Density functional theory calculations indicate that alloying Ni, Co, Cu, Mo, and W can tune the electronic structure of individual metals and provide multiple active sites to optimize the hydrogen and hydroxyl intermediates adsorption, collaboratively resulting in enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Lijie Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Li‐Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| |
Collapse
|
13
|
Hossain MN, Choueiri RM, Abner S, Chen LD, Chen A. Electrochemical Reduction of Carbon Dioxide at TiO 2/Au Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51889-51899. [PMID: 36347242 DOI: 10.1021/acsami.2c14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report on the facile synthesis of nanocomposite consisting of TiO2 and Au nanoparticles (NPs) via a tailored galvanic replacement reaction (GRR). The electrocatalytic activity of the synthesized TiO2/Au nanocomposites for CO2 reduction was investigated in an aqueous solution using various electrochemical methods. Our results demonstrated that the TiO2/Au nanocomposites formed through the GRR process exhibited improved catalytic activities for CO2 reduction, while generating more hydrocarbon molecules than the typical formation of CO in contrast to polycrystalline Au. GC analysis and NMR spectroscopy revealed that CO and CH4 were the gas products, whereas HCOO-, CH3COO-, CH3OH, and CH3CH2OH were the liquid products from the CO2 reduction at different cathodic potentials. This remarkable change was further studied using the density functional theory (DFT) calculations, showing that the TiO2/Au nanocomposites may increase the binding energy of the formed ·CO intermediate and reduce the free energy compared to Au, thus favoring the downstream generation of multicarbon products. The TiO2/Au nanocomposites have high catalytic activity and excellent stability and are easy to fabricate, indicating that the developed catalyst has potential application in the electrochemical reduction of CO2 to value-added products.
Collapse
Affiliation(s)
- M Nur Hossain
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Rachelle M Choueiri
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Sharon Abner
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Leanne D Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
Acharya A, Lee IS. Designing plasmonically integrated nanoreactors for efficient catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
15
|
Kim J, Hilal H, Haddadnezhad M, Lee J, Park W, Park W, Lee JW, Jung I, Park S. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS NANO 2022; 16:9214-9221. [PMID: 35446559 DOI: 10.1021/acsnano.2c01543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (i.e., vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core. Those edges were then selectively decorated with Pt, leading to the formation of eight Pt tripods in a single entity. After etching the central Au, 3D Pt tripod frame-faceted octahedral nanoframes were achieved with high integrity. By harnessing the obtained Pt nanoframes as a scaffold, AuAg alloy-based plasmonic all-frame-faceted nanoframes were obtained after the co-reduction of Ag and Au, which generated multiple hot zones within multiple surface intra-nanogaps, creating a single-particle, surface-enhanced Raman spectroscopy enhancer platform.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University. Gwangju 61186, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
16
|
Twinned-Au-tip-induced growth of plasmonic Au-Cu Janus nanojellyfish in upconversion luminescence enhancement. J Colloid Interface Sci 2022; 624:196-203. [PMID: 35660888 DOI: 10.1016/j.jcis.2022.05.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
The metallic Janus nanoparticle is an emerging plasmonic nanostructure that has attracted attention in the fields of materials science and nanophotonics. The instability of the Cu nanostructure leads to very complex nucleation and growth kinetics, and synthesis of Cu Janus nanoparticle has challenges. Here, we report a new method for synthesis of Au-Cu Janus nanojellyfish (JNF) by using twinned tips of Au nanoflower (NF) as seeds. The twinned nanotip of the Au NF and the large lattice mismatch between Au and Cu can induce formation of twin defects during the growth process, resulting in asymmetric deposition of Cu atoms. The symmetry-breaking using different sizes of Au NF and Cu nanodomains within the Au-Cu JNF can controllably change the localized surface plasmon resonance (LSPR) modes. The asymmetric Au-Cu JNF can induce plasmon coupling between dipolar and multipolar modes, which leads to clear electric-field enhancement in the near-infrared region. An Au-Cu JNF with multiple LSPR modes was chosen to simultaneously match the excitation and emission bands of the lanthanide-doped upconversion nanoparticles (UCNPs). A 5000-fold enhancement of the upconversion luminescence was achieved by using single plasmonic Au-Cu JNF. The Au-Cu JNF can also provide a guide for new metallic Janus nanoparticles in the fields of plasmonic, photothermal conversion, and nanomotors.
Collapse
|
17
|
Jiang B, Tian D, Qiu Y, Song X, Zhang Y, Sun X, Huang H, Zhao C, Guo Z, Fan L, Zhang N. High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2021; 14:40. [PMID: 34950984 PMCID: PMC8702595 DOI: 10.1007/s40820-021-00769-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 05/29/2023]
Abstract
Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur (Li-S) batteries. Herein, high-index faceted iron oxide (Fe2O3) nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts, effectively improving the electrochemical performance of Li-S batteries. The theoretical and experimental results all indicate that high-index Fe2O3 crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li2S. The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g-1 at 0.1 C and excellent cycling performance with a low capacity fading of 0.025% per cycle during 1600 cycles at 2 C. Even with a high sulfur loading of 9.41 mg cm-2, a remarkable areal capacity of 7.61 mAh cm-2 was maintained after 85 cycles. This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering, deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry, affording a novel perspective for the design of advanced sulfur electrodes.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Da Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yue Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xueqin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yu Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Huihuang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chenghao Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Zhikun Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Lishuang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Naiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|