1
|
Gerle C, Jiko C, Nakano A, Yokoyama K, Gopalasingam CC, Shigematsu H, Abe K. Human F-ATP synthase as a drug target. Pharmacol Res 2024; 209:107423. [PMID: 39303772 DOI: 10.1016/j.phrs.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention. Further, the technical requirements necessary to allow drug designs that are effective at the multiple levels of functionality and modality of human F-ATP synthase are discussed. The structure-based development of gastric proton pump inhibitors is used to exemplify what might be feasible for human F-ATP synthase. And finally, four structural regions of the human F-ATP synthase are examined as potential sites for the development of structure based drug development.
Collapse
Affiliation(s)
- Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan.
| | - Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Kazuhiro Abe
- Molecular Biochemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Artigas P, Meyer DJ, Young VC, Spontarelli K, Eastman J, Strandquist E, Rui H, Roux B, Birk MA, Nakanishi H, Abe K, Gatto C. A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities. Proc Natl Acad Sci U S A 2023; 120:e2313999120. [PMID: 38079564 PMCID: PMC10756188 DOI: 10.1073/pnas.2313999120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+ in exchange for 2 K+ per hydrolyzed ATP. Artemia express several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopus α1's Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found that Artemia express two salinity-independent canonical α subunits (α1NN and α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KK pump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KK pumps and compared it to that of Xenopus α1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics to Xenopus α1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK's Lys308 helps to maintain high affinity for external K+ when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener 86Rb+, we prove that double-lysine-substituted pumps transport 2Na+ and 1 K+ per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowing Artemia to maintain steeper Na+ gradients in hypersaline environments.
Collapse
Affiliation(s)
- Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Dylan J. Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Victoria C. Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Jessica Eastman
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Evan Strandquist
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Matthew A. Birk
- Department of Biology, Saint Francis University, Loretto, PA15940
| | - Hanayo Nakanishi
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Kazuhiro Abe
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL61790
| |
Collapse
|
3
|
Abe K, Nishizawa T, Artigas P. An unusual conformation from Na +-sensitive non-gastric proton pump mutants reveals molecular mechanisms of cooperative Na +-binding. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119543. [PMID: 37482134 DOI: 10.1016/j.bbamcr.2023.119543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The Na+,K+-ATPase (NKA) and non-gastric H+,K+- ATPase (ngHKA) share ~65 % sequence identity, and nearly identical catalytic cycles. These pumps alternate between inward-facing (E1) and outward-facing (E2) conformations and differ in their exported substrate (Na+ or H+) and stoichiometries (3 Na+:2 K+ or 1 H+:1 K+). We reported that structures of the NKA-mimetic ngHKA mutant K794S/A797P/W940/R949C (SPWC) with 2 K+ occluded in E2-Pi and 3 Na+-bound in E1·ATP states were nearly identical to NKA structures in equivalent states. Here we report the cryo-EM structures of K794A and K794S, two poorly-selective ngHKA mutants, under conditions to stabilize the E1·ATP state. Unexpectedly, the structures show a hybrid with both E1- and E2-like structural features. While transmembrane segments TM1-TM3 and TM4's extracellular half adopted an E2-like conformation, the rest of the protein assumed an E1 configuration. Two spherical densities, likely bound Na+, were observed at cation-binding sites I and III, without density at site II. This explains the E2-like conformation of TM4's exoplasmic half. In NKA, oxygen atoms derived from the unwound portion of TM4 coordinated Na+ at site II. Thus, the lack of Na+ at site II of K794A/S prevents the luminal portion of TM4 from taking an E1-like position. The K794A structure also suggests that incomplete coordination of Na+ at site III induces the halfway rotation of TM6, which impairs Na+-binding at the site II. Thus, our observations provide insight into the molecular mechanism of E2-E1 transition and cooperative Na+-binding in the NKA and other related cation pumps.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; Cellular and Structural Physiology Institute, Nagoya University, Nagoya 464-8601, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Japan.
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Sciences, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Abe K, Ozako M, Inukai M, Matsuyuki Y, Kitayama S, Kanai C, Nagai C, Gopalasingam CC, Gerle C, Shigematsu H, Umekubo N, Yokoshima S, Yoshimori A. Deep learning driven de novo drug design based on gastric proton pump structures. Commun Biol 2023; 6:956. [PMID: 37726448 PMCID: PMC10509173 DOI: 10.1038/s42003-023-05334-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. Here, we exploit the rich structural basis of drug-bound gastric proton pump to develop compounds with strong inhibitory potency, employing a combinatorial approach utilizing deep generative models for de novo drug design with organic synthesis and cryo-EM structural analysis. Candidate compounds that satisfy pharmacophores defined in the drug-bound proton pump structures, were designed in silico utilizing our deep generative models, a workflow termed Deep Quartet. Several candidates were synthesized and screened according to their inhibition potencies in vitro, and their binding poses were in turn identified by cryo-EM. Structures reaching up to 2.10 Å resolution allowed us to evaluate and re-design compound structures, heralding the most potent compound in this study, DQ-18 (N-methyl-4-((2-(benzyloxy)-5-chlorobenzyl)oxy)benzylamine), which shows a Ki value of 47.6 nM. Further high-resolution cryo-EM analysis at 2.08 Å resolution unambiguously determined the DQ-18 binding pose. Our integrated approach offers a framework for structure-based de novo drug development based on the desired pharmacophores within the protein structure.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Mami Ozako
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Miki Inukai
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoe Matsuyuki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Shinnosuke Kitayama
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Chisato Kanai
- INTAGE Healthcare, Inc., 3-5-7, Kawaramachi Chuo-ku, Osaka, 541-0048, Japan
| | - Chiaki Nagai
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | | | - Christoph Gerle
- RIKEN SPring-8 Center, Kouto, Sayo-gun, Hyogo, 679-5148, Japan
| | - Hideki Shigematsu
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Nariyoshi Umekubo
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-0012, Japan.
| |
Collapse
|
5
|
Structure and function of H +/K + pump mutants reveal Na +/K + pump mechanisms. Nat Commun 2022; 13:5270. [PMID: 36085139 PMCID: PMC9463140 DOI: 10.1038/s41467-022-32793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na+ to H+ selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H+/K+ pump, a strict H+-dependent electroneutral P-type ATPase, into a bona fide Na+-dependent electrogenic Na+/K+ pump. Conversion of a H+-dependent primary-active transporter into a Na+-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H+/K+ pump, a suitable drug target to treat cystic fibrosis, and of its Na+/K+ pump-mimicking mutant in two major conformations, providing insight on how Na+ binding drives a concerted mechanism leading to Na+/K+ pump phosphorylation.
Collapse
|
6
|
Guo Y, Zhang Y, Yan R, Huang B, Ye F, Wu L, Chi X, Shi Y, Zhou Q. Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states. Nat Commun 2022; 13:3957. [PMID: 35803952 PMCID: PMC9270386 DOI: 10.1038/s41467-022-31602-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Sodium-Potassium Pump (Na+/K+-ATPase, NKA) is an ion pump that generates an electrochemical gradient of sodium and potassium ions across the plasma membrane by hydrolyzing ATP. During each Post-Albers cycle, NKA exchanges three cytoplasmic sodium ions for two extracellular potassium ions through alternating changes between the E1 and E2 states. Hitherto, several steps remained unknown during the complete working cycle of NKA. Here, we report cryo-electron microscopy (cryo-EM) structures of recombinant human NKA (hNKA) in three distinct states at 2.7–3.2 Å resolution, representing the E1·3Na and E1·3Na·ATP states with cytosolic gates open and the basic E2·[2K] state, respectively. This work provides the insights into the cytoplasmic Na+ entrance pathway and the mechanism of cytoplasmic gate closure coupled with ATP hydrolysis, filling crucial gaps in the structural elucidation of the Post-Albers cycle of NKA. Sodium-Potassium Pump (Na+/K+-ATPase, NKA) generates an electrochemical gradient of sodium and potassium ions across the plasma membrane by hydrolyzing ATP. Here, the authors report structures of human NKA providing insight into the cytoplasmic Na+ entrance and the cytoplasmic gate closure coupled to ATP hydrolysis.
Collapse
Affiliation(s)
- Yingying Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanyuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bangdong Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Fangfei Ye
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Liushu Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ximin Chi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China. .,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
7
|
Tanaka S, Morita M, Yamagishi T, Madapally HV, Hayashida K, Khandelia H, Gerle C, Shigematsu H, Oshima A, Abe K. Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump. J Med Chem 2022; 65:7843-7853. [PMID: 35604136 DOI: 10.1021/acs.jmedchem.2c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As specific inhibitors of the gastric proton pump, responsible for gastric acidification, K+-competitive acid blockers (P-CABs) have recently been utilized in the clinical treatment of gastric acid-related diseases in Asia. However, as these compounds have been developed based on phenotypic screening, their detailed binding poses are unknown. We show crystal and cryo-EM structures of the gastric proton pump in complex with four different P-CABs, tegoprazan, soraprazan, PF-03716556 and revaprazan, at resolutions reaching 2.8 Å. The structures describe molecular details of their interactions and are supported by functional analyses of mutations and molecular dynamics simulations. We reveal that revaprazan has a novel binding mode in which its tetrahydroisoquinoline moiety binds deep in the cation transport conduit. The mechanism of action of these P-CABs can now be evaluated at the molecular level, which will facilitate the rational development and improvement of currently available P-CABs to provide better treatment of acid-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Saki Tanaka
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Mikio Morita
- Discovery Research, RaQualia Pharma Inc., 1-21-19 Meieki Minami, Nakamura, Nagoya 450-0003, Japan.,RaQualia Pharma Industry-Academia Collaborative Research Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuya Yamagishi
- Discovery Research, RaQualia Pharma Inc., 1-21-19 Meieki Minami, Nakamura, Nagoya 450-0003, Japan.,RaQualia Pharma Industry-Academia Collaborative Research Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hridya Valia Madapally
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kenichi Hayashida
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christoph Gerle
- RIKEN SPring-8 Center, Kouto, Sayo-gun, Hyogo 679-5148, Japan.,Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Atsunori Oshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Kazuhiro Abe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|