2
|
Wiesinger M, Stuhlmann F, Bohman M, Micke P, Will C, Yildiz H, Abbass F, Arndt BP, Devlin JA, Erlewein S, Fleck M, Jäger JI, Latacz BM, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Matsuda Y, Mooser A, Quint W, Soter A, Walz J, Smorra C, Ulmer S. Trap-integrated fluorescence detection with silicon photomultipliers for sympathetic laser cooling in a cryogenic Penning trap. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:123202. [PMID: 38109470 DOI: 10.1063/5.0170629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
We present a fluorescence-detection system for laser-cooled 9Be+ ions based on silicon photomultipliers (SiPMs) operated at 4 K and integrated into our cryogenic 1.9 T multi-Penning-trap system. Our approach enables fluorescence detection in a hermetically sealed cryogenic Penning-trap chamber with limited optical access, where state-of-the-art detection using a telescope and photomultipliers at room temperature would be extremely difficult. We characterize the properties of the SiPM in a cryocooler at 4 K, where we measure a dark count rate below 1 s-1 and a detection efficiency of 2.5(3)%. We further discuss the design of our cryogenic fluorescence-detection trap and analyze the performance of our detection system by fluorescence spectroscopy of 9Be+ ion clouds during several runs of our sympathetic laser-cooling experiment.
Collapse
Affiliation(s)
- M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - F Stuhlmann
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - M Bohman
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J A Devlin
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Erlewein
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - J I Jäger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - G Umbrazunas
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - E Wursten
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A Soter
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - C Smorra
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Anderson EK, Baker CJ, Bertsche W, Bhatt NM, Bonomi G, Capra A, Carli I, Cesar CL, Charlton M, Christensen A, Collister R, Cridland Mathad A, Duque Quiceno D, Eriksson S, Evans A, Evetts N, Fabbri S, Fajans J, Ferwerda A, Friesen T, Fujiwara MC, Gill DR, Golino LM, Gomes Gonçalves MB, Grandemange P, Granum P, Hangst JS, Hayden ME, Hodgkinson D, Hunter ED, Isaac CA, Jimenez AJU, Johnson MA, Jones JM, Jones SA, Jonsell S, Khramov A, Madsen N, Martin L, Massacret N, Maxwell D, McKenna JTK, Menary S, Momose T, Mostamand M, Mullan PS, Nauta J, Olchanski K, Oliveira AN, Peszka J, Powell A, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Schoonwater J, Silveira DM, Singh J, Smith G, So C, Stracka S, Stutter G, Tharp TD, Thompson KA, Thompson RI, Thorpe-Woods E, Torkzaban C, Urioni M, Woosaree P, Wurtele JS. Observation of the effect of gravity on the motion of antimatter. Nature 2023; 621:716-722. [PMID: 37758891 PMCID: PMC10533407 DOI: 10.1038/s41586-023-06527-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Einstein's general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac's theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7-10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive 'antigravity' is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.
Collapse
Affiliation(s)
- E K Anderson
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C J Baker
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, UK.
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK.
| | - N M Bhatt
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - G Bonomi
- University of Brescia, Brescia and INFN Pavia, Pavia, Italy
| | - A Capra
- TRIUMF, Vancouver, British Columbia, Canada
| | - I Carli
- TRIUMF, Vancouver, British Columbia, Canada
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Charlton
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - A Christensen
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - R Collister
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Cridland Mathad
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - D Duque Quiceno
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Eriksson
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - A Evans
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - S Fabbri
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Accelerator and Technology Sector, CERN, Geneva, Switzerland
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
| | - A Ferwerda
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - T Friesen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | | | - D R Gill
- TRIUMF, Vancouver, British Columbia, Canada
| | - L M Golino
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - M B Gomes Gonçalves
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - P Granum
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Hodgkinson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - E D Hunter
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - C A Isaac
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - J M Jones
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - S A Jones
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - S Jonsell
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - A Khramov
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | - N Madsen
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - L Martin
- TRIUMF, Vancouver, British Columbia, Canada
| | | | - D Maxwell
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - J T K McKenna
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - S Menary
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - T Momose
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Mostamand
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - P S Mullan
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Institute for Particle Physics and Astrophysics, ETH, Zurich, Switzerland
| | - J Nauta
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | | | - A N Oliveira
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - J Peszka
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Institute for Particle Physics and Astrophysics, ETH, Zurich, Switzerland
| | - A Powell
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - C Ø Rasmussen
- Experimental Physics Department, CERN, Geneva, Switzerland
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sameed
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Accelerator Systems Department, CERN, Geneva, Switzerland
| | - E Sarid
- Soreq NRC, Yavne, Israel
- Department of Physics, Ben Gurion University, Beer Sheva, Israel
| | - J Schoonwater
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Singh
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - G Smith
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - C So
- TRIUMF, Vancouver, British Columbia, Canada
| | | | - G Stutter
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, UK
| | - T D Tharp
- Physics Department, Marquette University, Milwaukee, WI, USA
| | - K A Thompson
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - R I Thompson
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - E Thorpe-Woods
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - C Torkzaban
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - M Urioni
- University of Brescia, Brescia and INFN Pavia, Pavia, Italy
| | - P Woosaree
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|