1
|
Yang X, Prakash M, Brumley DR. Escape motility of multicellular magnetotactic prokaryotes. J R Soc Interface 2024; 21:20240310. [PMID: 39410817 PMCID: PMC11480751 DOI: 10.1098/rsif.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Microorganisms often actively respond to multiple external stimuli to navigate toward their preferred niches. For example, unicellular magnetotactic bacteria integrate both oxygen sensory information and the Earth's geomagnetic field to help them locate anoxic conditions in a process known as magneto-aerotaxis. However, for multicellular magnetotactic prokaryotes (MMPs), the colonial structure of 4-16 cells places fundamental constraints on collective sensing, colony motility and directed swimming. To investigate how colonies navigate environments with multiple stimuli, we performed microfluidic experiments of MMPs with opposing magnetic fields and oxygen gradients. These experiments reveal unusual back-and-forth excursions called 'escape motility', in which colonies shuttle along magnetic field lines, punctuated by abrupt-yet highly coordinated-changes in collective ciliary beating. Through cell tracking and numerical simulations, we demonstrate that escape motility can arise through a simple magneto-aerotaxis mechanism, which includes the effect of magnetic torques and chemical sensing. At sufficiently high densities of MMPs, we observe the formation of dynamic crystal structures, whose stability is governed by the magnetic field strength and near-field hydrodynamic interactions. The results shed light on how some of the earliest multicellular organisms navigate complex physico-chemical landscapes.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Manu Prakash
- Department of Bioengineering, Biology and Oceans, Stanford University, Stanford, CA, USA
| | - Douglas R. Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
2
|
Keogh RR, Kozhukhov T, Thijssen K, Shendruk TN. Active Darcy's Law. PHYSICAL REVIEW LETTERS 2024; 132:188301. [PMID: 38759204 DOI: 10.1103/physrevlett.132.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
While bacterial swarms can exhibit active turbulence in vacant spaces, they naturally inhabit crowded environments. We numerically show that driving disorderly active fluids through porous media enhances Darcy's law. While purely active flows average to zero flux, hybrid active/driven flows display greater drift than purely pressure-driven flows. This enhancement is nonmonotonic with activity, leading to an optimal activity to maximize flow rate. We incorporate the active contribution into an active Darcy's law, which may serve to help understand anomalous transport of swarming in porous media.
Collapse
Affiliation(s)
- Ryan R Keogh
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Timofey Kozhukhov
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Kristian Thijssen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
3
|
Wu T, Chen Y, Yang Z. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170349. [PMID: 38280576 DOI: 10.1016/j.scitotenv.2024.170349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Understanding the mechanisms of colloid transport and retention as well as the spatial distribution of colloids in porous media is an important topic for contamination transport and remediation in subsurface environments. Utilizing advanced three-dimensional visualization experiments, we effectively capture the intricate distribution characteristics of colloids in the 3D pore space and quantify the size of colloid clusters that aggregate at fluid-fluid interfaces and solid surfaces during two-phase flow. Our experimental results reveal the influence of pore-scale events, such as Haines jumps and pinch-off, on colloid retention. Our results also indicate that large drainage rates can facilitate colloid retention on solid surfaces, especially under the condition of high ionic strength. This can be attributed to the migration of colloids from the fluid-fluid interface to the solid surface, propelled by transients in the local fluid structure. The findings reveal a synergistic effect of the ionic strength and hydrodynamic conditions on colloid transport and retention during two-phase flow and provide important insights for predicting the fate and transport of contaminants in soil and groundwater environments involving multiple fluid phases.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yurun Chen
- Wuhan Britain-China School, Wuhan 430033, China
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Théry A, Chamolly A, Lauga E. Controlling Confined Collective Organization with Taxis. PHYSICAL REVIEW LETTERS 2024; 132:108301. [PMID: 38518318 DOI: 10.1103/physrevlett.132.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Biased locomotion is a common feature of microorganisms, but little is known about its impact on self-organization. Inspired by recent experiments showing a transition to large-scale flows, we study theoretically the dynamics of magnetotactic bacteria confined to a drop. We reveal two symmetry-breaking mechanisms (one local chiral and one global achiral) leading to self-organization into global vortices and a net torque exerted on the drop. The collective behavior is ultimately controlled by the swimmers' microscopic chirality and, strikingly, the system can exhibit oscillations and memorylike features.
Collapse
Affiliation(s)
- Albane Théry
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alexander Chamolly
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, F-75015 Paris, France
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
5
|
Petroff AP, McDonough S. Trapping and scattering of a multiflagellated bacterium by a hard surface. Phys Rev E 2024; 109:034403. [PMID: 38632722 DOI: 10.1103/physreve.109.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Thiovulum majus, which is one of the fastest known bacteria, swims using hundreds of flagella. Unlike typical pusher cells, which swim in circular paths over hard surfaces, T. majus localize near hard boundaries by turning their flagella to exert a net force normal to the surface. To probe the torques that stabilize this hydrodynamically bound state, the trajectories of several thousand collisions between a T. majus cell and a wall of a quasi-two-dimensional microfluidic chamber are analyzed. Measuring the fraction of cells escaping the wall either to the left or to the right of the point of contact-and how this probability varies with incident angle and time spent in contact with the surface-maps the scattering dynamics onto a first passage problem. These measurements are compared to the prediction of a Fokker-Planck equation to fit the angular velocity of a cell in contact with a hard surface. This analysis reveals a bound state with a narrow basin of attraction in which cells orient their flagella normal to the surface. The escape angle predicted by matching these near field dynamics with the far-field hydrodynamics is consistent with observation. We discuss the significance of these results for the ecology of T. majus and their self-organization into active chiral crystals.
Collapse
Affiliation(s)
- Alexander P Petroff
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | - Schuyler McDonough
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| |
Collapse
|
6
|
Loewe B, Kozhukhov T, Shendruk TN. Anisotropic run-and-tumble-turn dynamics. SOFT MATTER 2024; 20:1133-1150. [PMID: 38226730 PMCID: PMC10828927 DOI: 10.1039/d3sm00589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Run-and-tumble processes successfully model several living systems. While studies have typically focused on particles with isotropic tumbles, recent examples exhibit "tumble-turns", in which particles undergo 90° tumbles and so possess explicitly anisotropic dynamics. We study the consequences of such tumble-turn anisotropicity at both short and long-time scales. We model run-and-tumble-turn particles as self-propelled particles subjected to an angular potential that favors directions of movement parallel to Cartesian axes. Using agent-based simulations, we study the effects of the interplay between rotational diffusion and an aligning potential on the particles' trajectories, which leads to the right-angled turns. We demonstrate that the long-time effect is to alter the tumble-turn time, which governs the long-time dynamics. In particular, when normalized by this timescale, trajectories become independent of the underlying details of the potential. As such, we develop a simplified continuum theory, which quantitatively agrees with agent-based simulations. We find that the purely diffusive hydrodynamic limit still exhibits anisotropic features at intermediate times and conclude that the transition to diffusive dynamics precedes the transition to isotropic dynamics. By considering short-range repulsive and alignment particle-particle interactions, we show how the anisotropic features of a single particle are inherited by the global order of the system. We hope this work will shed light on how active systems can extend local anisotropic properties to macroscopic scales, which might be important in biological processes occurring in anisotropic environments.
Collapse
Affiliation(s)
- Benjamin Loewe
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Timofey Kozhukhov
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| |
Collapse
|
7
|
Ishikawa T, Pedley TJ. 50-year history and perspective on biomechanics of swimming microorganisms: Part II. Collective behaviours. J Biomech 2023; 160:111802. [PMID: 37778279 DOI: 10.1016/j.jbiomech.2023.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The paired review papers in Parts I and II describe the 50-year history of research on the biomechanics of swimming microorganisms and its prospects in the next 50 years. Parts I and II are divided not by the period covered, but by the content of the research: Part I explains the behaviours of individual microorganisms, and Part II explains collective behaviour. In the 1990s, the description of microbial suspensions as a continuum progressed, and macroscopic flow structures such as bioconvection were analysed. The continuum model was later extended to analyse various phenomena such as flow induced trapping of microorganisms and accumulation of cells at interfaces. In the 2000s, the collective behaviour of swimming microorganisms came into the limelight, and physicists as well as biomechanics researchers carried out many studies probing microorganism collectivity. In particular, research on the turbulence-like flow structure of dense bacterial suspensions has led to dramatic developments in the field of microbial biomechanics. Efforts to bridge the cellular scale to the macroscopic scale by extracting macroscopic physical quantities from the microstructure of cell suspensions are also underway. This Part II reviews these collective behaviours of swimming microorganisms and discusses future prospects of the field.
Collapse
Affiliation(s)
- Takuji Ishikawa
- Department of Biomedical Engineering, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - T J Pedley
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
8
|
Bradley B, Gomez-Cruz J, Escobedo C. Integrated Microfluidic-Electromagnetic System to Probe Single-Cell Magnetotaxis in Microconfinement. Bioengineering (Basel) 2023; 10:1034. [PMID: 37760136 PMCID: PMC10525280 DOI: 10.3390/bioengineering10091034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetotactic bacteria have great potential for use in biomedical and environmental applications due to the ability to direct their navigation with a magnetic field. Applying and accurately controlling a magnetic field within a microscopic region during bacterial magnetotaxis studies at the single-cell level is challenging due to bulky microscope components and the inherent curvilinear field lines produced by commonly used bar magnets. In this paper, a system that integrates microfluidics and electromagnetic coils is presented for generating a linear magnetic field within a microenvironment compatible with microfluidics, enabling magnetotaxis analysis of groups or single microorganisms on-chip. The platform, designed and optimised via finite element analysis, is integrated into an inverted fluorescent microscope, enabling visualisation of bacteria at the single-cell level in microfluidic devices. The electromagnetic coils produce a linear magnetic field throughout a central volume where the microfluidic device containing the magnetotactic bacteria is located. The magnetic field, at this central position, can be accurately controlled from 1 to 10 mT, which is suitable for directing the navigation of magnetotactic bacteria. Potential heating of the microfluidic device from the operating coils was evaluated up to 2.5 A, corresponding to a magnetic field of 7.8 mT, for 10 min. The maximum measured heating was 8.4 °C, which enables analysis without altering the magnetotaxis behaviour or the average swimming speed of the bacteria. Altogether, this work provides a design, characterisation and experimental test of an integrated platform that enables the study of individual bacteria confined in microfluidics, under linear and predictable magnetic fields that can be easily and accurately applied and controlled.
Collapse
Affiliation(s)
| | | | - Carlos Escobedo
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
9
|
Torrenegra-Rico JD, Arango-Restrepo A, Rubi JM. Optimal transport of active particles induced by substrate concentration oscillations. Phys Rev E 2023; 108:014134. [PMID: 37583193 DOI: 10.1103/physreve.108.014134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
We show the existence of a stochastic resonant regime in the transport of active colloidal particles under confinement. The periodic addition of substrate to the system causes the spectral amplification to exhibit a maximum for an optimal noise level value. The consequence of this is that particles can travel longer distances with lower fuel consumption. The stochastic resonance phenomenon found allows the identification of optimal scenarios for the transport of active particles, enabling them to reach regions that are otherwise difficult to access, and may therefore find applications in transport in cell membranes and tissues for medical treatments and soil remediation.
Collapse
Affiliation(s)
- J D Torrenegra-Rico
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | - A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Kim H, Kang Y, Lim B, Kim K, Yoon J, Ali A, Torati SR, Kim C. Tailoring matter orbitals mediated using a nanoscale topographic interface for versatile colloidal current devices. MATERIALS HORIZONS 2022; 9:2353-2363. [PMID: 35792087 DOI: 10.1039/d2mh00523a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.
Collapse
Affiliation(s)
- Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
11
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
12
|
Schiavi A, Fiume E, Orlygsson G, Schwentenwein M, Verné E, Baino F. High-reliability data processing and calculation of microstructural parameters in hydroxyapatite scaffolds produced by vat photopolymerization. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Aranson IS, Pikovsky A. Confinement and Collective Escape of Active Particles. PHYSICAL REVIEW LETTERS 2022; 128:108001. [PMID: 35333075 DOI: 10.1103/physrevlett.128.108001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Active matter broadly covers the dynamics of self-propelled particles. While the onset of collective behavior in homogenous active systems is relatively well understood, the effect of inhomogeneities such as obstacles and traps lacks overall clarity. Here, we study how interacting, self-propelled particles become trapped and released from a trap. We have found that captured particles aggregate into an orbiting condensate with a crystalline structure. As more particles are added, the trapped condensates escape as a whole. Our results shed light on the effects of confinement and quenched disorder in active matter.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Penn State University, University Park, Pennsylvania 16802, USA
| | - Arkady Pikovsky
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod, Russia
| |
Collapse
|