1
|
Ortega DE, Cortés-Arriagada D. Unraveling the Reactivity of SiO 2-Supported Nickel Catalyst in Ethylene Copolymerization with Polar Monomers: A Theoretical Study. Polymers (Basel) 2025; 17:1268. [PMID: 40363052 PMCID: PMC12073392 DOI: 10.3390/polym17091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding the catalytic behavior of heterogeneous systems for the copolymerization of ethylene with polar monomers is essential for developing advanced functional polyolefins. In this study, we conducted a quantum chemical investigation of the SiO2-supported Ni-allyl-α-imine ketone catalyst (Ni-OH@SiO2) to uncover the factors governing monomer insertion, selectivity, and reactivity. Using DFT calculations and energy decomposition analysis (ALMO-EDA), we evaluated the coordination and insertion of six industrially relevant polar monomers, comparing their behavior to ethylene homopolymerization. Our results show that special polar monomers (SPMs) with aliphatic spacers, such as vinyltrimethoxysilane (vTMS) and 5-hexenyl acetate (AMA), exhibit favorable insertion profiles due to enhanced electrostatic and orbital interactions with minimal steric hindrance. In contrast, fundamental polar monomers (FPMs), including methyl acrylate (MA) and vinyl chloride (vCl), show higher activation barriers and increased Pauli repulsion due to strong electron-withdrawing effects and conjugation with the vinyl group. AMA displayed the lowest activation barrier (7.4 kcal/mol) and highest insertion thermodynamic stability (-17.6 kcal/mol). These findings provide molecular-level insight into insertion mechanisms and comonomer selectivity in Ni-allyl catalysts supported on silica, extending experimental understanding. This work establishes key structure-reactivity relationships and offers design principles for developing efficient Ni-based heterogeneous catalysts for polar monomer copolymerization.
Collapse
Affiliation(s)
- Daniela E. Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| |
Collapse
|
2
|
Yu SY, Wang XY, Sun XL, Gao Y, Zhao Y, Ning XS, Ji G, Lu Y, Yang J, Liu ZP, Tang Y. Cyano-functionalized polyethylenes from ethylene/acrylamide copolymerization. Nat Commun 2025; 16:2461. [PMID: 40074757 PMCID: PMC11903888 DOI: 10.1038/s41467-025-57489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Synthesizing functionalized polyethylenes via ethylene coordination copolymerization with fundamental low-cost vinyl polar monomers provides a very attractive approach. However, it is also very challenging as the functional group (FG) to be introduced onto the polyolefin chain is directly derived from the corresponding vinyl polar monomers (CH2 = CH-FG), which often cause catalyst poisoning due to the FG coordination to active metal center and β-X elimination during catalysis, etc. It is especially true for the synthesis of cyano-functionalized polyethylenes (PEs) via ethylene/acrylonitrile copolymerization, which can only rely on Pd catalysis with low activity. Here we present an approach utilizing binuclear Ni catalysis for ethylene/acrylamide copolymerization and the synthesis of cyano-functionalized PEs (>99%) with great activity up to 4.1 × 106 g/(mol cat·h). Extensive polymer characterizations (NMR, GPC, model experiments, etc) confirm significant chain transfer and the conversion of amide to nitrile during catalysis. Mechanistic investigations, including comprehensive control experiments, deuterium labeling and computational studies, support an isomerization-mediated chain transfer polymerization (ICTP) mechanistic pathway, which include tandem acrylamide enchainment, amido group conversion into CN group, and active catalyst regeneration by Et2AlCl. Catalyst poisoning could be largely circumvented by this catalyst system.
Collapse
Affiliation(s)
- Shu-Yang Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yanshan Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Yanan Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao-Shan Ning
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gang Ji
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Lu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Pan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Song S, Wang S, Wang Z, Sun H, Wang X, Zhu C. Switchable Radical Polymerization of α-Olefins via Remote Hydrogen Atom or Group Transfer for Enhanced Battery Performance. Angew Chem Int Ed Engl 2025; 64:e202418350. [PMID: 39620314 DOI: 10.1002/anie.202418350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 12/14/2024]
Abstract
Introducing polar groups into non-polar polyolefins can significantly enhance the important properties of materials. However, producing polyolefin backbones consisting of polar blocks remains elusive, due to the substantial difference of reactivity ratios between polar and non-polar olefin monomers in radical polymerization or the poisoning of transition-metal catalysts by polar groups in coordination polymerization. Herein we present a practical way for the preparation of polyethylene-based polymers with distinct polar groups by radical polymerization of α-olefins. A strategy of switchable remote hydrogen atom or group transfer is devised, leading to a diverse range of AAB or ABC sequence-defined carbon-chain polyolefins. The utility of these polymers is demonstrated by using poly(ethyl 2-cyanohept-6-enoate) (P2) as an interphase layer material in anode-free Li metal battery, which effectively improves the cycling stability of the battery and indicates its potential in energy storage applications.
Collapse
Affiliation(s)
- Silin Song
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ziqiang Wang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xianjin Wang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Gao Z, Tian J, Han Y, Liu S, Li Z. Zirconium and Hafnium Complexes Bearing Tridentate ONN-Ligands: Extremely High Activity toward Ethylene (Co)Polymerization. Inorg Chem 2024; 63:18137-18145. [PMID: 39287224 DOI: 10.1021/acs.inorgchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The pursuit of high-performance catalysts in the realm of polyolefins is a constant goal. In this study, a range of zirconium (1-ZrCl3, 2-ZrCl3, 3-ZrCl4, 12-Zr) and hafnium (1-HfCl3, 12-Hf) complexes featuring phenoxy-imine-amine ONN-ligands (2,6-R2-C6H3-NH-C6H4-N═CH-C6H2-3,5-tBu2-OH; 1-L: R = H; 2-L: R = F; 3-L: R = iPr) were synthesized and characterized using NMR spectroscopy, as well as single-crystal X-ray diffraction for 2-ZrCl3, 3-ZrCl4, and 12-Zr. These Zr and Hf complexes exhibited remarkable efficiency for ethylene homopolymerization and copolymerization with 1-octene when paired with MAO as the cocatalyst. Notably, the Zr complexes outperformed the Hf complexes with the same ligand, underscoring the substantial impact of the metal center on catalytic performance. The substituents and coordination modes of the ligands also exerted significant influence on the catalytic behavior, affecting both the activity and properties of the resulting polymers. Particularly noteworthy was the exceptional activity of 1-ZrCl3, achieving activity as high as 6.30 × 108 g(PE)·mol-1(Zr)·h-1 for ethylene homopolymerization and generating bi- or multimodal distribution polyethylene. The activation of 1-ZrCl3 by 5 or 20 equiv of d-MAO afforded a dinuclear Zr complex bridged by two chlorides (μ-Cl2-(1-ZrCl2)2), which was analyzed and confirmed by in situ 1H NMR spectroscopy and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhihao Gao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxia Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Ajmal S, Kumar A, Mushtaq MA, Tabish M, Zhao Y, Zhang W, Khan AS, Saad A, Yasin G, Zhao W. Uniting Synergistic Effect of Single-Ni Site and Electric Field of B- Bridged-N for Boosted Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310082. [PMID: 38470193 DOI: 10.1002/smll.202310082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Electrochemical conversion of nitrate, a prevalent water pollutant, to ammonia (NH3) is a delocalized and green path for NH3 production. Despite the existence of different nitrate reduction pathways, selectively directing the reaction pathway on the road to NH3 is now hindered by the absence of efficient catalysts. Single-atom catalysts (SACs) are extensively investigated in a wide range of catalytic processes. However, their application in electrocatalytic nitrate reduction reaction (NO3 -RR) to NH3 is infrequent, mostly due to their pronounced inclination toward hydrogen evolution reaction (HER). Here, Ni single atoms on the electrochemically active carrier boron, nitrogen doped-graphene (BNG) matrix to modulate the atomic coordination structure through a boron-spanning strategy to enhance the performance of NO3 -RR is designed. Density functional theory (DFT) study proposes that BNG supports with ionic characteristics, offer a surplus electric field effect as compared to N-doped graphene, which can ease the nitrate adsorption. Consistent with the theoretical studies, the as-obtained NiSA@BNG shows higher catalytic activity with a maximal NH3 yield rate of 168 µg h-1 cm-2 along with Faradaic efficiency of 95% and promising electrochemical stability. This study reveals novel ways to rationally fabricate SACs' atomic coordination structure with tunable electronic properties to enhance electrocatalytic performance.
Collapse
Affiliation(s)
- Saira Ajmal
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Muhammad Asim Mushtaq
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Mohammad Tabish
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yulin Zhao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenbin Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Abdul Sammed Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ali Saad
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C, 8000, Denmark
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wei Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
6
|
Lu B, Takahashi K, Zhou J, Nakagawa S, Yamamoto Y, Katashima T, Yoshie N, Nozaki K. Mild Catalytic Degradation of Crystalline Polyethylene Units in a Solid State Assisted by Carboxylic Acid Groups. J Am Chem Soc 2024; 146:19599-19608. [PMID: 38952064 DOI: 10.1021/jacs.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuta Yamamoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Wang Y, Lai J, Gao R, Gou Q, Li B, Zheng G, Zhang R, Yue Q, Song Z, Guo Z. Recent Advances in Nickel Catalysts with Industrial Exploitability for Copolymerization of Ethylene with Polar Monomers. Polymers (Basel) 2024; 16:1676. [PMID: 38932025 PMCID: PMC11207433 DOI: 10.3390/polym16121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The direct copolymerization of ethylene with polar monomers to produce functional polyolefins continues to be highly appealing due to its simple operation process and controllable product microstructure. Low-cost nickel catalysts have been extensively utilized in academia for the synthesis of polar polyethylenes. However, the development of high-temperature copolymerization catalysts suitable for industrial production conditions remains a significant challenge. Classified by the resultant copolymers, this review provides a comprehensive summary of the research progress in nickel complex catalyzed ethylene-polar monomer copolymerization at elevated temperatures in the past five years. The polymerization results of ethylene-methyl acrylate copolymers, ethylene-tert-butyl acrylate copolymers, ethylene-other fundamental polar monomer copolymers, and ethylene-special polar monomer copolymers are thoroughly summarized. The involved nickel catalysts include the phosphine-phenolate type, bisphosphine-monoxide type, phosphine-carbonyl type, phosphine-benzenamine type, and the phosphine-enolate type. The effective modulation of catalytic activity, molecular weight, molecular weight distribution, melting point, and polar monomer incorporation ratio by these catalysts is concluded and discussed. It reveals that the optimization of the catalyst system is mainly achieved through the methods of catalyst structure rational design, extra additive introduction, and single-site catalyst heterogenization. As a result, some outstanding catalysts are capable of producing polar polyethylenes that closely resemble commercial products. To achieve industrialization, it is essential to further emphasize the fundamental science of high-temperature copolymerization systems and the application performance of resultant polar polyethylenes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| | | | | | | | | | | | | | | | | | - Zifang Guo
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| |
Collapse
|
8
|
Fang XY, Qin L, Liu J, Shi H, Sun XL, Kuang X, Gao Y, Tang Y. Synthesis and characterization of oxazoline-amine zirconium complexes for ethylene homo- and co-polymerization catalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Xia Y, Yue X, Sun Y, Zhang C, Zhang X. Chemically Recyclable Polyethylene-like Sulfur-Containing Plastics from Sustainable Feedstocks. Angew Chem Int Ed Engl 2023; 62:e202219251. [PMID: 36737409 DOI: 10.1002/anie.202219251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
The green revolution in plastics should be accelerated due to growing sustainability concerns. Here, we develop a series of chemically recyclable polymers from the first reported cascade polymerization of H2 O, COS, and diacrylates. In addition to abundant feedstocks, the method is efficient and air-tolerant, uses common organic bases as catalysts, and yields polymers with high molecular weights under mild conditions. Such polymers, structurally like polyethylene with low-density in-chain polar groups, manifest impressive toughness and ductility comparable to high-density polyethylene. The in-chain ester group acts as a breaking point, enabling these polymers to undergo chemical recycling through two loops. The structures and properties of these polymers also have an immeasurably expanded range owing to the versatility of our method. The readily available raw materials, facile synthesis, and high performance make these polymers promising prospects as sustainable materials in practice.
Collapse
Affiliation(s)
- Yanni Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinchen Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310027, China
| |
Collapse
|
10
|
Wang YB, Nan C, Zhuo W, Zou C, Jiang H, Hao XQ, Chen C, Song MP. Amine-Imine Nickel Catalysts with Pendant O-Donor Groups for Ethylene (Co)Polymerization. Inorg Chem 2023; 62:5105-5113. [PMID: 36933227 DOI: 10.1021/acs.inorgchem.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenlong Nan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Weize Zhuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
11
|
Zou C, Wang Q, Si G, Chen C. A co-anchoring strategy for the synthesis of polar bimodal polyethylene. Nat Commun 2023; 14:1442. [PMID: 36922533 PMCID: PMC10017819 DOI: 10.1038/s41467-023-37152-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Since polar groups can poison the metal centers in catalysts, the incorporation of polar comonomers usually comes at the expense of catalytic activity and polymer molecular weight. In this contribution, we demonstrate polar bimodal polyethylene as a potential solution to this trade-off. The more-polar/more-branched low-molecular-weight fraction provides polarity and processability, while the less-polar/less-branched high-molecular-weight fraction provides mechanical and melt properties. To achieve high miscibility between these two fractions, three synthetic routes are investigated: mixtures of homogeneous catalysts, separately supported heterogeneous catalysts, and a co-anchoring strategy (CAS) to heterogenize different homogeneous catalysts on one solid support. The CAS route is the only viable strategy for the synthesis of polar bimodal polyethylene with good molecular level entanglement and minimal phase separation. This produces polyolefin materials with excellent mechanical properties, surface/dyeing properties, gas barrier properties, as well as extrudability and 3D-printability.
Collapse
Affiliation(s)
- Chen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Quan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Guifu Si
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Changle Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
12
|
Yu J, Zhang D, Wang Q. Rigid Triptycene-Based Di- and Trinuclear Salicylaldiminato Nickel Cooperative Polymerization Catalysts. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Jueqin Yu
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| | - Dao Zhang
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| | - Quanrui Wang
- Department of Chemistry, Fudan University, 200438 Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Xue M, Luo Y, Ren S, Li T, You Q, Xie G. Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes for ethylene (co)polymerization. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
C3-symmetric tripalladium(II) complex for catalysis via geometrical coincident interaction with C3-symmetric substrate. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Zhang S, Cao C, Guo W, Zhang Y, Sun M, Yang W, He L, Huang Q. Prominent Spatial Structure and Synergistic Linkage Effects in Bimetallic Titanium Olefin Polymerization Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shaomeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunpeng Cao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wensi Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Min Sun
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Sinopec, Beijing100083, China
| | - Wei Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qigu Huang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
16
|
Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: A crucial aspect from laboratory to industrialization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
18
|
Tian J, Feng W, Liu S, Li Z. Titanium Complexes Bearing
NNO‐Tridentate
Ligands: Highly Active Olefin Polymerization Catalysts with Great Control on Molecular Weight and Distribution. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenzheng Feng
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
19
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
20
|
Jasinska-Walc L, Bouyahyi M, Duchateau R. Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications. Acc Chem Res 2022; 55:1985-1996. [PMID: 35849758 DOI: 10.1021/acs.accounts.2c00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusPolymers play a crucial role in our modern life as no other material exists that is so versatile, moldable, and lightweight. Consequently, the demand for polymers will continue to grow with the human population, modernization, and technological developments. However, depleted fossil resources, increasing plastic waste production, ocean pollution, and related growing emission of greenhouse gases has led to a change in the way we think about the use of polymers. Although polymers were never designed to be recycled, it is clear that a linear polymers economy is no longer sustainable. The design for recycling and reuse and life-cycle analyses will become increasingly important factors when deciding on which polymer to choose for a certain application. Of all polymers, polyolefins have the lowest life-cycle environmental impact and even outperform renewable polymers. However, polyolefins are chemically inert and reveal a low surface energy. Combining their excellent mechanical properties with the ability to adhere to other materials or create self-assembled or nanostructured materials would widen the application window of polyolefins even more.This Account covers part of our personal account in the field of functionalized polyolefin synthesis and their application development. We start with addressing the challenge of finding suitable catalysts that tolerate nucleophilic functionalities, which tends to poison most electrophilic catalysts even when passivated with, for example, an aluminum alkyl. We argued that lowering of the oxidation state of a titanium-based catalyst might lower the electrophilicity of the metal center. Indeed, this simple approach resulted in an unprecedentedly high tolerance toward aluminum alkyl-passivated alkenols during their copolymerization with ethylene. Interestingly, catalyst deactivation was much less pronounced during the copolymerization of propylene and aluminum-passivated alkenols, clearly demonstrating the protective effect of the methyl branch in the growing polymer. Because the use of randomly functionalized polypropylenes is rather underdeveloped, as compared to the corresponding randomly functionalized polyethylenes, we focused on potential applications of the former material. Atactic or low-crystalline hydroxyl- and carboxylic acid-functionalized propylene-based co- and terpolymers form elastomers with interesting properties that can be influenced by enhancing the hydrogen bonding within the system or by creating ionomers. The polar functionalities cluster together in domains that can host small polar molecules such as, for example, a pH indicator, thus affording useful sensors. The functionalized polyolefins can also be used as precursors for amphiphilic graft copolymers, undergoing self-assembly and therefore being suitable for nanoporous membrane preparation. The graft copolymers also proved to be effective compatibilizers in various polymer blends.
Collapse
Affiliation(s)
- Lidia Jasinska-Walc
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Miloud Bouyahyi
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Rob Duchateau
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands.,Chemical Product Engineering, Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Wang C, Kang X, Mu H, Jian Z. Positive Effect of Polar Solvents in Olefin Polymerization Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Chen M, Chen C. Nickel catalysts for the preparation of functionalized polyolefin materials. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Du W, Zheng H, Li Y, Cheung CS, Li D, Gao H, Deng H, Gao H. Neutral Tridentate α-Sulfonato-β-diimine Nickel Catalyst for (Co)polymerizations of Ethylene and Acrylates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Zou C, Si G, Chen C. A general strategy for heterogenizing olefin polymerization catalysts and the synthesis of polyolefins and composites. Nat Commun 2022; 13:1954. [PMID: 35414067 PMCID: PMC9005542 DOI: 10.1038/s41467-022-29533-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
The heterogenization of homogeneous metal complexes on solid supports presents an efficient strategy for bridging homogeneous catalysts with industrially-preferred heterogeneous catalysts; however, a series of drawbacks restrict their implementation in olefin polymerization, particularly for copolymerization with polar comonomers. In this contribution, we report an ionic anchoring strategy that is highly versatile, generally applicable to different systems, and enables strong catalyst-support interactions while tolerating various polar functional groups. In addition to greatly enhanced polymerization properties, the supported catalysts achieved higher comonomer incorporation than their unsupported counterparts. This strategy enabled efficient polymerization at high temperatures at large scale and great control over product morphology, and the facile synthesis of polyolefin composites. More importantly, the dispersion of different fillers in the polyolefin matrix produced great material properties even at low composite loadings. It is expected that this strategy will find applications in different catalytic systems and the synthesis of advanced engineering materials.
Collapse
Affiliation(s)
- Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guifu Si
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
25
|
Li K, Mu H, Kang X, Jian Z. Suppression of Chain Transfer and Promotion of Chain Propagation in Neutral Anilinotropone Nickel Polymerization Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals. INORGANICS 2022. [DOI: 10.3390/inorganics10020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers, and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl, carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that significantly affect the poisoning effect have been proposed on the basis of the multiple linear regression model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as the metal-X distance in the σ-coordination structure. It is expected that these models could guide the development of efficient catalytic copolymerization system in this field.
Collapse
|
27
|
Tan C, Zou C, Chen C. An Ionic Cluster Strategy for Performance Improvements and Product Morphology Control in Metal-Catalyzed Olefin–Polar Monomer Copolymerization. J Am Chem Soc 2022; 144:2245-2254. [DOI: 10.1021/jacs.1c11817] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|