1
|
Seiferth D, Biggin PC. Exploring the influence of pore shape on conductance and permeation. Biophys J 2024; 123:3107-3119. [PMID: 38973159 PMCID: PMC11427812 DOI: 10.1016/j.bpj.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024] Open
Abstract
There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1βB glycine and α4β2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.
Collapse
Affiliation(s)
- David Seiferth
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom; Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
García-Ávila M, Tello-Marmolejo J, Rosenbaum T, Islas LD. Permeant cations modulate pore dynamics and gating of TRPV1 ion channels. J Gen Physiol 2024; 156:e202313422. [PMID: 38055192 PMCID: PMC10760480 DOI: 10.1085/jgp.202313422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The transient receptor vanilloid 1 (TRPV1) is a non-selective ion channel, which is activated by several chemical ligands and heat. We have previously shown that activation of TRPV1 by different ligands results in single-channel openings with different conductance, suggesting that the selectivity filter is highly dynamic. TRPV1 is weakly voltage dependent; here, we sought to explore whether the permeation of different monovalent ions could influence the voltage dependence of this ion channel. By using single-channel recordings, we show that TRPV1 channels undergo rapid transitions to closed states that are directly connected to the open state, which may result from structural fluctuations of their selectivity filter. Moreover, we demonstrate that the rates of these transitions are influenced by the permeant ion, suggesting that ion permeation regulates the voltage dependence of these channels. Our data could be the basis for more detailed MD simulations exploring the permeation mechanism and how the occupancy of different ions alters the three-dimensional structure of the pore of TRPV1 channels.
Collapse
Affiliation(s)
- Miriam García-Ávila
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Javier Tello-Marmolejo
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - León D. Islas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Kopec W, Thomson AS, de Groot BL, Rothberg BS. Interactions between selectivity filter and pore helix control filter gating in the MthK channel. J Gen Physiol 2023; 155:e202213166. [PMID: 37318452 PMCID: PMC10274084 DOI: 10.1085/jgp.202213166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
K+ channel activity can be limited by C-type inactivation, which is likely initiated in part by dissociation of K+ ions from the selectivity filter and modulated by the side chains that surround it. While crystallographic and computational studies have linked inactivation to a "collapsed" selectivity filter conformation in the KcsA channel, the structural basis for selectivity filter gating in other K+ channels is less clear. Here, we combined electrophysiological recordings with molecular dynamics simulations, to study selectivity filter gating in the model potassium channel MthK and its V55E mutant (analogous to KcsA E71) in the pore-helix. We found that MthK V55E has a lower open probability than the WT channel, due to decreased stability of the open state, as well as a lower unitary conductance. Simulations account for both of these variables on the atomistic scale, showing that ion permeation in V55E is altered by two distinct orientations of the E55 side chain. In the "vertical" orientation, in which E55 forms a hydrogen bond with D64 (as in KcsA WT channels), the filter displays reduced conductance compared to MthK WT. In contrast, in the "horizontal" orientation, K+ conductance is closer to that of MthK WT; although selectivity filter stability is lowered, resulting in more frequent inactivation. Surprisingly, inactivation in MthK WT and V55E is associated with a widening of the selectivity filter, unlike what is observed for KcsA and reminisces recent structures of inactivated channels, suggesting a conserved inactivation pathway across the potassium channel family.
Collapse
Affiliation(s)
- Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew S. Thomson
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brad S. Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Minniberger S, Abdolvand S, Braunbeck S, Sun H, Plested AJR. Asymmetry and Ion Selectivity Properties of Bacterial Channel NaK Mutants Derived from Ionotropic Glutamate Receptors. J Mol Biol 2023; 435:167970. [PMID: 36682679 DOI: 10.1016/j.jmb.2023.167970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Ionotropic glutamate receptors are ligand-gated cation channels that play essential roles in the excitatory synaptic transmission throughout the central nervous system. A number of open-pore structures of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA)-type glutamate receptors became available recently by cryo-electron microscopy (cryo-EM). These structures provide valuable insights into the conformation of the selectivity filter (SF), the part of the ion channel that determines the ion selectivity. Nonetheless, due to the moderate resolution of the cryo-EM structures, detailed information such as ion occupancy of monovalent and divalent cations as well as positioning of the side-chains in the SF is still missing. Here, in an attempt to obtain high-resolution information about glutamate receptor SFs, we incorporated partial SF sequences of the AMPA and kainate receptors into the bacterial tetrameric cation channel NaK, which served as a structural scaffold. We determined a series of X-ray structures of NaK-CDI, NaK-SDI and NaK-SELM mutants at 1.42-2.10 Å resolution, showing distinct ion occupation of different monovalent cations. Molecular dynamics (MD) simulations of NaK-CDI indicated the channel to be conductive to monovalent cations, which agrees well with our electrophysiology recordings. Moreover, previously unobserved structural asymmetry of the SF was revealed by the X-ray structures and MD simulations, implying its importance in ion non-selectivity of tetrameric cation channels.
Collapse
Affiliation(s)
- Sonja Minniberger
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Saeid Abdolvand
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Sebastian Braunbeck
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Han Sun
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institute of Chemistry, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Andrew J R Plested
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
| |
Collapse
|
5
|
Matamoros M, Ng XW, Brettmann JB, Piston DW, Nichols CG. Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters. Nat Commun 2023; 14:89. [PMID: 36609575 PMCID: PMC9822992 DOI: 10.1038/s41467-022-35756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
The K+ channel selectivity filter (SF) is defined by TxGYG amino acid sequences that generate four identical K+ binding sites (S1-S4). Only two sites (S3, S4) are present in the non-selective bacterial NaK channel, but a four-site K+-selective SF is obtained by mutating the wild-type TVGDGN SF sequence to a canonical K+ channel TVGYGD sequence (NaK2K mutant). Using single molecule FRET (smFRET), we show that the SF of NaK2K, but not of non-selective NaK, is ion-dependent, with the constricted SF configuration stabilized in high K+ conditions. Patch-clamp electrophysiology and non-canonical fluorescent amino acid incorporation show that NaK2K selectivity is reduced by crosslinking to limit SF conformational movement. Finally, the eukaryotic K+ channel TREK2 SF exhibits essentially identical smFRET-reported ion-dependent conformations as in prokaryotic K+ channels. Our results establish the generality of K+-induced SF conformational stability across the K+ channel superfamily, and introduce an approach to study manipulation of channel selectivity.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Wen Ng
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Brettmann
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Millipore-Sigma Inc., St. Louis, MO, USA
| | - David W Piston
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
7
|
Coonen L, Martinez-Morales E, Van De Sande DV, Snyders DJ, Cortes DM, Cuello LG, Labro AJ. The nonconducting W434F mutant adopts upon membrane depolarization an inactivated-like state that differs from wild-type Shaker-IR potassium channels. SCIENCE ADVANCES 2022; 8:eabn1731. [PMID: 36112676 PMCID: PMC9481120 DOI: 10.1126/sciadv.abn1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.
Collapse
Affiliation(s)
- Laura Coonen
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Evelyn Martinez-Morales
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dieter V. Van De Sande
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dirk J. Snyders
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - D. Marien Cortes
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Luis G. Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alain J. Labro
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Basic and Applied Medical Sciences, Faculty of Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels. Int J Mol Sci 2022; 23:ijms23169246. [PMID: 36012519 PMCID: PMC9409022 DOI: 10.3390/ijms23169246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Y55W mutants of non-selective NaK and partly K+-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na+ or K+. A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55–W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na+, or tight induced-fit conformations in K+, most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K+-selective KcsA channel, these channels lack a high affinity K+ binding component and do not collapse in Na+. Thus, they cannot properly select K+ over competing cations, nor reject Na+ by collapsing, as K+-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K+ binding affinities prevent an efficient K+ loss from their SF, thus favoring permanently open channel states.
Collapse
|
9
|
Chowdhury UD, Bhargava BL. Understanding the conformational changes in the influenza B M2 ion channel at various protonation states. Biophys Chem 2022; 289:106859. [PMID: 35905599 DOI: 10.1016/j.bpc.2022.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
The characterization of influenza (A/B M2) ion channels is very important as they are potential binding sites for the drugs. We report the all-atom molecular dynamics study of the influenza B M2 ion channel in the presence of explicit solvent and lipid bilayers using the high resolution solid-state NMR structures. The importance of the various protonation states of histidine in the activation of the ion channel is discussed. The conformational changes at the closed and the open structures clearly show that the increase in tilt angle is necessary for the activation of the ion channel. Additionally, the free energy surfaces of the eight systems show the importance of the protonation state of the histidine residues in the activation of the influenza B M2 ion channel. The protonation of the histidine residues increases the tilt angle and the intra-helix distance which is evident from the superimposition of the structures corresponding to the maxima and the minima in the free energy landscape. The findings imply differences in the singly protonated and double protonated conformational states of BM2 ion channel and provide insights to help further studies of these ion channels as the drug targets for the influenza virus.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O.Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O.Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
10
|
Hendriks K, Öster C, Lange A. Structural Plasticity of the Selectivity Filter in Cation Channels. Front Physiol 2021; 12:792958. [PMID: 34950061 PMCID: PMC8689586 DOI: 10.3389/fphys.2021.792958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.
Collapse
Affiliation(s)
- Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|